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Abstract

Abdominal anatomy segmentation is crucial for numerous applications from

computer-assisted diagnosis to image-guided surgery. In this context, we address

fully-automated multi-organ segmentation from abdominal CT and MR images

using deep learning. The proposed model extends standard conditional gen-

erative adversarial networks. Additionally to the discriminator which enforces

the model to create realistic organ delineations, it embeds cascaded partially

pre-trained convolutional encoder-decoders as generator. Encoder fine-tuning

from a large amount of non-medical images alleviates data scarcity limitations.

The network is trained end-to-end to benefit from simultaneous multi-level seg-

mentation refinements using auto-context. Employed for healthy liver, kidneys

and spleen segmentation, our pipeline provides promising results by outper-

forming state-of-the-art encoder-decoder schemes. Followed for the Combined

Healthy Abdominal Organ Segmentation (CHAOS) challenge organized in con-

junction with the IEEE International Symposium on Biomedical Imaging 2019,

it gave us the first rank for three competition categories: liver CT, liver MR

and multi-organ MR segmentation. Combining cascaded convolutional and ad-

versarial networks strengthens the ability of deep learning pipelines to automat-
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ically delineate multiple abdominal organs, with good generalization capability.

The comprehensive evaluation provided suggests that better guidance could be

achieved to help clinicians in abdominal image interpretation and clinical deci-

sion making.

Keywords: multi-organ segmentation, convolutional encoder-decoders,

adversarial learning, cascaded networks, abdominal images

1. Introduction

The development of non-invasive imaging technologies over the last decades

has opened new horizons in studying abdominal anatomical structures. Segmen-

tation has become a crucial task in abdominal image analysis with numerous

applications including computer-assisted diagnosis, surgery planning (e.g. organ5

pre-evaluation for resection or transplantation), visual augmentation, extraction

of quantitative indices or image-guided interventions [1]. In particular, the pre-

cise delineation of abdominal solid visceral organs including liver, kidneys and

spleen for localization, volume assessment or follow-up purposes has critical im-

portance. However, the analysis of Computed Tomography (CT) and Magnetic10

Resonance (MR) abdominal imaging datasets is challenging and time-consuming

for clinicians since the abdomen is a complex body space. Robust automatic

abdominal image segmentation is required to guide image interpretation, facili-

tate clinical decision making and improve patient care while avoiding traditional

manual delineation efforts.15

In this area, many interactive, semi- and fully-automated methods have

been proposed with diverse methodologies including statistical shape models [3],

multi-atlas segmentation [4] or machine learning [5] techniques. More recently,

outstanding performance has been reached in almost all medical image analysis

tasks using deep learning [6]. Despite the large variability in abdominal organ20

shape, size, location and texture, abdominal multi-organ segmentation has nat-

urally benefited from this massive trend [7, 8, 9, 10]. Compared to conventional

machine learning, the need for hand-crafted features no longer remains neces-
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Figure 1: Samples of healthy abdominal CT and MR (T1-DUALin/out, T2-SPIR) images
arising from the CHAOS dataset [2], provided with ground truth organ delineations.

sary. In particular, huge efforts have been devoted to automatic segmentation

based on variants of Fully Convolutional Networks (FCN) [11]. Recent archi-25

tectures comprise a regular FCN to extract multi-scale features, followed by an

up-sampling branch that enables to recover the input resolution through up-

convolutions [6]. In the medical image processing community, UNet [12] is one

of the most well-known approach among such Convolutional Encoder-Decoders

(CED). Able to learn from relatively small datasets, CED architectures are the30

most likely to automatically infer high-level knowledge involved by radiologists

when interpreting abdominal images.

Despite intensive developments in deep learning, it remains difficult to judge

the effectiveness of deep networks for abdominal multi-organ segmentation since

they are mainly assessed on one single organ only (liver most often), one sin-35

gle modality (usually CT) and/or relatively small and private datasets. Their

robustness to delineate multiple abdominal structures from different modalities

and to manage strong inter-subject variability is therefore under-investigated.

Rather than organ or modality-specific strategies, the development of more com-
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prehensive and generic computational models is needed [13]. Few challenges in-40

cluding the Combined Healthy Abdominal Organ Segmentation (CHAOS) chal-

lenge1 [2], organized in conjunction with the IEEE International Symposium on

Biomedical Imaging (ISBI) 2019, has been proposed to motivate further work

on this perspective by making available a dataset (Fig.1) to segment multiple

organs from two imaging modalities (CT, MR with T1-DUAL and T2-SPIR45

sequences) acquired for unpaired healthy subjects. Towards efficient combined

segmentation and based on this unique dataset, we target robust and generic

deep learning architectures for two main purposes: 1- segmentation of liver from

CT scans and 2- segmentation of four abdominal organs (liver, right kidney, left

kidney, spleen) from MR images.50

The proposed healthy abdominal multi-organ segmentation methodology

comprises three key aspects. First, deeper CED architectures using encoders

pre-trained on non-medical data and extending the UNet [12] baseline are in-

vestigated. Second, we embed this architecture into a cascaded framework using

auto-context and end-to-end training to benefit from simultaneous multi-level55

segmentation refinements. Third, such cascaded pipeline is used as generator

within a conditional Generative Adversarial Network (cGAN). The resulting

model thus includes a discriminator to strengthen the ability of the generative

part to create delineations as realistic as possible. The step-by-step evaluation

provided for each contribution in both CT and MR modalities highlights bet-60

ter performance than state-of-the-art encoder-decoder schemes. The pipeline

also gave us the first rank for three CHAOS competition categories2 (liver CT,

liver MR and multi-organ MR segmentation) [2] which suggests that the pro-

posed computational deep models can offer new insights for abdominal image

interpretation and clinical decision making, in various computer-assisted tasks.65

1https://chaos.grand-challenge.org
2https://chaos.grand-challenge.org/results_CHAOS/
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2. Related works

