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Introduction

The development of non-invasive imaging technologies over the last decades has opened new horizons in studying abdominal anatomical structures. Segmentation has become a crucial task in abdominal image analysis with numerous applications including computer-assisted diagnosis, surgery planning (e.g. organ pre-evaluation for resection or transplantation), visual augmentation, extraction of quantitative indices or image-guided interventions [START_REF] Summers | Progress in fully automated abdominal CT interpretation[END_REF]. In particular, the precise delineation of abdominal solid visceral organs including liver, kidneys and spleen for localization, volume assessment or follow-up purposes has critical importance. However, the analysis of Computed Tomography (CT) and Magnetic Resonance (MR) abdominal imaging datasets is challenging and time-consuming for clinicians since the abdomen is a complex body space. Robust automatic abdominal image segmentation is required to guide image interpretation, facilitate clinical decision making and improve patient care while avoiding traditional manual delineation efforts.

In this area, many interactive, semi-and fully-automated methods have been proposed with diverse methodologies including statistical shape models [START_REF] Cerrolaza | Automatic multi-resolution shape modeling of multiorgan structures[END_REF], multi-atlas segmentation [START_REF] Xu | Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning[END_REF] or machine learning [START_REF] Cuingnet | Automatic detection and segmentation of kidneys in 3D CT images using random forests[END_REF] techniques. More recently, outstanding performance has been reached in almost all medical image analysis tasks using deep learning [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. Despite the large variability in abdominal organ shape, size, location and texture, abdominal multi-organ segmentation has naturally benefited from this massive trend [START_REF] Roth | Hierarchical 3D fully convolutional networks for multiorgan segmentation[END_REF][START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF][START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF][START_REF] Wang | Abdominal multi-organ segmentation with organ-attention networks and statistical fusion[END_REF]. Compared to conventional machine learning, the need for hand-crafted features no longer remains neces-
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liverright kidneyleft kidneyspleen sary. In particular, huge efforts have been devoted to automatic segmentation based on variants of Fully Convolutional Networks (FCN) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. Recent architectures comprise a regular FCN to extract multi-scale features, followed by an up-sampling branch that enables to recover the input resolution through upconvolutions [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. In the medical image processing community, UNet [12] is one of the most well-known approach among such Convolutional Encoder-Decoders (CED). Able to learn from relatively small datasets, CED architectures are the most likely to automatically infer high-level knowledge involved by radiologists when interpreting abdominal images.

Despite intensive developments in deep learning, it remains difficult to judge the effectiveness of deep networks for abdominal multi-organ segmentation since they are mainly assessed on one single organ only (liver most often), one single modality (usually CT) and/or relatively small and private datasets. Their robustness to delineate multiple abdominal structures from different modalities and to manage strong inter-subject variability is therefore under-investigated.

Rather than organ or modality-specific strategies, the development of more com-prehensive and generic computational models is needed [START_REF] Cerrolaza | Computational anatomy for multi-organ analysis in medical imaging: A review[END_REF]. Few challenges including the Combined Healthy Abdominal Organ Segmentation (CHAOS) chal- The proposed healthy abdominal multi-organ segmentation methodology comprises three key aspects. First, deeper CED architectures using encoders pre-trained on non-medical data and extending the UNet [12] baseline are investigated. Second, we embed this architecture into a cascaded framework using auto-context and end-to-end training to benefit from simultaneous multi-level segmentation refinements. Third, such cascaded pipeline is used as generator within a conditional Generative Adversarial Network (cGAN). The resulting model thus includes a discriminator to strengthen the ability of the generative part to create delineations as realistic as possible. The step-by-step evaluation provided for each contribution in both CT and MR modalities highlights better performance than state-of-the-art encoder-decoder schemes. The pipeline also gave us the first rank for three CHAOS competition categories2 (liver CT, liver MR and multi-organ MR segmentation) [START_REF] Kavur | CHAOS challenge : Combined (CT-MR) healthy abdominal organ segmentation[END_REF] which suggests that the proposed computational deep models can offer new insights for abdominal image interpretation and clinical decision making, in various computer-assisted tasks.

