
HAL Id: hal-03212162
https://imt-atlantique.hal.science/hal-03212162

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Hub-and-spoke network design under congestion: A
learning based metaheuristic

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Amir Pirayesh, Amir
Mohammad Karimi-Mamaghan, Hassan Irani

To cite this version:
Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Amir Pirayesh, Amir Mohammad Karimi-
Mamaghan, Hassan Irani. Hub-and-spoke network design under congestion: A learning based
metaheuristic. Transportation Research Part E: Logistics and Transportation Review, 2020, 142,
pp.102069. �10.1016/j.tre.2020.102069�. �hal-03212162�

https://imt-atlantique.hal.science/hal-03212162
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

 

Hub-and-Spoke Network Design under Congestion: A Learning based 1 

Metaheuristic 2 

Maryam Karimi-Mamaghan a*, Mehrdad Mohammadi a*, Amir Pirayesh b, Amir Mohammad Karimi-3 

Mamaghan c, Hassan Irani d 4 
 5 

a IMT Atlantique, Lab-STICC, UBL, F-29238 Brest, France 6 
b Centre of Excellence in Supply Chain and Transportation (CESIT), KEDGE Business School, Bordeaux, France 7 

c Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran 8 
d Construction Management and Engineering ,Civil and Architecture Faculty, Islamic Azad university, Science and Research 9 

Branch, Tehran, Iran 10 

 11 

Abstract 12 

This paper models a single allocation multi-commodity hub-and-spoke network problem through a bi-13 

objective mathematical model, considering the congestion in both hubs and connection links. A novel 14 

aggregation model is developed based on a general GI/G/c queuing system to evaluate the congestion of the flow 15 

of the multiple products in the hubs. The proposed model is then solved using a novel learning-based 16 

metaheuristic based on NSGA-II, k-Means clustering method, and an Iterated Local Search (ILS) algorithm. The 17 

proposed model and solution algorithm are validated through a set of experiments against optimal solutions, and 18 

benchmarked against four existing well-known algorithms.  19 

 20 

 21 

Keywords: Hub-and-spoke network design; Bi-objective optimization; Congestion; Queuing network; Machine 22 

Learning; k-Means clustering method; Learning-based Metaheuristics.  23 

                                                           
* Corresponding authors:  

Maryam Karimi Mamaghan, E-mail: maryam.karimi@imt-atlantique.fr  

Mehrdad Mohammadi, Tel: +33 2 29 00 10 30, E-mail: mehrdad.mohammadi@imt-atlantique.fr 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1366554520307201
Manuscript_01eeee6f2518dca092628545387e99c0

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1366554520307201


1 

 

Hub-and-Spoke Network Design under Congestion: A Learning-based 1 

Metaheuristic 2 

  3 

Abstract 4 
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1. Introduction 15 

Hub-and-spoke systems have been largely employed in many-to-many transportation systems, wherein 16 

commodities (i.e., passengers, cargo parcels, telecommunication packets, etc.) are transferred between a many 17 

pairs of origin-destination (OD) nodes. Instead of directly connecting each pair of OD nodes, in a hub-and-spoke 18 

system, commodities are transferred through a set of intermediate nodes called hubs (Correia et al., 2018; 19 

Mohammadi et al., 2019a). Hubs serve the network as switching, transshipment, sorting, and distribution 20 

facilities. In a path from an origin to a destination, commodities from different origin nodes are consolidated at 21 

these hub facilities prior to be routed to an intermediate hub or to be delivered to their final destinations 22 

(Zhalechian et al., 2018; Taleizadeh et al., 2018, Zheng et al., 2019). The aggregation of commodities in hub 23 

facilities allows the exploitation of economies of scale due to the utilization of more efficient carriers with higher 24 

capacities on hub-to-hub connection links.   25 

Different versions of hub-and-spoke systems have been proposed and studied in the literature differing 26 

from one another in several aspects as follows: 1) the allocation of each spoke to one and only one hub (i.e., 27 

single allocation) or to multiple hubs (i.e., multiple allocation), 2) the number and type of the located hubs, 3) the 28 

presence of absence of hub capacities (i.e., capacitated vs. uncapacitated), and 4) full connectivity (i.e., complete 29 

graph) or partial connectivity of hubs (i.e., incomplete graph) ( Alumur and Kara, 2008; Dukkanci et al., 2019). 30 