Computational abdominal organ segmentation has attracted considerable at-

tention over the last decades. This craze led to the development of a wide range

of methodologies, from interactive to semi- and fully-automated [14]. Before the

recent development of machine and deep learning, abdominal organ segmenta-70

tion has often been carried out using statistical shape models [15, 3] to capture

and then fit organ shapes through anatomical correspondences. Since defor-

mations and limited datasets may prevent those models from managing the

strong variability of abdominal organ shapes, aligning and merging manually

segmented images could be followed as an alternative. Specifically, multi-atlas75

segmentation consists in leveraging label atlases through image registration and

statistical fusion [16]. Applied to abdominal data, coarse-to-fine [17], region-wise

local atlas selection [18], Selective and Iterative Method for Performance Level

Estimation (SIMPLE) [4, 19] or dictionary learning and sparse coding [20] tech-

niques can be employed to alleviate substantial registration errors. Nevertheless,80

robust inter-subject abdominal image registration is a challenging, computa-

tional intense and not yet solved issue [21] due to the diversity of organ shape,

size, location and texture. This mainly explains the success of registration-free

methods whose aim is to learn feature distributions that characterize abdominal

anatomy from un-registered images.85

Among registration-free methods, computational power and data availability

have enabled the rise of machine learning techniques via voxel- [5, 22], patch-

[23] or supervoxel-wise [24] classifiers. These methods require hand-crafted fea-

tures and therefore, specialized knowledge to delineate structures from medical

images. Conversely, deep Convolutional Neural Networks (CNN), data-driven90

learning models formed by multi-layer neural networks, automatically learn com-

plex hierarchical features from data [25]. In this direction, huge efforts have

been devoted to automatic segmentation based on variants of Fully Convolu-

tional Networks (FCN) [11]. Further improvements are reached with architec-

tures comprising a regular FCN to extract features, followed by an up-sampling95
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part which recovers the input resolution using up-convolutions [6]. UNet [12]

and its 3D counterparts [26, 27] are among the most well-known Convolutional

Encoder-Decoders (CED) in the medical community. They exploit long-range

shortcuts to concatenate features between contracting and expanding paths for

improving localization accuracy while allowing faster convergence.100

CED networks have been widely adopted for automatic abdominal organ

segmentation, as in [7] where 3D UNet [27] is exploited in a two-stage hierar-

chical fashion for multi-organ delineation purposes. Combining densely linked

layers and shallow 3D UNet architecture [8] enables high-resolution activation

maps through memory-efficient dropout and feature re-use. Some approaches105

consider post-processing steps for further contour refinement by exploiting or-

gan probability maps arising from 3D CED as features for Conditional Random

Field (CRF) [28], level-set [9] or graph-cut [29] models. Organ-attention net-

works with reverse connections followed by statistical fusion [10] tend to reduce

uncertainties at weak boundaries and deal with relative organ size variations.110

Feeding deep networks with volumetric images obviously faces memory and

computational issues. Since increasing the network depth to extract discrimi-

native features with a larger receptive field cannot be done ad-infinitum, many

methods rely on small patches or downsampled images resulting in a signifi-

cant loss of spatial context [8]. Reaching accurate organ delineations, however,115

requires to extract high-level contextual information, as do radiologists visu-

ally. Several key contributions in semantic segmentation arose to mimic visual

medical image interpretations more closely. First, structure delineation can

exploit transfer learning from large non-medical datasets [30, 31] to reduce the

data scarcity issue while improving model generalizability [32]. Second, stacking120

multiple CEDs encourages the integration of more representative multi-level in-

formation [33, 34]. In particular, cascades of deep CEDs can embed auto-context

[35] to fuse various amounts of spatial context using posterior probabilities re-

sulting from one CED block to the subsequent. Third, conditional generative

adversarial networks extends standard image-to-image translation [36] by in-125

cluding a discriminator whose role is to enforce the model to generate realis-
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Figure 2: Conditional generative adversarial networks combining Dice and Binary Cross En-
tropy (BCE) losses for abdominal organ segmentation. The + symbol indicates that the loss
fonction lG(G,D) for the generator G is a weighted sum of Dice and BCE metrics (Eq.1).

tic outputs. Successfully applied to medical images [37, 38, 39], introducing

adversarial training to semantic segmentation not only leverages overall delin-

eation performance but also alleviates high-order spatial incorrectness such as

inaccurate boundaries or isolated false positives [40, 41]. In the context of ab-130

dominal image analysis, all these avenues represent promising methodological

developments to achieve more generic computational models for CT and MRI

multi-organ segmentation.

3. Methods

3.1. Conditional generative adversarial networks135

Recent works including [37, 38, 39, 41] have demonstrated the feasibility

of image-to-image translation [36] based on conditional Generative Adversar-

ial Networks (cGAN) for medical image segmentation purposes. cGAN archi-

tectures (Fig.2) are made of a generator which provides segmentation masks

through encoding and decoding layers and a discriminator (Fig.3) which as-140

sesses if a given segmentation mask is synthetic or real. Thus, the adversarial
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Figure 3: Discriminative part of conditional generative adversarial networks.

network learns to discriminate real (i.e. ground truth) from synthetic delin-

eations (those arising from the generator) to enforce the generative part to

create segmentation masks as plausible as possible. Contrary to standard iter-

ative post-processing schemes such as Conditional Random Field (CRF) [28] or145

level-set [9], this refinement is performed in an end-to-end fashion [41].

cGAN pipelines usually use UNet [12] as generator G (Fig.4a). Its sym-

metrical architecture comprises an encoder which gradually reduces the spatial

dimension using pooling layers, a decoder progressively recovering object details

and initial resolution as well as long-range shortcuts which concatenate features150

between contracting and expanding paths. Specifically, UNet consists of sequen-

tial layers including 3×3 convolutional layers followed by Rectified Linear Unit

(ReLU) activations. Spatial size is reduced using 2×2 max pooling layers. The

first convolutional layer generates 32 channels [12]. This number doubles after

each pooling as the network deepens. Following [37], the discriminator D con-155

sists of five 4×4 convolutional layers followed by leaky ReLU activation functions

and batch normalization (Fig.3). The discriminator inputs are the concatena-

tion of both source images and ground truth or predicted binary masks to be

evaluated. The output is an array where each value is defined between 0 (fake)

and 1 (plausible or real) and corresponds to the degree of segmentation likeli-160

hood for a given image crop and its associated segmentation mask. Let x and y

be the source images and ground truth delineation masks, λ = 150 an empir-

ically set weighting factor [37], G(x) and D(x,G(x)) the outputs of G and D,

ldice the Dice loss estimated by comparing predicted and ground truth masks.
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As in [41, 37], the loss function lG(G,D) for the generator G is defined as the165

following combination:

lG(G,D) = E
x,y

[−log(D(x,G(x)))] + λ E
x,y

[ldice(G(x), y)] (1)

Minimizing ldice tends to provide rough organ shape predictions whereas maxi-

mizing log(D(x,G(x)) aims at improving contour delineations. The loss func-

tion for the discriminator D is such that:170

lD(G,D) = E
x,y

[−log(D(x, y))]

+ E
x,y

[−log(1−D(x,G(x)))] (2)

The optimizer fits D through Binary Cross Entropy (BCE) using estimated and

ground truth masks. It maximizes loss values for ground truth (log(D(x, y)))

and minimizes loss values for generated (−log(1 − D(x,G(x)))) masks. Op-

timization is performed sequentially by alternating at each batch gradient de-175

scents on G and D [42]. To further improve cGAN abilities to extract contours

from the abdominal anatomy, investigations on more robust generators than

traditional UNet are needed.