Related works

Computational abdominal organ segmentation has attracted considerable attention over the last decades. This craze led to the development of a wide range of methodologies, from interactive to semi-and fully-automated [START_REF] Kavur | Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors[END_REF]. Before the recent development of machine and deep learning, abdominal organ segmentation has often been carried out using statistical shape models [START_REF] Zhang | Automatic liver segmentation from CT scans based on a statistical shape model[END_REF][START_REF] Cerrolaza | Automatic multi-resolution shape modeling of multiorgan structures[END_REF] to capture and then fit organ shapes through anatomical correspondences. Since deformations and limited datasets may prevent those models from managing the strong variability of abdominal organ shapes, aligning and merging manually segmented images could be followed as an alternative. Specifically, multi-atlas segmentation consists in leveraging label atlases through image registration and statistical fusion [START_REF] Sabuncu | A generative model for image segmentation based on label fusion[END_REF]. Applied to abdominal data, coarse-to-fine [START_REF] Yang | Automatic kidney segmentation in CT images based on multi-atlas image registration[END_REF], region-wise local atlas selection [START_REF] Wolz | Automated abdominal multi-organ segmentation with subject-specific atlas generation[END_REF], Selective and Iterative Method for Performance Level Estimation (SIMPLE) [START_REF] Xu | Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning[END_REF][START_REF] Huo | Robust multi-contrast MRI spleen segmentation for splenomegaly using multi-atlas segmentation[END_REF] or dictionary learning and sparse coding [START_REF] Tong | Discriminative dictionary learning for abdominal multiorgan segmentation[END_REF] techniques can be employed to alleviate substantial registration errors. Nevertheless, robust inter-subject abdominal image registration is a challenging, computational intense and not yet solved issue [START_REF] Xu | Evaluation of six registration methods for the human abdomen on clinically acquired CT[END_REF] due to the diversity of organ shape, size, location and texture. This mainly explains the success of registration-free methods whose aim is to learn feature distributions that characterize abdominal anatomy from un-registered images.

Among registration-free methods, computational power and data availability have enabled the rise of machine learning techniques via voxel- [START_REF] Cuingnet | Automatic detection and segmentation of kidneys in 3D CT images using random forests[END_REF][START_REF] Bieth | From large to small organ segmentation in CT using regional context[END_REF], patch- [START_REF] Giraud | An optimized patchmatch for multi-scale and multifeature label fusion[END_REF] or supervoxel-wise [START_REF] Conze | Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[END_REF] classifiers. These methods require hand-crafted features and therefore, specialized knowledge to delineate structures from medical images. Conversely, deep Convolutional Neural Networks (CNN), data-driven learning models formed by multi-layer neural networks, automatically learn complex hierarchical features from data [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. In this direction, huge efforts have been devoted to automatic segmentation based on variants of Fully Convolutional Networks (FCN) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. Further improvements are reached with architectures comprising a regular FCN to extract features, followed by an up-sampling part which recovers the input resolution using up-convolutions [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. UNet [12] and its 3D counterparts [START_REF] Milletari | Fully convolutional neural networks for volumetric medical image segmentation[END_REF][START_REF]3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF] are among the most well-known Convolutional Encoder-Decoders (CED) in the medical community. They exploit long-range shortcuts to concatenate features between contracting and expanding paths for improving localization accuracy while allowing faster convergence.

CED networks have been widely adopted for automatic abdominal organ segmentation, as in [START_REF] Roth | Hierarchical 3D fully convolutional networks for multiorgan segmentation[END_REF] where 3D UNet [START_REF]3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF] is exploited in a two-stage hierarchical fashion for multi-organ delineation purposes. Combining densely linked layers and shallow 3D UNet architecture [START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF] enables high-resolution activation maps through memory-efficient dropout and feature re-use. Some approaches consider post-processing steps for further contour refinement by exploiting organ probability maps arising from 3D CED as features for Conditional Random Field (CRF) [START_REF] Dou | 3D deeply supervised network for automatic liver segmentation from CT volumes[END_REF], level-set [START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF] or graph-cut [START_REF] Lu | Automatic 3D liver location and segmentation via convolutional neural network and graph cut[END_REF] models. Organ-attention networks with reverse connections followed by statistical fusion [START_REF] Wang | Abdominal multi-organ segmentation with organ-attention networks and statistical fusion[END_REF] tend to reduce uncertainties at weak boundaries and deal with relative organ size variations.