Although the exploitation of economies of scale is a big advantage of hub networks, this exploitation may 31 

lead to commodity overload in a small number of hubs, or even result in heavy-utilization/congestion of some 32 

hub-to-hub connections. This congestion becomes more critical for transportation companies that employ the 33 

hub-and-spoke network for shipment delivery where high delivery performance (i.e., low transportation time) is 34 

desired. Congestions in hub nodes and hub-to-hub connections highly affect the delivery performance, and 35 

hence, it is essential to take congestion effects into account when designing a hub-and-spoke network (de 36 

Camargo et al., 2009; de Camargo and Miranda, 2012; Mohammadi et al., 2019a; Rahimi et al., 2016). 37 

More specifically, one of the main real applications of this study can be found in the national/worldwide 38 

shipment transportation system. In this system, different shipments with different priorities are consolidated in 39 
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the origin hubs. These shipments are then processed (e.g., packaged, loaded, etc.) and transited in larger volumes 1 

to different destinations through different hubs. Once arrived to the destination hub, shipments are again 2 

processed (e.g., unloaded, unpackaged, etc.) and sent to their final destinations. Since the capacity of hubs are 3 

limited, arrival shipments to each hub are congested and they should wait until they receive services. Such 4 

waiting time in the hubs significantly affect the performance of the network in term of transportation time 5 

between the moment that the shipment demand takes place until the moment that the shipment arrives to its final 6 

destination. 7 

Three ways of addressing congestion in hub-and-spoke systems are 1) imposing classical capacity 8 

constraints on hub nodes for limiting the amount of flow entering the hubs, 2) incorporating costs of congestion 9 

effects explicitly into the objective function using a convex cost function that increases exponentially as more 10 

flows go through the hubs, and 3) accounting for congestion in hub nodes using queuing theory, and calculating 11 

the waiting time of the flow in terms of congestion.  12 

The third approach has recently attracted more attention (Ishfaq and Sox, 2012; Mohammadi et al., 2017, 13 

2019a) since it accounts for the congestion in the hubs in a more reliable and real way. In this regard, the most 14 

common way has been modelling the hubs as queuing system with arrival and/or service rates with Poisson 15 

distributions (i.e., M/M/c and M/D/c queuing systems). However, the stochasticity nature of the demand between 16 

OD nodes imposes a high degree of uncertainty on the inter-arrival time of the products. On the other hand, high 17 

variety of demands results in varying service rate of the products. Accordingly, employing general GI/G/c 18 

queuing system provides more reliable results (Ishfaq and Sox, 2012; Mohammadi et al., 2019b). Evaluating the 19 

congestion in the hubs when dealing with general GI/G/c queuing system become more complicated when 20 

dealing with multiple products with different characteristics (e.g., service rate, priority etc.). 21 

In this regard, two real-world cases where the problem of this paper steps in are: 1) Shipment delivery 22 

system and 2) airway passenger transportation system. In the following, the first real-world application is 23 

explained in more detail. One of the most important shipment delivery systems is the mail or post system for 24 

physically transporting postcards, letters, and parcels. These shipments have different priorities (e.g., high 25 

priority, medium priority and low priority) and each shipment is processed based on its priority. In this system, 26 

different shipments with different priorities are first consolidated in the origin hub which is normally the center 27 

of each province in the country. These shipments are then processed (e.g., packaged, loaded, etc.) and transited 28 

in larger volumes to different destinations through different hubs and maybe with different transportation modes. 29 