3.2. Partially pre-trained generator

CED architectures dedicated to medical image segmentation are typically180

trained from scratch, relying on randomly initialized weights. Since the amount

of available images cannot be endlessly extended, reaching a generic model with-

out over-fitting is therefore challenging. As deep classification networks which

usually involve model pre-trained on large datasets, the encoder part of CEDs

can be replaced by a classification network whose weights are previously trained185

on an initial classification task [30]. It exploits transfer learning and fine-tuning

from large datasets like ImageNet [43] towards better semantic segmentation. In

the literature, the encoder has been already replaced by pre-trained VGG-11 [30]

or WideResnet-38 [44] networks. Our previous study [31] exploits pre-trained
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Figure 4: Extension of UNet [12] (a) by exploiting as encoder a slightly modified VGG-19 [45]
without (b) and with (c) weights pre-trained on ImageNet [43]. The decoder is modified to
get a symmetrical construction while keeping long-range shortcuts.

VGG-16 encoders and reveals significant improvements compared to their ran-190

domly weighted counterparts.

This approach can be further improved by extending standard UNet [12] by a

deeper network from the VGG family [45] as encoder: the VGG-19 architecture.

Compared to UNet (Fig.4a), the first convolutional layer of v19UNet (Fig.4b)

generates 64 channels instead of 32. The number of channels doubles after195

each max pooling until it reaches 512 (256 for UNet). After the second max

pooling, the number of convolutional layers differs from UNet with patterns of 4

consecutive layers instead of 2. Compared to VGG-19 [45], top layers including

fully-connected layers and softmax are omitted. The three last convolutional

VGG-19 layers serve as central part to separate the contracting and expanding200

paths. To improve performance, this encoder branch is pre-trained on ImageNet

[43] to get the CED architecture referred to v19pUNet (Fig.4c). Pre-training

this encoder using more than 1 million non-medical data collected for object

recognition purposes improves predictive performance on abdominal data and
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Figure 5: Cascaded convolutional encoder-decoders with auto-context to exploit multi-level
contextual information. The stack blocks consist in concatenating multiple inputs.

requires less training time to reach convergence. In practice, axial slices are205

extended from single greyscale channel to 3 channels by repeating the same

content to fit the RGB ImageNet image depth.

To get a symmetrical construction while keeping long-range shortcuts (Fig.4c),

the decoder branch is extended in the same fashion by adding 4 convolutional

layers and more features channels. Contrary to encoder weights which are ini-210

tialized through ImageNet pre-training, decoder weights are set randomly. A

final 1×1 convolutional layer with sigmoid activation function achieves pixel-wise

segmentation at native resolution.

3.3. Cascaded generator with auto-context

Managing long-range spatial context is key to improve abdominal organ de-215

lineations [24]. However, increasing ad-infinitum the network depth to exploit

larger receptive fields is not suitable for memory and computational issues. Al-

ternatively, in the same spirit of [34], we propose to process abdominal images

using a cascade of deep CEDs to exploit multi-level contextual information

(Fig.5). Our strategy, referred to v19pUNet1-1, consists in combining two par-220

tially pre-trained v19pUNet networks with auto-context [35], i.e. using posterior

probabilities resulting from the first v19pUNet as features for the second one [46].

It extends with more complex architectures a proof-of concept given in [47] us-
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ing standard UNet (UNet1-1). The sigmoid activation of the first v19pUNet used

in the last 1×1 convolution layer (Fig.4c) is replaced by a linear function to225

generate continuous output maps. These maps are normalized, concatenated to

source images and given as inputs of the second v19pUNet which is trained to

give final organ delineations. In practice, since the second CED requires 3-layers

volumes as inputs due to its encodeur pre-trained on ImageNet, we concatenate

the posterior probability map with the source image whose content is replicated230

twice (stack block in Fig.5). Instead of training both models separately [46],

our pipeline is trained end-to-end to exploit simultaneous multi-level segmen-

tation refinements. Making the first v19pUNet generating continuous instead

of binary outputs propagates pixel-wise confidence information to the second

v19pUNet and postpones the final segmentation decision to the pipeline ending235

part. Contrary to [34], both networks process source images at full-resolution.

Moreover, we keep the largest connected segmented area as post-processing.

We propose to use this cascaded partially pre-trained v19pUNet1-1 model as

generator within the cGAN pipeline (cGv19pUNet1-1). Robustness and general-

ization capabilities need to be assessed for abdominal multi-organ segmentation.240

4. Results and discussion

4.1. Validation setup

Results are provided using the dataset3 arising from the CHAOS challenge

[2], collected by the Department of Radiology, Dokuz Eylul University Hospi-

tal, Izmir, Turkey and involving 80 patients. 40 abdominal CT scans acquired245

at portal venous phase after contrast agent injection are used with ground

truth liver segmentation. The dataset also includes 40 T1-DUAL in phase

(T1-DUALin), 40 T1-DUAL oppose phase (T1-DUALout) and 40 T2-SPIR

abdominal MR images with ground truth delineations for liver, right kidney,

left kidney and spleen. Three radiology experts (10, 12 and 28 years of experi-250

3CHAOS data available at https://doi.org/10.5281/zenodo.3362844
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ence) were involved for manual segmentation. Final ground truth masks were

obtained through majority voting. T1-DUALin and T1-DUALout images are

registered. Conversely, T1-DUAL and T2-SPIR sequences are not registered.

Following the CHAOS challenge rules, CT and MR datasets are divided into

training and test subsets, with a ratio of 50%.255

Except for DeepMedic [48], VNet [26] and denseVNet [8] which process data

in 3D, evaluated models independently process 2D axial slices and produce 2D

segmentation masks which are then stacked together to recover 3D volumes.

Image size for axial slices are 256 × 256 or 288 × 288 pixels for MR images,

512×512 for CT examinations. The number of axial slices varies from 26 to 50260

(resp. 78 to 294) and slice thickness is between 4.4 and 8.0 (resp. 2.0 and 3.2)

millimeters for MR (resp. CT) images.