Feeding deep networks with volumetric images obviously faces memory and computational issues. Since increasing the network depth to extract discriminative features with a larger receptive field cannot be done ad-infinitum, many methods rely on small patches or downsampled images resulting in a significant loss of spatial context [START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF]. Reaching accurate organ delineations, however, requires to extract high-level contextual information, as do radiologists visually. Several key contributions in semantic segmentation arose to mimic visual medical image interpretations more closely. First, structure delineation can exploit transfer learning from large non-medical datasets [START_REF] Iglovikov | TernausNet: U-Net with VGG11 encoder pre-trained on imagenet for image segmentation[END_REF][START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders[END_REF] to reduce the data scarcity issue while improving model generalizability [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. Second, stacking multiple CEDs encourages the integration of more representative multi-level information [START_REF] Choi | Fast and robust segmentation of the striatum using deep convolutional neural networks[END_REF][START_REF] Roth | A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[END_REF]. In particular, cascades of deep CEDs can embed auto-context [START_REF] Tu | Auto-context and its application to high-level vision tasks and 3D brain image segmentation[END_REF] to fuse various amounts of spatial context using posterior probabilities resulting from one CED block to the subsequent. Third, conditional generative adversarial networks extends standard image-to-image translation [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] by including a discriminator whose role is to enforce the model to generate realis- tic outputs. Successfully applied to medical images [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF][START_REF] Lei | Skin lesion segmentation via generative adversarial networks with dual discriminators[END_REF][START_REF] Boutillon | Combining shape priors with conditional adversarial networks for improved scapula segmentation in MR images[END_REF], introducing adversarial training to semantic segmentation not only leverages overall delineation performance but also alleviates high-order spatial incorrectness such as inaccurate boundaries or isolated false positives [START_REF] Luc | Semantic segmentation using adversarial networks[END_REF][START_REF] Huo | Splenomegaly segmentation on multi-modal MRI using deep convolutional networks[END_REF]. In the context of abdominal image analysis, all these avenues represent promising methodological developments to achieve more generic computational models for CT and MRI multi-organ segmentation.

Methods

Conditional generative adversarial networks

Recent works including [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF][START_REF] Lei | Skin lesion segmentation via generative adversarial networks with dual discriminators[END_REF][START_REF] Boutillon | Combining shape priors with conditional adversarial networks for improved scapula segmentation in MR images[END_REF][START_REF] Huo | Splenomegaly segmentation on multi-modal MRI using deep convolutional networks[END_REF] have demonstrated the feasibility of image-to-image translation [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] based on conditional Generative Adversarial Networks (cGAN) for medical image segmentation purposes. cGAN architectures (Fig. 2) are made of a generator which provides segmentation masks through encoding and decoding layers and a discriminator (Fig. 3) which assesses if a given segmentation mask is synthetic or real. Thus, the adversarial network learns to discriminate real (i.e. ground truth) from synthetic delineations (those arising from the generator) to enforce the generative part to create segmentation masks as plausible as possible. Contrary to standard iterative post-processing schemes such as Conditional Random Field (CRF) [START_REF] Dou | 3D deeply supervised network for automatic liver segmentation from CT volumes[END_REF] or level-set [START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF], this refinement is performed in an end-to-end fashion [START_REF] Huo | Splenomegaly segmentation on multi-modal MRI using deep convolutional networks[END_REF].

cGAN pipelines usually use UNet [12] as generator G (Fig. 4a). Its symmetrical architecture comprises an encoder which gradually reduces the spatial dimension using pooling layers, a decoder progressively recovering object details and initial resolution as well as long-range shortcuts which concatenate features between contracting and expanding paths. Specifically, UNet consists of sequential layers including 3×3 convolutional layers followed by Rectified Linear Unit (ReLU) activations. Spatial size is reduced using 2 × 2 max pooling layers. The first convolutional layer generates 32 channels [12]. This number doubles after each pooling as the network deepens. Following [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF], the discriminator D consists of five 4×4 convolutional layers followed by leaky ReLU activation functions and batch normalization (Fig. 3). The discriminator inputs are the concatenation of both source images and ground truth or predicted binary masks to be evaluated. The output is an array where each value is defined between 0 (fake) and 1 (plausible or real) and corresponds to the degree of segmentation likelihood for a given image crop and its associated segmentation mask. Let x and y be the source images and ground truth delineation masks, λ = 150 an empirically set weighting factor [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF], G(x) and D(x, G(x)) the outputs of G and D, l dice the Dice loss estimated by comparing predicted and ground truth masks.