Once arrived at the destination hub, shipments are again processed (e.g., unloaded, unpackaged, etc.) and sent to 30 

their final destinations. Since the capacity of hubs are limited, arrival shipments to each hub are congested and 31 

they should wait until they receive services. Such waiting time in the hubs significantly affects the performance 32 

of the network in terms of transportation time between the moments that the shipment demand takes place until 33 

the moment that the shipment arrives to its final destination. An efficient way to evaluate this congestion in the 34 

hubs is using queuing theory. On the other hand, the service time and inter-arrival time of shipments are 35 

stochastic and finding an exact distribution for them is hard (if not impossible). Accordingly, using typical 36 

queuing systems with exponential inter-arrival time and Poisson service rate are not practical enough. Therefore, 37 

general queuing systems (e.g., GI/G/1, GI/G/c) are the most efficient way to cope with this congestion 38 

evaluation. At each hub, the processing of shipments (e.g., unloading, sorting, packaging and loading) are done 39 

through different parallel working centers. For example, once trucks that transport the shipments arrive at the 40 
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hubs, they are referred to different ports (servers) of unloading and the shipment processes (unloading and 1 

sorting) are done in parallel. Since a wide variety of shipments may exist in each truck, service time at each 2 

server does not follow a unique and specific distribution. On the other hand, the arrival time of shipments to the 3 

hubs does not follow a specific stochastic distribution. Therefore, the service time and inter-arrival time of 4 

shipments should follow general distribution and using general queuing systems is the most efficient way to take 5 

into account the congestion of shipments in the hubs. 6 

This paper addresses a bi-objective multi-product single allocation hub-and-spoke network design 7 

problem, wherein congestion is considered in both hubs and connection links. A GI/G/c queuing system is 8 

developed to evaluate the waiting time of the hubs. Finally, an aggregation model is proposed to handle multiple 9 

products in the GI/G/c queuing system. The first objective function of the model minimizes the sum of 10 

installation, allocation, and transportation costs, and the second objective function of the model minimizes the 11 

maximum transportation time between each pair of OD nodes that is significantly affected by congestion in the 12 

hubs and connection links.  13 

Finally to solve the proposed model for large-sized instances, this paper develops a new hybrid 14 

metaheuristic algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) and a learning-based 15 

Iterated Local Search (L-ILS) algorithm. The idea of this hybridization is to develop an algorithm that is 16 

powerful in terms of both diversification (global search) and intensification (local search) and intelligently learns 17 

information during the searching process. 18 

The rest of the paper is organized as follows. The most relevant paper considering the congestion in the 19 

hub are reviewed in Section 2. A bi-objective mathematical model is proposed in Section 3. Section 4 develops a 20 

hybrid metaheuristic algorithm to solve the proposed bi-objective mathematical model. The performance of the 21 

proposed hybrid algorithm is validated in Section 5 through numerous experiments. Section 6 deals with 22 

comprehensive sensitivity analysis of the model. Finally, the paper is concluded in Section 7.  23 

2. Literature review 24 

This section reviews the most relevant papers addressing congestion in the hub location problem.  25 

2.1. Addressing congestion through capacity constraint 26 

Although numerous papers have addressed the congestion effects by restricting the amount of flow 27 

entering a hub using capacity constraints, few of them have had the purpose of addressing congestion in the hub 28 

network. Accordingly, this part reviews those papers that initially aim at addressing congestion through capacity 29 

constraint.  30 

As the first efforts, Grove and O'Kelly (1986) addressed the impact of congestion on hub-and-spoke 31 

networks. They showed how the delays in the schedules of airline systems are affected by the amount of flow 32 

entering the hubs. Marianov and Serra (2003) are among the first researchers that accounted for congestion in 33 

hub-and-spoke networks using queuing theory. They modeled the hub network as an M/D/c queuing system and 34 

proposed capacity constraints based on the waiting probability of flows in the hubs. They have also proposed a 35 

model for allocating servers to each installed hub. A similar work has been proposed by Rodriguez et al. (2007), 36 

wherein each hub is modeled with simple M/M/1 queuing system. Costa et al. (2008) aim at controlling 37 

congestion by minimizing the total time required to process the flow entering each hub. For this aim, the authors 38 

propose a second objective function that minimizes the maximum processing time of flows at hubs. Mohammadi 39 

et al. (2011) have modeled each hub as M/M/c queuing system and proposed a probabilistic constraint to ensure 40 
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that the probability of entering flows to the hubs that wait in a queue is less than a threshold value for each hub. 1 

Rahimi et al. (2016) have accounted for congestion through a queuing system with finite queue capacity. 2 