Let S and G deal with segmentation results and ground truth. To as-

sess standard CED (DeepMedic [48], VNet [26], denseVNet [8], UNet [12]),

deeper CED without or with encoder pre-training (v16UNet, v16pUNet [31],265

v19UNet, v19pUNet), CED using nested and dense skip connections (v19UNet+,

v19pUNet+ [49]), cascaded CED (UNet1-1 [47], v16pUNet1-1, v19pUNet1-1) and

cGAN with partially pre-trained cascaded CED as generator (cGv16pUNet1-1,

cGv19pUNet1-1), the accuracy of abdominal organ segmentation is quantified

based on Dice coefficient (dice) estimated following 2|S∩G|
|S|+|G| where |.| denotes270

cardinality, relative absolute volume difference (RAVD) comparing S and G such

as RAVD = abs(|S|−|G|)
|G| , average and maximum symmetric surface distances

(ASSD, MSSD) which correspond to the average (resp. maximum) Hausdorff dis-

tance between border voxels in S and G. These metrics tend to provide an over-

all assessment of the involved networks. Following [2], we also provide model275

ranking scores by averaging all metrics after having transformed values to span

the [0, 100] interval so that higher values correspond to better segmentation.

To discard unacceptable accuracy and increase metric sensitivity [2], thresholds

are set up according to intra/inter-expert similarities: dice> 80%, RAVD< 5%,

ASSD< 15mm and MSSD< 60mm. Metrics outside the threshold range get zero280

points. Scores reached for multi-organ segmentation are obtained by averag-
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ing the scores obtained for each organ. Similarly, scores for MR images are the

average between results arising from T1-DUALin/out and T2-SPIR modalities.

In our experiments, a given model is dedicated to one single modality (T1-

DUALin/out, T2-SPIR, CT) and one single organ (liver, right kidney, left285

kidney, spleen). Each model thus performs binary instead of multi-class seg-

mentation to extract robust organ-specific features. In addition, experiments

on the T1-DUAL modality stack together T1-DUALin and T1-DUALout im-

ages as model inputs since both phases are registered. When 3 channels are

required, as for v16(p)UNet, the third channel consists of the T1DUALin image290

duplication. For CT and T2-SPIR, image content is replicated twice.

Deep CEDs are trained using data augmentation to teach networks efficient

invariance and robustness properties [12]. Training axial slices undergo random

scaling, rotation, shearing and shifting operations. 100 augmented images are

produced for a single training slice. For CT (MR) images, models are trained295

with 6 (20) epochs, a batch size of 3 (5) images, an Adam optimizer with 10−5 as

learning rate and a fuzzy Dice score as loss function. Models were implemented

using Keras and trained using a single Nvidia GeForce GTX 1080 Ti GPU.

4.2. Evaluation on clinical data

CT and MR liver segmentation. Quantitative metric and score values are300

provided in Tab.1 for liver CT/MR delineations. For both modalities, stan-

dard architectures including DeepMedic, VNet, denseVNet and UNet are out-

performed by deeper (v16/v16pUNet, v19/v19pUNet) and cascaded (UNet1-1)

networks which indicates that better predictive performance and generalizabil-

ity are reached using more complex models. In one hand, comparisons between305

v16/v19UNet and their partially pre-trained extensions (v16p/v19pUNet) re-

veals that pre-training the encoder using non-medical ImageNet data makes the

network converge towards a better solution. In particular, large gains in terms

of dice (91.60 to 94.07%) and ASSD (2.96 to 1.70mm) are reported for MR

images between v16UNet and v16pUNet. In the other hand, extending UNet310

into a cascaded pipeline (UNet1-1) with auto-context and end-to-end-training al-
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organ model
CT MRI

dice ↑ RAVD ↓ ASSD ↓ MSSD ↓ score dice ↑ RAVD ↓ ASSD ↓ MSSD ↓ score

li
v
e
r

DeepMedic [48] 96.70±1.36 3.18±3.42 1.24±0.48 27.90±10.0 73.32 89.74±7.54 6.52±8.27 4.74±4.83 122.5±53.2 47.64
VNet [26] 89.58±8.54 6.78±12.6 4.87±8.80 42.52±48.6 60.01 74.55±6.23 42.5±26.2 9.21±3.63 75.59±31.2 16.81
denseVNet [8] 95.26±1.14 2.89±2.53 1.57±0.48 23.89±9.19 73.78 76.75±6.86 17.4±13.1 8.27±3.12 54.98±28.4 28.91
UNet [12] 97.35±0.50 1.80±1.35 1.09±0.46 22.72±10.6 79.07 90.68±5.30 7.89±8.69 3.29±2.39 44.49±24.0 58.02
v16UNet 97.67±0.41 1.39±1.15 0.88±0.25 19.85±8.92 82.71 91.60±5.44 6.87±8.63 2.96±2.37 40.75±25.2 60.86
v16pUNet [31] 97.86±0.32 1.29±1.01 0.80±0.24 19.09±8.84 83.71 94.07±2.32 4.25±3.46 1.70±0.94 29.54±12.2 67.99
v19UNet 97.60±0.44 1.38±1.41 0.94±0.35 20.69±9.00 82.34 92.10±4.49 6.04±7.44 2.65±1.97 37.96±18.8 61.55
v19pUNet 97.88±0.37 1.22±0.82 0.82±0.26 19.87±8.86 83.71 93.44±4.11 5.24±5.87 1.97±1.39 32.41±13.6 65.32
v19UNet+ [49] 97.38±0.61 2.06±1.90 1.16±0.45 26.26±11.9 76.61 92.22±4.46 6.61±7.28 2.41±1.51 35.62±17.0 61.39
v19pUNet+ [49] 97.80±0.42 1.49±1.45 0.85±0.26 18.97±6.71 82.69 92.83±6.92 5.91±8.73 2.12±2.04 31.54±18.3 66.14
UNet1-1 [47] 97.48±0.61 1.64±1.82 1.02±0.59 20.89±10.9 81.28 92.03±4.04 5.81±6.73 2.45±1.43 34.04±15.9 63.05
v16pUNet1-1 97.94±0.32 1.12±0.91 0.76±0.16 17.08±5.80 85.53 94.28±1.99 4.09±3.07 1.67±0.94 28.60±12.4 68.92
v19pUNet1-1 97.91±0.26 1.14±0.95 0.78±0.17 19.44±7.46 84.40 94.52±1.64 3.52±2.32 1.62±1.02 27.02±14.5 70.05
cGv16pUNet1-1 97.95±0.27 1.19±0.89 0.76±0.16 18.69±7.58 84.50 94.02±2.42 4.41±3.73 1.79±1.06 30.02±13.6 67.88
cGv19pUNet1-1 97.87±0.32 1.09±0.96 0.80±0.23 20.52±8.24 84.15 94.33±1.75 3.49±2.57 1.73±0.97 28.94±15.0 69.21
MOvpUNet 97.94±0.32 1.12±0.91 0.76±0.16 17.08±5.80 85.53 94.45±1.74 3.45±2.45 1.67±1.01 27.46±14.5 70.17