As in [START_REF] Huo | Splenomegaly segmentation on multi-modal MRI using deep convolutional networks[END_REF][START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF], the loss function l G (G, D) for the generator G is defined as the following combination:

l G (G, D) = E x,y [-log(D(x, G(x)))] + λ E x,y [l dice (G(x), y)] (1) 
Minimizing l dice tends to provide rough organ shape predictions whereas maximizing log(D(x, G(x)) aims at improving contour delineations. The loss function for the discriminator D is such that:

l D (G, D) = E x,y [-log(D(x, y))] + E x,y [-log(1 -D(x, G(x)))] (2) 
The optimizer fits D through Binary Cross Entropy (BCE) using estimated and ground truth masks. It maximizes loss values for ground truth (log(D(x, y)))

and minimizes loss values for generated (-log(1 -D(x, G(x)))) masks. Optimization is performed sequentially by alternating at each batch gradient descents on G and D [START_REF] Goodfellow | Generative adversarial nets[END_REF]. To further improve cGAN abilities to extract contours from the abdominal anatomy, investigations on more robust generators than traditional UNet are needed.

Partially pre-trained generator

CED architectures dedicated to medical image segmentation are typically trained from scratch, relying on randomly initialized weights. Since the amount of available images cannot be endlessly extended, reaching a generic model without over-fitting is therefore challenging. As deep classification networks which usually involve model pre-trained on large datasets, the encoder part of CEDs can be replaced by a classification network whose weights are previously trained on an initial classification task [START_REF] Iglovikov | TernausNet: U-Net with VGG11 encoder pre-trained on imagenet for image segmentation[END_REF]. It exploits transfer learning and fine-tuning from large datasets like ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] towards better semantic segmentation. In the literature, the encoder has been already replaced by pre-trained VGG-11 [START_REF] Iglovikov | TernausNet: U-Net with VGG11 encoder pre-trained on imagenet for image segmentation[END_REF] or WideResnet-38 [START_REF] Iglovikov | TernausNetV2: Fully convolutional network for instance segmentation[END_REF] networks. Our previous study [START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders[END_REF] exploits pre-trained Figure 4: Extension of UNet [12] (a) by exploiting as encoder a slightly modified VGG-19 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] without (b) and with (c) weights pre-trained on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. The decoder is modified to get a symmetrical construction while keeping long-range shortcuts.

VGG-16 encoders and reveals significant improvements compared to their ran-190 domly weighted counterparts.

This approach can be further improved by extending standard UNet [12] by a deeper network from the VGG family [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] as encoder: the VGG-19 architecture.

Compared to UNet (Fig. 4a), the first convolutional layer of v19UNet (Fig. 4b) generates 64 channels instead of 32. The number of channels doubles after 

Cascaded generator with auto-context

Managing long-range spatial context is key to improve abdominal organ delineations [START_REF] Conze | Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[END_REF]. However, increasing ad-infinitum the network depth to exploit larger receptive fields is not suitable for memory and computational issues. Alternatively, in the same spirit of [START_REF] Roth | A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[END_REF], we propose to process abdominal images using a cascade of deep CEDs to exploit multi-level contextual information (Fig. 5). Our strategy, referred to v19pUNet1-1, consists in combining two partially pre-trained v19pUNet networks with auto-context [START_REF] Tu | Auto-context and its application to high-level vision tasks and 3D brain image segmentation[END_REF], i.e. using posterior probabilities resulting from the first v19pUNet as features for the second one [START_REF] Salehi | Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging[END_REF].

It extends with more complex architectures a proof-of concept given in [47] us-ing standard UNet (UNet1-1). The sigmoid activation of the first v19pUNet used in the last 1×1 convolution layer (Fig. 4c) is replaced by a linear function to generate continuous output maps. These maps are normalized, concatenated to source images and given as inputs of the second v19pUNet which is trained to give final organ delineations. In practice, since the second CED requires 3-layers volumes as inputs due to its encodeur pre-trained on ImageNet, we concatenate the posterior probability map with the source image whose content is replicated twice (stack block in Fig. 5). Instead of training both models separately [START_REF] Salehi | Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging[END_REF],

our pipeline is trained end-to-end to exploit simultaneous multi-level segmentation refinements. Making the first v19pUNet generating continuous instead of binary outputs propagates pixel-wise confidence information to the second v19pUNet and postpones the final segmentation decision to the pipeline ending part. Contrary to [START_REF] Roth | A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation[END_REF], both networks process source images at full-resolution.