Accordingly, the authors model each hub as M/M/1/K queue system, where the probability of the flow exceeding 3 

the capacity of the hub is tried to be minimized.  4 

Yang and Chiu (2016) addressed the hub network design problem considering demand uncertainty and 5 

hub congestion effects. Authors formulated the problem as a two-stage stochastic program with recourse model. 6 

The proposed model provides a consistent set of hub locations, while adjusting network configuration in 7 

response to different demand realizations. Özgün-Kibiroğlu (2019) addressed the hub location problem in which 8 

capacity restrictions were introduced into the objective function as a penalty cost to represent their congestion 9 

effects on respective hubs. The authors proposed a model allocating hubs whose capacities are larger than a 10 

desired level and still congestion on hubs is considered as a penalty cost in the objective function. Therefore, 11 

hubs are chosen between nodes which have higher capacities in order to reduce the penalty costs arising from 12 

surplus flows on hubs. 13 

These works attempt to control congestion via limiting the flow entering hubs; however, merely 14 

controlling the amount of flow does not guarantee the higher performance of the hub network in terms of 15 

delivery time. Indeed, once the amount of flow approaches the capacity, congestion would happen in hub, 16 

although the capacity is still respected. 17 

2.2. Addressing congestion through cost function 18 

Modeling congestion through capacity constraint on the flows does not reflect the exponential nature of 19 

congestion effects: the more the flow into the hub, the harder the handling process. Consequently, greater costs 20 

are imposed to the hub network. Usually these costs increase extremely rapid due to congestion. 21 

In this regard, Elhedhli and Hu (2005) have explicitly considered the congestion effect of each located 22 

hub as a cost term in the objective function for the hub-and-spoke problems. Using a power-law function which 23 

is widely utilized to estimate delay costs in airport applications, the authors propose a non-linear convex cost 24 

function formulation that increases rapidly as more traffic flows through the located hubs. Afterward, Elhedhli 25 

and Wu (2009) have proposed the same approach while considering each hub as an M/M/1 queue and used the 26 

Kleinrock’s average delay function (Kleinrock, 2007) as a representation of the congestion effects. 27 

Camargo and Miranda (2009) have studied a multiple allocation hub-and-spoke network design problem 28 

under hub congestion. They have proposed a non-linear mixed integer programming formulation, modeling the 29 

congestion as a convex cost function similar to Elhedhli and Hu (2005). In another work, Camargo and Miranda 30 

(2012) have addressed the hub-and-spoke network problem under congestion from two different network design 31 

perspectives; the network owner and the network user. The authors translate these two perspectives into 32 

mathematical programming models. The objective of the model is to minimize the installation, congestion, and 33 

routing costs over the network, wherein two different perspectives are analyzed: The network owner aims at 34 

designing network with the least cost, and the network user is willing to accept the minimum congestion effect at 35 

a reasonable cost. The proposed cost functions in the literature are disabled to evaluate the waiting time of the 36 

products, and they only account for the number of products accumulated in each hub. Evaluating the waiting 37 

time and the delay of products in the hubs are important when transport service providers aim at minimizing the 38 

total transportation time and attempt to offer the most competitive delivery services to their customers.  39 
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Kian and Kargar (2016) studied the hub location problem with a power-law congestion cost and propose 1 

an exact solution approach. Authors formulated this problem in a conic quadratic form and use a strengthening 2 

method which rests on valid inequalities of perspective cuts in mixed integer nonlinear programming. Alkaabneh 3 

et al. (2019) considered a hub-and-spoke network design problem with inter-hub economies-of-scale and hub 4 

congestion. They explicitly modeled the economies-of-scale as a concave piece-wise linear function and 5 

congestion as a convex function. The problem has been modeled as a nonlinear mixed integer program that is 6 

difficult to solve directly since the objective function has both convex and concave nonlinear terms and hence 7 

finding an optimal solution may not be easy. Finally, the authors proposed a Lagrangian approach to obtain tight 8 

upper and lower bounds. 9 

2.3. Addressing congestion through waiting time calculation 10 

A set of other works exist that address the congestion in the hub-and-spoke network, not via capacity 11 