Table 1: Quantitative assessment of DeepMedic [48], VNet [26], denseVNet [8], UNet [12],
v16UNet, v16pUNet [31], v19UNet, v19pUNet, v19UNet+ [49], v19pUNet+ [49], UNet1-1 [47] and
proposed v16pUNet1-1, v19pUNet1-1, cGv16pUNet1-1, cGv19pUNet1-1 and MOvpUNet architectures
for healthy liver segmentation in CT and MR images. Bold and underline results indicate first
and second best scores.

lows to take advantage of multi-level context, with score improvements from

79.07 (58.02) to 81.28% (63.05%) in CT (MR). v19UNet and v19pUNet give

better or slightly similar performance than their nested and dense counterparts

(v19/v19pUNet+) which suggests that the great complexity brought by such315

heavy architectures [49] is not useful to provide relevant liver contours.

By combining these three contributions (deeper model, encoder pre-training,

cascaded architecture), v16pUNet1-1 (v19pUNet1-1) discriminates more efficiently

liver areas from surrounding structures by achieving the best score for CT (MR)

scans with 85.53% (70.05%). Embedding v16pUNet1-1 (v19pUNet1-1) into a cGAN320

pipeline for CT (MR) liver segmentation gives broadly similar results but pro-

vides the second best scores. We note that cGv16pUNet1-1 reaches the best dice

(97.95%) and similar ASSD (0.76mm) in CT. In MR, the best RAVD (3.49%) is

obtained using cGv19pUNet1-1. λ = 150 was selected as in [37] to provide a good

balance between E
x,y

[−log(D(x,G(x)))] and E
x,y

[ldice(G(x), y)] in Eq.1.325

Qualitative results for CT and MR liver segmentation are displayed in Fig. 6-

7. Compared to standard networks as well as v16pUNet (v19pUNet/v19pUNet+)

which are prone to under- or over-segmentation, sometimes combined with un-

realistic shapes, better contour adherence and shape consistency are reached by
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—— DeepMedic [48] —— VNet [26] —— denseVNet [8] —— UNet [12] —— v16UNet

—— v16pUNet [31] —— v16pUNet1-1 —— cGv16pUNet1-1 � liver

Figure 6: Liver CT segmentation using DeepMedic [48], VNet [26], denseVNet [8], UNet [12],
v16UNet, v16pUNet [31], proposed v16pUNet1-1 and cGv16pUNet1-1. Ground truth is superim-
posed in red color.

v16pUNet1-1 (v19pUNet1-1) and cGv16pUNet1-1 (cGv19pUNet1-1) whose ability to330

mimic expert annotations is notable for CT (T1-DUAL and T2-SPIR). The di-

versity in terms of textures arising in MR images is accurately captured through

cascaded partially pre-trained networks despite high similar visual properties

with surrounding structures. Moreover, deep networks find it harder to seg-

ment abdominal MR compared to CT images due to lower contrast and resolu-335

tion combined with higher spacing which makes the number of 2D axial slices

substantially smaller.

Abdominal multi-organ MR segmentation. Tab.2 shows quantitative re-

sults for multi-organ MR segmentation. As for liver, the DeepMedic, VNet,340

denseVNet, UNet, v16UNet and v19UNet networks do not provide the required

robustness for organ extraction. In T1-DUAL modality, significant improve-

ments can be noticed using v16pUNet for left kidney, v19pUNet for right kid-

ney and v19pUNet+ for spleen with the best reached scores (63.52, 68.07 and

69.04%) among all schemes. Except for spleen in T2-SPIR, the comparison345

UNet/UNet1-1 indicates the appropriateness of exploiting networks in a cascaded

manner, as proven for spleen (right kidney) in T1-DUAL (T2-SPIR) whose dice
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—— DeepMedic [48]—— VNet [26]—— denseVNet [8]—— UNet [12]—— v19pUNet

—— v19pUNet+ [49] —— v19pUNet1-1 —— cGv19pUNet1-1 � liver

Figure 7: Liver MRI (T1-DUALin, T2-SPIR) segmentation using DeepMedic [48], VNet [26],
denseVNet [8], UNet [12], v19pUNet, v19pUNet+ [49], proposed v19pUNet1-1 and cGv19pUNet1-1.
Ground truth is superimposed in red color.

(RAVD) jumps from 81.56 (15.39) to 87.01% (9.04%). The same conclusion arises

between v16p/v19pUNet and v16p/v19pUNet1-1 with, for instance, a strong score

improvement reached using v19pUNet1-1 for right kidney in T2-SPIR (68.38 to350

72.71%). Cascaded pre-trained cGAN strategies (cGv16p/cGv19pUNet1-1) al-

ways belong to one of the two best methods in dice, except for left kidney in

T1-DUAL. Gains for MSSD in T2-SPIR are highlighted with 11.23mm (10.96)

obtained for right kidney (spleen) using cGv19pUNet1-1 (cGv16pUNet1-1). In T1-

DUAL, cGv19pUNet1-1 (cGv16pUNet1-1) achieves the best RAVD scores for liver355

and right kidney (spleen). p-values obtained using Student’s paired t tests for

Dice, RAVD, ASSD and MSSD metrics between cGv19pUNet1-1 and standard CED

architectures such as DeepMedic or denseVNet globally confirmed that our con-

tributions bring an added-value with statistical significance. Unsurprisingly,

delineating small organs (kidneys) is more challenging than focusing on larger360

ones (liver, spleen). The vicinity between left kidney and spleen further com-

plicates the contouring task. MR segmentation is easier with T2-SPIR than

T1-DUAL since relative contrasts between structures is clearly enhanced.