Moreover, we keep the largest connected segmented area as post-processing.

We propose to use this cascaded partially pre-trained v19pUNet1-1 model as generator within the cGAN pipeline (cGv19pUNet1-1). Robustness and generalization capabilities need to be assessed for abdominal multi-organ segmentation.

Results and discussion

Validation setup

Results are provided using the dataset3 arising from the CHAOS challenge Following the CHAOS challenge rules, CT and MR datasets are divided into training and test subsets, with a ratio of 50%.

Except for DeepMedic [START_REF] Kamnitsas | Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[END_REF], VNet [START_REF] Milletari | Fully convolutional neural networks for volumetric medical image segmentation[END_REF] and denseVNet [START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF] Let S and G deal with segmentation results and ground truth. To assess standard CED (DeepMedic [START_REF] Kamnitsas | Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[END_REF], VNet [START_REF] Milletari | Fully convolutional neural networks for volumetric medical image segmentation[END_REF], denseVNet [START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF], UNet 
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, average and maximum symmetric surface distances (ASSD, MSSD) which correspond to the average (resp. maximum) Hausdorff distance between border voxels in S and G. These metrics tend to provide an overall assessment of the involved networks. Following [START_REF] Kavur | CHAOS challenge : Combined (CT-MR) healthy abdominal organ segmentation[END_REF], we also provide model ranking scores by averaging all metrics after having transformed values to span the [0, 100] interval so that higher values correspond to better segmentation.

To discard unacceptable accuracy and increase metric sensitivity [START_REF] Kavur | CHAOS challenge : Combined (CT-MR) healthy abdominal organ segmentation[END_REF], thresholds are set up according to intra/inter-expert similarities: dice > 80%, RAVD < 5%, lows to take advantage of multi-level context, with score improvements from 79.07 (58.02) to 81.28% (63.05%) in CT (MR). v19UNet and v19pUNet give better or slightly similar performance than their nested and dense counterparts (v19/v19pUNet+) which suggests that the great complexity brought by such heavy architectures [START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF] is not useful to provide relevant liver contours.

By combining these three contributions (deeper model, encoder pre-training, cascaded architecture), v16pUNet1-1 (v19pUNet1-1) discriminates more efficiently liver areas from surrounding structures by achieving the best score for CT (MR) scans with 85.53% (70.05%). Embedding v16pUNet1-1 (v19pUNet1-1) into a cGAN pipeline for CT (MR) liver segmentation gives broadly similar results but provides the second best scores. We note that cGv16pUNet1-1 reaches the best dice (97.95%) and similar ASSD (0.76mm) in CT. In MR, the best RAVD (3.49%) is obtained using cGv19pUNet1-1. λ = 150 was selected as in [START_REF] Singh | Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[END_REF] to provide a good balance between E

x,y

[-log(D(x, G(x)))] and E

x,y

[l dice (G(x), y)] in Eq.1.

Qualitative results for CT and MR liver segmentation are displayed in Fig. 67. Compared to standard networks as well as v16pUNet (v19pUNet/v19pUNet+) which are prone to under-or over-segmentation, sometimes combined with unrealistic shapes, better contour adherence and shape consistency are reached by 
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Figure 1 :

 1 Figure 1: Samples of healthy abdominal CT and MR (T1-DUALin/out, T2-SPIR) images arising from the CHAOS dataset [2], provided with ground truth organ delineations.
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 12 , organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2019, has been proposed to motivate further work on this perspective by making available a dataset (Fig.1) to segment multiple organs from two imaging modalities (CT, MR with T1-DUAL and T2-SPIR sequences) acquired for unpaired healthy subjects. Towards efficient combined segmentation and based on this unique dataset, we target robust and generic deep learning architectures for two main purposes: 1-segmentation of liver from CT scans and 2-segmentation of four abdominal organs (liver, right kidney, left kidney, spleen) from MR images.