As visually shown in Fig.8, many anomalies are present using standard net-

works with over (under-) detection issues for DeepMedic (denseVNet) in T2-365
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organ model
T1-DUALin/out T2-SPIR

dice ↑ RAVD ↓ ASSD ↓ MSSD ↓ score dice ↑ RAVD ↓ ASSD ↓ MSSD ↓ score

li
v
e
r

DeepMedic [48] 89.24±9.81 7.11±10.1 5.05±5.88 116.5±47.6 47.59 90.24±5.27 5.94±6.49 4.43±3.78 128.5±58.8 47.69
denseVNet [8] 85.56±6.10 17.2±12.3 4.63±2.67 43.10±23.6 45.55 67.94±7.62 17.6±13.8 11.9±3.58 66.86±33.3 12.26
UNet [12] 90.48±7.44 9.57±12.4 2.74±1.99 35.39±19.1 60.85 90.52±3.34 6.44±5.14 3.84±2.79 53.59±29.0 55.14
v16UNet 91.32±7.66 8.38±12.3 2.36±1.94 29.62±18.0 63.43 91.75±3.19 5.54±4.94 3.61±2.80 52.42±32.6 57.63
v16pUNet [31] 93.64±2.84 5.77±5.28 1.79±0.92 31.17±11.7 64.81 94.46±1.82 2.79±1.73 1.65±0.96 28.97±12.7 70.56
v19UNet 91.83±6.28 7.38±10.3 2.32±1.75 32.04±16.7 62.29 92.40±2.70 4.82±4.49 2.94±2.21 43.86±20.9 60.21
v19pUNet 92.39±6.30 7.71±9.96 2.31±1.81 35.70±14.3 59.77 94.48±1.92 2.84±1.80 1.63±0.96 29.17±12.8 70.56
v19UNet+ [49] 91.64±6.01 7.94±10.2 2.44±1.58 36.62±19.8 60.24 92.68±2.89 5.25±4.51 2.39±1.44 34.61±14.1 62.91
v19pUNet+ [49] 91.17±12.1 8.86±15.7 2.54±3.13 31.47±19.7 63.23 94.48±1.69 3.03±1.81 1.69±0.95 31.62±16.9 68.71
UNet1-1 [47] 92.06±5.34 6.35±9.10 2.30±1.61 31.45±16.4 65.22 91.97±2.74 5.41±4.43 2.56±1.24 36.42±14.9 60.74
v16pUNet1-1 93.86±2.28 5.49±4.72 1.77±0.88 29.87±10.6 65.93 93.69±1.68 2.66±1.41 1.57±0.99 27.31±13.8 72.04
v19pUNet1-1 94.38±1.33 4.25±3.17 1.68±0.97 28.45±14.9 67.70 94.67±1.92 2.80±1.49 1.57±1.06 25.49±14.1 72.28
cGv16pUNet1-1 93.45±2.96 6.05±5.77 1.96±1.05 32.30±13.4 64.57 94.60±1.89 2.78±1.77 1.63±1.07 27.74±13.9 71.26
cGv19pUNet1-1 94.23±1.54 4.17±3.42 1.76±0.96 29.42±15.0 67.72 94.44±1.95 2.86±1.71 1.71±1.00 28.46±15.0 70.49

ri
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DeepMedic [48] 75.13±15.8 29.06±19.8 3.73±2.11 105.8±62.5 35.42 89.32±10.0 11.83±14.7 1.66±1.28 102.5±63.9 51.40
denseVNet [8] 76.31±11.2 25.66±20.0 4.39±2.43 34.72±38.1 41.63 67.94±6.92 21.00±14.1 7.59±4.00 61.14±47.2 23.61
UNet [12] 85.61±13.2 13.44±16.9 2.55±3.45 20.26±15.6 61.05 88.16±5.77 15.39±15.2 3.70±4.54 28.85±22.8 55.87
v16UNet 87.19±6.11 11.52±10.5 2.61±2.82 23.83±16.3 57.85 91.68±3.72 9.85±6.54 1.42±1.14 18.00±10.4 64.19
v16pUNet [31] 90.08±3.88 11.55±7.40 1.38±0.86 12.35±7.22 66.32 92.47±3.96 8.56±5.04 1.08±1.12 12.64±8.19 67.79
v19UNet 87.36±7.39 13.67±14.7 2.12±2.03 20.27±14.6 61.69 92.12±3.91 8.89±6.16 1.28±1.19 15.30±8.80 66.59
v19pUNet 90.26±4.28 10.96±8.39 1.29±0.81 11.58±6.35 68.07 92.66±4.08 7.85±5.11 1.07±1.14 12.65±8.77 68.38
v19UNet+ [49] 86.49±9.47 14.40±13.1 2.09±1.31 19.32±9.03 59.67 86.43±20.8 10.18±7.28 6.61±22.8 24.02±29.6 61.91
v19pUNet+ [49] 89.34±5.48 13.75±8.42 1.46±0.99 12.90±6.74 64.50 92.82±3.33 8.46±4.39 1.16±1.14 15.32±9.95 67.56
UNet1-1 [47] 86.32±9.30 14.82±14.9 2.11±1.71 17.15±10.3 60.61 91.17±4.46 9.04±8.30 1.77±1.90 18.07±13.6 65.75
v16pUNet1-1 90.27±3.19 11.92±6.32 1.32±0.72 11.95±7.25 66.22 92.78±4.19 8.71±5.32 1.02±1.14 12.46±7.87 68.39
v19pUNet1-1 90.30±3.73 11.66±7.28 1.47±1.16 13.96±10.5 66.19 93.21±2.84 7.76±6.26 0.97±1.05 12.63±8.12 72.71
cGv16pUNet1-1 90.29±3.91 11.38±8.50 1.38±1.02 13.60±8.18 67.26 93.22±3.45 8.06±7.89 1.01±1.06 15.87±10.2 71.34
cGv19pUNet1-1 90.56±4.28 10.44±8.92 1.37±0.99 13.39±9.21 66.67 93.02±3.74 7.94±6.77 0.99±1.09 11.23±7.80 71.21