Figure 2 :

 2 Figure 2: Conditional generative adversarial networks combining Dice and Binary Cross Entropy (BCE) losses for abdominal organ segmentation. The + symbol indicates that the loss fonction l G (G, D) for the generator G is a weighted sum of Dice and BCE metrics (Eq.1).

Figure 3 :

 3 Figure 3: Discriminative part of conditional generative adversarial networks.

Figure 5 :

 5 Figure 5: Cascaded convolutional encoder-decoders with auto-context to exploit multi-level contextual information. The stack blocks consist in concatenating multiple inputs.
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 2 , collected by the Department of Radiology, Dokuz Eylul University Hospital, Izmir, Turkey and involving 80 patients. 40 abdominal CT scans acquired at portal venous phase after contrast agent injection are used with ground truth liver segmentation. The dataset also includes 40 T1-DUAL in phase (T1-DUALin), 40 T1-DUAL oppose phase (T1-DUALout) and 40 T2-SPIR abdominal MR images with ground truth delineations for liver, right kidney, left kidney and spleen. Three radiology experts (10, 12 and 28 years of experi-ence) were involved for manual segmentation. Final ground truth masks were obtained through majority voting. T1-DUALin and T1-DUALout images are registered. Conversely, T1-DUAL and T2-SPIR sequences are not registered.

  [12]), deeper CED without or with encoder pre-training (v16UNet, v16pUNet[START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders[END_REF], v19UNet, v19pUNet), CED using nested and dense skip connections (v19UNet+, v19pUNet+[START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF]), cascaded CED (UNet1-1[47], v16pUNet1-1, v19pUNet1-1) and cGAN with partially pre-trained cascaded CED as generator (cGv16pUNet1-1, cGv19pUNet1-1), the accuracy of abdominal organ segmentation is quantified based on Dice coefficient (dice) estimated following 2|S∩G| |S|+|G| where |.| denotes cardinality, relative absolute volume difference (RAVD) comparing S and G such as RAVD = abs(|S|-|G|)

ASSD

  < 15mm and MSSD < 60mm. Metrics outside the threshold range get zero points. Scores reached for multi-organ segmentation are obtained by averag-ing the scores obtained for each organ. Similarly, scores for MR images are the average between results arising from T1-DUALin/out and T2-SPIR modalities. In our experiments, a given model is dedicated to one single modality (T1-DUALin/out, T2-SPIR, CT) and one single organ (liver, right kidney, left kidney, spleen). Each model thus performs binary instead of multi-class segmentation to extract robust organ-specific features. In addition, experiments on the T1-DUAL modality stack together T1-DUALin and T1-DUALout images as model inputs since both phases are registered. When 3 channels are required, as for v16(p)UNet, the third channel consists of the T1DUALin image duplication. For CT and T2-SPIR, image content is replicated twice.Deep CEDs are trained using data augmentation to teach networks efficient invariance and robustness properties[12]. Training axial slices undergo random scaling, rotation, shearing and shifting operations. 100 augmented images are produced for a single training slice. For CT (MR) images, models are trained with 6 (20) epochs, a batch size of 3 (5) images, an Adam optimizer with 10 -5 as learning rate and a fuzzy Dice score as loss function. Models were implemented using Keras and trained using a single Nvidia GeForce GTX 1080 Ti GPU.

Figure 6 :

 6 Figure 6: Liver CT segmentation using DeepMedic [48], VNet [26], denseVNet [8], UNet [12], v16UNet, v16pUNet [31], proposed v16pUNet1-1 and cGv16pUNet1-1. Ground truth is superimposed in red color.

Figure 7 :

 7 Figure 7: Liver MRI (T1-DUALin, T2-SPIR) segmentation using DeepMedic [48], VNet [26], denseVNet [8], UNet [12], v19pUNet, v19pUNet+ [49], proposed v19pUNet1-1 and cGv19pUNet1-1.Ground truth is superimposed in red color.

Figure 8 :

 8 Figure 8: Abdominal multi-organ MRI (T1-DUALin, T2-SPIR) segmentation using DeepMedic [48], denseVNet [8], UNet [12], v19pUNet, v19pUNet+ [49], proposed v19pUNet1-1 and cGv19pUNet1-1. Liver, right kidney, left kidney and spleen ground truth delineations are respectively superimposed in red, green, blue and yelow colors.

  learning pipelines. Except for left kidney where v16pUNet performs the best (64.05%), the first rank is always attributed to one of the proposed cascaded pre-trained scheme: v16pUNet1-1 for CT liver, v19pUNet1-1 for MR liver and right kidney (69.45%), cGv16pUNet1-1 for MR spleen (68.9%) and cGv19pUNet1-1 for 385 MR multi-organ (66.86%) segmentation.By combining the best sequence-and organ-specific networks towards better Multi-Organ (MO) segmentation, we obtain the so-called MOvpUnet computational model including v16pUNet1-1 for liver in CT (Tab.1) as well as respectively for T1-DUAL and T2-SPIR cGv19pUNet1-1 and v19pUNet1-1 for liver, v19pUNet 390 and v19pUNet1-1 for right kidney, v16pUNet and cGv16pUNet1-1 for left kidney, v19pUNet+ and cGv16pUNet1-1 for spleen (Tab.2). The global ranking score reached by cGv19pUNet1-1 for multi-organ MR segmentation is further improved about 2% with MOvpUnet, up to 68.78% (Tab.3). Visually comparing manual and MOvpUnet delineations in Fig.9 further supports the validity of our combined 395 computational model. Outstanding performance is reached in terms of boundary adherence and shape consistency which suggests that integrating MOvpUnet as a guidance tool into clinical routine could greatly help clinicians for abdominal image interpretation. --T1-DUALout ---T2-SPIR --MOvpUNet liver right kidney left kidney spleen

Figure 9 :

 9 Figure 9: Liver CT and abdominal multi-organ MRI (T1-DUALin/out, T2-SPIR) segmentation using the proposed MOvpUNet. Liver, right kidney, left kidney and spleen ground truth delineations are superimposed in red, green, blue and yelow colors.

  This work tackles fully-automated abdominal organ CT and MR segmentation with deep learning. Standard segmentation networks are extended to cascades of partially pre-trained deep convolutional encoder-decoders. Encoder fine-tuning from a large amount of non-medical images improves predictive performance while alleviating data scarcity limitations. The cascaded architecture exploits multi-level contextual information through auto-context and end-toend training. Such model is used as generator in a conditional generative adversarial network to further encourage the generative part to provide plausible organ delineations. Results highlight promising performance by outperforming state-of-the-art encoder-decoder schemes. Employed for the Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge, our contributions reached the first rank for liver CT, liver MR and multi-organ MR segmentation competition categories. The proposed pipeline has the potential to support guidance for abdominal image interpretation, clinical decision making and patient care improvement while avoiding manual delineation efforts. Further work includes the evaluation of such deep models to other anatomical structures from the abdomen (pancreas, gallbladder) and the gastro-intestinal tract (esophagus, stomach, duodenum) arising from healthy and pathological subjects. More globally, our pipeline could be easily extended to other tissue types and imaging modalities to provide relevant clinical decision support. Methodological perspectives on unpaired cross-modality (CT, MR...) medical image segmentation with compact architectures could deserve further investigation to take advantage of multi-tasking properties of deep models as well as a larger amount of available data. Extending adversarial frameworks to incorporate anatomical priors using topological or shape constraints should also offer new insights to manage the strong diversity of abdominal organ appearance.

Table 1 :

 1 Quantitative assessment of DeepMedic[START_REF] Kamnitsas | Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[END_REF], VNet[START_REF] Milletari | Fully convolutional neural networks for volumetric medical image segmentation[END_REF], denseVNet[START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF], UNet[12], v16UNet, v16pUNet[START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders[END_REF], v19UNet, v19pUNet, v19UNet+[START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF], v19pUNet+[START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF], UNet1-1[47] and proposed v16pUNet1-1, v19pUNet1-1, cGv16pUNet1-1, cGv19pUNet1-1 and MOvpUNet architectures for healthy liver segmentation in CT and MR images. Bold and underline results indicate first and second best scores.