le
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DeepMedic [48] 69.95±21.7 34.17±24.4 5.81±6.01 123.7±56.8 28.38 80.36±23.8 20.43±27.1 3.52±3.15 120.1±70.4 45.48
denseVNet [8] 68.71±22.7 25.83±26.7 32.1±120. 61.22±119. 40.12 64.84±11.8 23.01±19.3 7.81±3.64 48.08±36.9 24.02
UNet [12] 81.55±16.8 16.86±18.5 4.25±6.99 37.02±30.3 51.71 90.32±3.47 9.34±6.70 2.11±1.37 36.19±23.8 58.95
v16UNet 83.33±15.3 16.94±17.6 3.04±3.65 30.92±31.5 53.49 91.52±2.52 9.32±5.06 1.74±1.41 26.91±24.5 62.75
v16pUNet [31] 85.79±20.4 10.13±6.37 8.91±33.7 34.53±50.2 63.52 92.83±2.14 8.18±5.20 1.32±1.27 24.08±22.3 64.58
v19UNet 82.06±20.3 16.45±16.4 7.97±23.3 44.09±55.9 52.73 90.64±4.01 9.90±5.45 1.77±1.55 26.94±22.9 61.76
v19pUNet 85.58±20.5 14.38±16.5 8.68±31.5 34.84±51.1 59.64 92.60±2.39 9.00±6.11 1.57±2.08 23.62±22.2 63.52
v19UNet+ [49] 82.69±20.4 16.49±19.8 7.72±23.9 39.19±57.6 56.03 90.97±4.05 11.59±10.1 2.26±2.59 31.25±24.9 58.61
v19pUNet+ [49] 88.76±7.87 13.94±10.3 1.62±1.21 27.17±30.3 61.03 92.79±3.00 9.01±6.06 1.49±2.10 22.69±23.0 64.54
UNet1-1 [47] 83.88±12.2 16.72±16.2 2.91±2.33 33.55±29.7 51.35 89.91±4.65 10.89±7.62 1.67±1.03 23.50±20.4 64.30
v16pUNet1-1 85.56±20.5 11.40±9.22 8.58±31.7 37.23±48.2 61.66 92.78±2.97 8.76±7.59 1.46±2.11 22.04±23.2 64.57
v19pUNet1-1 84.01±20.5 14.18±10.1 9.01±32.2 35.68±49.2 56.64 92.10±3.03 9.45±8.11 1.87±2.79 24.31±23.0 62.63
cGv16pUNet1-1 84.70±20.4 12.10±9.23 8.70±30.3 38.39±48.6 56.13 92.83±2.27 8.05±5.40 1.35±1.41 23.90±22.3 65.56
cGv19pUNet1-1 85.31±20.4 13.17±15.1 7.04±23.8 36.08±49.1 59.89 92.67±3.30 8.88±8.80 1.67±2.91 23.89±23.6 64.64

sp
le
e
n

DeepMedic [48] 75.33±24.2 23.23±27.4 5.59±6.74 155.3±66.2 35.16 88.24±5.57 13.15±8.59 5.07±4.75 165.8±87.9 40.50
denseVNet [8] 69.38±17.3 31.26±19.8 6.18±3.98 61.09±71.7 31.06 48.56±19.3 25.11±17.0 16.1±9.94 90.46±67.5 9.33
UNet [12] 81.56±19.8 20.68±25.0 3.38±4.08 26.41±18.9 53.99 89.33±5.83 8.56±7.73 2.02±1.86 23.46±16.2 59.85
v16UNet 85.20±9.90 17.67±17.9 2.71±2.57 29.08±22.4 55.51 89.84±6.51 10.14±8.97 2.04±2.32 22.01±17.4 62.22
v16pUNet [31] 89.66±3.75 11.79±7.30 1.41±0.77 15.24±11.5 66.35 92.60±3.29 7.92±5.43 1.03±0.63 15.04±9.68 68.93
v19UNet 82.40±20.6 16.51±14.0 6.80±20.3 31.72±35.5 56.09 89.74±5.46 9.63±7.99 1.97±1.65 23.22±13.8 60.90
v19pUNet 89.59±3.88 11.60±8.06 1.57±0.97 17.87±15.1 66.28 92.17±3.71 9.27±5.48 1.10±0.75 16.86±10.7 66.82
v19UNet+ [49] 84.24±12.6 18.48±18.4 2.76±2.73 23.94±17.9 56.75 89.34±6.76 10.87±9.70 1.96±2.24 21.49±12.2 62.05
v19pUNet+ [49] 89.54±4.10 11.81±8.89 1.43±0.88 13.90±9.25 69.04 92.14±4.48 7.82±6.43 1.29±1.51 16.40±13.5 68.56
UNet1-1 [47] 87.01±7.34 12.03±11.0 1.98±1.31 24.38±13.6 61.43 86.60±10.5 14.10±15.9 3.25±4.51 25.01±22.0 58.58
v16pUNet1-1 88.89±4.64 11.80±6.41 1.51±0.78 19.24±11.8 62.86 93.16±3.26 7.57±4.63 0.86±0.57 12.15±7.89 69.83
v19pUNet1-1 89.93±3.79 11.61±7.07 1.34±0.66 14.89±9.21 66.94 92.29±4.03 8.68±6.74 1.13±0.94 15.37±11.0 68.64
cGv16pUNet1-1 89.67±3.92 10.90±7.78 1.45±0.78 15.82±9.34 67.02 93.00±3.03 7.70±5.29 0.84±0.44 10.96±3.58 70.79
cGv19pUNet1-1 89.31±3.88 11.85±6.25 1.63±1.08 19.21±15.4 63.79 92.41±3.58 9.17±5.73 1.05±0.91 11.61±7.85 70.45

Table 2: Quantitative assessment of DeepMedic [48], denseVNet [8], UNet [12], v16UNet,
v16pUNet [31], v19UNet, v19pUNet, v19UNet+ [49], v19pUNet+ [49], UNet1-1 [47] and proposed
v16pUNet1-1, v19pUNet1-1, cGv16pUNet1-1 and cGv19pUNet1-1 architectures for healthy abdomi-
nal multi-organ (liver, right kidney, left kidney, spleen) segmentation in T1-DUALin/out and
T2-SPIR images. Bold and underline results indicate first and second best scores.

18



—
–
T
1
-D

U
A
L
i
n

—
—

—
T
2
-S

P
IR

—— DeepMedic [48] —— denseVNet [8] —— UNet [12] —— v19pUNet

—— v19pUNet+ [49] —— v19pUNet1-1 —— cGv19pUNet1-1

� liver � right kidney � left kidney � spleen

Figure 8: Abdominal multi-organ MRI (T1-DUALin, T2-SPIR) segmentation using
DeepMedic [48], denseVNet [8], UNet [12], v19pUNet, v19pUNet+ [49], proposed v19pUNet1-1

and cGv19pUNet1-1. Liver, right kidney, left kidney and spleen ground truth delineations are
respectively superimposed in red, green, blue and yelow colors.

SPIR. v19pUNet1-1 and cGv19pUNet1-1 show a better behavior than v19pUNet

and v19pUNet+ in accurately fitting organ extents and offering plausible shape

consistency, especially for bases and apexes where organs appear smaller. De-

spite visually similar performance compared to v19pUNet1-1, cGv19pUNet1-1 ap-

pears slightly better in providing realistic organ contours.370

Towards better multi-organ segmentation. Under the team name PKDIA,

the proposed cGv19pUNet1-1 pipeline enabled us to win three CHAOS compe-

tition categories: liver CT, liver MR and multi-organ MR segmentation [2].