	performed by deeper (v16/v16pUNet, v19/v19pUNet) and cascaded (UNet1-1)
	networks which indicates that better predictive performance and generalizabil-
	ity are reached using more complex models. In one hand, comparisons between
	v16/v19UNet and their partially pre-trained extensions (v16p/v19pUNet) re-
	veals that pre-training the encoder using non-medical ImageNet data makes the
	network converge towards a better solution. In particular, large gains in terms
	of dice (91.60 to 94.07%) and ASSD (2.96 to 1.70mm) are reported for MR
	images between v16UNet and v16pUNet. In the other hand, extending UNet

4.2. Evaluation on clinical data

CT and MR liver segmentation. Quantitative metric and score values are provided in Tab.1 for liver CT/MR delineations. For both modalities, standard architectures including DeepMedic, VNet, denseVNet and UNet are outinto a cascaded pipeline (UNet1-1) with auto-context and end-to-end-training al-

  Towards better multi-organ segmentation. Under the team name PKDIA,

		CT						MRI				
	model	liver		liver		right kidney	left kidney	spleen	multi-organ
		score	rank	score	rank	score	rank	score	rank	score	rank	score	rank
	DeepMedic [48]	73.32	14	47.64	13	43.41	13	36.93	13	37.83	13	41.45
	denseVNet [8]	73.78	13	28.91	14	32.62	14	32.07	14	20.20	14	28.45
	UNet [12]	79.07	11	58.02	12	58.46	12	55.33	12	56.92	12	57.18
	v16UNet	82.71	7	60.86	11	61.02	10	58.12	8	58.86	10	59.63
	v16pUNet [31]	83.71	5/6	67.99	4	67.05	6	64.05	1	67.64	4	66.61
	v19UNet	82.34	9	61.55	9	64.14	8	57.25	11	58.50	11	60.28
	v19pUNet	83.71	5/6	65.32	7	68.23	4	61.58	5	66.55	6	65.38
	v19UNet+ [49]	76.61	12	61.39	10	60.79	11	57.32	10	59.40	9	59.77
	v19pUNet+ [49]	82.69	8	66.14	6	66.03	7	62.79	3	68.80	2	65.90
	UNet1-1 [47]	81.28	10	63.05	8	63.18	9	57.82	9	60.01	8	61.00
	v16pUNet1-1	85.53	1	68.92	3	67.31	5	63.11	2	66.35	7	66.44
	v19pUNet1-1	84.40	3	70.05	1	69.45	1	59.64	7	67.79	3	66.72
	cGv16pUNet1-1	84.50	2	67.88	5	69.30	2	60.85	6	68.90	1	66.74
	cGv19pUNet1-1	84.15	4	69.21	2	68.94	3	62.27	4	67.12	5	66.86
	MOvpUNet	85.53		70.17		70.39		64.77		69.92		68.78
	the proposed cGv19pUNet1-1 pipeline enabled us to win three CHAOS compe-
	tition categories: liver CT, liver MR and multi-organ MR segmentation [2].
	Nevertheless, since global findings are verified with varying degrees depending
	on the concerned modality or organ, we provide in Tab.3 an overall evaluation
	through scores and rankings for CT liver, MR liver, right kidney, left kidney,
	spleen as well as multi-organ segmentation. cGv19pUNet1-1 indeed appears as the
	best strategy for MR multi-organ delineation purposes that reinforces the idea
	that combining deeper (v19) cascaded partially pre-trained convolutional and
	adversarial networks globally strengthens the generalization abilities of deep

Table 3 :

 3 Scoreboard and ranking of DeepMedic[START_REF] Kamnitsas | Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[END_REF], denseVNet[START_REF] Gibson | Automatic multi-organ segmentation on abdominal CT with dense V-networks[END_REF], UNet[12], v16UNet, v16pUNet[START_REF] Conze | Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders[END_REF], v19UNet, v19pUNet, v19UNet+[START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF], v19pUNet+[START_REF] Zhou | UNet++: A nested U-Net architecture for medical image segmentation[END_REF], UNet1-1[47], proposed v16pUNet1-1, v19pUNet1-1, cGv16pUNet1-1, cGv19pUNet1-1 and MOvpUNet for healthy abdominal organ (liver, right kidney, left kidney, spleen) segmentation in CT and MR images. Bold, underline and italic results indicate first, second and third best scores.

https://chaos.grand-challenge.org

https://chaos.grand-challenge.org/results_CHAOS/

CHAOS data available at https://doi.org/10.5281/zenodo.3362844