Nevertheless, since global findings are verified with varying degrees depending375

on the concerned modality or organ, we provide in Tab.3 an overall evaluation

through scores and rankings for CT liver, MR liver, right kidney, left kidney,

spleen as well as multi-organ segmentation. cGv19pUNet1-1 indeed appears as the

best strategy for MR multi-organ delineation purposes that reinforces the idea

that combining deeper (v19) cascaded partially pre-trained convolutional and380

adversarial networks globally strengthens the generalization abilities of deep
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model
CT MRI
liver liver right kidney left kidney spleen multi-organ

score rank score rank score rank score rank score rank score rank
DeepMedic [48] 73.32 14 47.64 13 43.41 13 36.93 13 37.83 13 41.45 13
denseVNet [8] 73.78 13 28.91 14 32.62 14 32.07 14 20.20 14 28.45 14
UNet [12] 79.07 11 58.02 12 58.46 12 55.33 12 56.92 12 57.18 12
v16UNet 82.71 7 60.86 11 61.02 10 58.12 8 58.86 10 59.63 11
v16pUNet [31] 83.71 5/6 67.99 4 67.05 6 64.05 1 67.64 4 66.61 4
v19UNet 82.34 9 61.55 9 64.14 8 57.25 11 58.50 11 60.28 9
v19pUNet 83.71 5/6 65.32 7 68.23 4 61.58 5 66.55 6 65.38 7
v19UNet+ [49] 76.61 12 61.39 10 60.79 11 57.32 10 59.40 9 59.77 10
v19pUNet+ [49] 82.69 8 66.14 6 66.03 7 62.79 3 68.80 2 65.90 6
UNet1-1 [47] 81.28 10 63.05 8 63.18 9 57.82 9 60.01 8 61.00 8
v16pUNet1-1 85.53 1 68.92 3 67.31 5 63.11 2 66.35 7 66.44 5
v19pUNet1-1 84.40 3 70.05 1 69.45 1 59.64 7 67.79 3 66.72 3
cGv16pUNet1-1 84.50 2 67.88 5 69.30 2 60.85 6 68.90 1 66.74 2
cGv19pUNet1-1 84.15 4 69.21 2 68.94 3 62.27 4 67.12 5 66.86 1
MOvpUNet 85.53 ? 70.17 ? 70.39 ? 64.77 ? 69.92 ? 68.78 ?

Table 3: Scoreboard and ranking of DeepMedic [48], denseVNet [8], UNet [12], v16UNet,
v16pUNet [31], v19UNet, v19pUNet, v19UNet+ [49], v19pUNet+ [49], UNet1-1 [47], proposed
v16pUNet1-1, v19pUNet1-1, cGv16pUNet1-1, cGv19pUNet1-1 and MOvpUNet for healthy abdominal
organ (liver, right kidney, left kidney, spleen) segmentation in CT and MR images. Bold,
underline and italic results indicate first, second and third best scores.

learning pipelines. Except for left kidney where v16pUNet performs the best

(64.05%), the first rank is always attributed to one of the proposed cascaded

pre-trained scheme: v16pUNet1-1 for CT liver, v19pUNet1-1 for MR liver and right

kidney (69.45%), cGv16pUNet1-1 for MR spleen (68.9%) and cGv19pUNet1-1 for385

MR multi-organ (66.86%) segmentation.

By combining the best sequence- and organ-specific networks towards bet-

ter Multi-Organ (MO) segmentation, we obtain the so-called MOvpUnet computa-

tional model including v16pUNet1-1 for liver in CT (Tab.1) as well as respectively

for T1-DUAL and T2-SPIR cGv19pUNet1-1 and v19pUNet1-1 for liver, v19pUNet390

and v19pUNet1-1 for right kidney, v16pUNet and cGv16pUNet1-1 for left kidney,

v19pUNet+ and cGv16pUNet1-1 for spleen (Tab.2). The global ranking score

reached by cGv19pUNet1-1 for multi-organ MR segmentation is further improved

about 2% with MOvpUnet, up to 68.78% (Tab.3). Visually comparing manual

and MOvpUnet delineations in Fig.9 further supports the validity of our combined395

computational model. Outstanding performance is reached in terms of boundary

adherence and shape consistency which suggests that integrating MOvpUnet as

a guidance tool into clinical routine could greatly help clinicians for abdominal

image interpretation.
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Figure 9: Liver CT and abdominal multi-organ MRI (T1-DUALin/out, T2-SPIR) segmenta-
tion using the proposed MOvpUNet. Liver, right kidney, left kidney and spleen ground truth
delineations are superimposed in red, green, blue and yelow colors.
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5. Conclusion400

This work tackles fully-automated abdominal organ CT and MR segmen-

tation with deep learning. Standard segmentation networks are extended to

cascades of partially pre-trained deep convolutional encoder-decoders. Encoder

fine-tuning from a large amount of non-medical images improves predictive per-

formance while alleviating data scarcity limitations. The cascaded architecture405

exploits multi-level contextual information through auto-context and end-to-

end training. Such model is used as generator in a conditional generative ad-

versarial network to further encourage the generative part to provide plausible

organ delineations. Results highlight promising performance by outperforming

state-of-the-art encoder-decoder schemes. Employed for the Combined Healthy410

Abdominal Organ Segmentation (CHAOS) challenge, our contributions reached

the first rank for liver CT, liver MR and multi-organ MR segmentation com-

petition categories. The proposed pipeline has the potential to support guid-

ance for abdominal image interpretation, clinical decision making and patient

care improvement while avoiding manual delineation efforts. Further work in-415

cludes the evaluation of such deep models to other anatomical structures from

the abdomen (pancreas, gallbladder) and the gastro-intestinal tract (esopha-

gus, stomach, duodenum) arising from healthy and pathological subjects. More

globally, our pipeline could be easily extended to other tissue types and imaging

modalities to provide relevant clinical decision support. Methodological perspec-420

tives on unpaired cross-modality (CT, MR...) medical image segmentation with

compact architectures could deserve further investigation to take advantage of

multi-tasking properties of deep models as well as a larger amount of available

data. Extending adversarial frameworks to incorporate anatomical priors using

topological or shape constraints should also offer new insights to manage the425

strong diversity of abdominal organ appearance.
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