constraint and congestion cost function, but by analyzing the waiting time resulted from the flow accumulation 12 

in the network. These works reflect the exponential nature of congestion effects in terms of the time spent by the 13 

products in the network. 14 

In this regard, Ishfaq and Sox (2012) modeled the hubs as a GI/G/1 queuing systems and the shipments as 15 

multiple job classes with deterministic routings. By integrating the hub operation queuing model and the hub 16 

location-allocation model, the authors also investigated the effect of limited hub resources on the design of 17 

intermodal logistics networks under service time requirements. Mohammadi et al. (2017) have proposed a hub-18 

and-spoke network for hazardous material (HAZMAT) transportation, wherein the congestion of HAZMAT in 19 

the hubs increases the risk of incidents. In addition, the risk increases more and more when the waiting time of 20 

the flows becomes longer and longer. Accordingly, the authors aim at minimizing the risk of HAZMAT 21 

congestion in the hubs by minimizing the waiting time of flows in the network. In their model, each hub is 22 

modeled as M/M/c queuing system where HAZMATs have different priorities, and HAZMATs with higher 23 

priority are served first. 24 

As the most recent work, Mohammadi et al. (2019a) have designed a hub network by addressing 25 

congestion in both hubs and connection links. They consider each hub as M/M/1 queue system and model 26 

congestion at connection links via the Burea roads link performance function (Lo and Tung, 2003). The authors 27 

try to minimize the maximum transportation time between each pair of OD nodes. This time is affected by the 28 

congestion in the hubs as well as at the connection links. 29 

Although these studies are able to evaluate the products’ waiting time in the hubs, the considered queuing 30 

systems with Poisson arrival and service rates distributions (i.e., M/M/c and M/D/c queuing systems) are not 31 

able to fully capture the high variety of products and consequently high variation of the service time in the hubs. 32 

Accordingly, a general queuing system should be required to control the congestion of the hub-and-spoke 33 

network. 34 

2.4. This paper’s contributions 35 

Table 1 summarizes the relevant literature of HLP in terms of modeling and solution approaches. 36 

Regarding the modeling approach, the reviewed papers are evaluated if they deal with: 1) single or multiple 37 

objectives, 2) congestion in the hubs and connection links, 3) classical or general queuing systems, and 4) 38 

aggregation of the flow in the hubs. Regarding the solution approach, the reviewed papers are classified whether 39 
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the authors develop 1) exact methods or metaheuristic algorithms as local search, global search or hybrid search 1 

algorithms and 2) learning-based search algorithms. 2 

 3 

 4 

 5 

 6 

Table 1. Review of related work 7 

Ref. Year Modeling approach Solution Approach 
Objective Congestion Queuing System A
ggregation m

odel 

S
ingle 

M
ultiple 

Hub Link C
lassical queue 

G
eneral queue 

E
xact M

ethod 

L
ocal S

earch 

G
lobal search 

H
ybrid 

L
earning-based 

O'Kelly 1986 √  √          
Marianov and Serra 2003 √  √  √    √    
Elhedhli and Hu 2005 √  √  √   √     
Rodriguez et al. 2007 √  √  √    √    
Costa et al. 2008  √ √  √   √     
Elhedhli and Wu 2009 √  √  √   √     
Camargo and Miranda 2009 √  √  √   √     
Camargo and Miranda 2012 √  √  √   √     
Ishfaq and Sox  2012 √  √   √   √    
Mohammadi et al. 2013 √  √  √     √   
Sedehzadeh et al. 2014 √  √  √     √   
Rahimi et al.  2016  √ √  √     √   
Yang et al. 2016 √  √       √   
Kian and Kargar 2016 √  √     √     
Mohammadi et al. 2017  √ √  √     √ √  
Azizi et al. 2018 √  √       √   
Hu et al. 2018 √   √  √       
Mohammadi et al. 2019b  √ √ √ √     √ √  
Özgün-Kibiroğlu et al. 2019 √  √       √   
Alkaabneh et al.  2019 √  √     √ √    
This paper   √ √ √  √ √  √ √ √ √ 

 8 

Based on Table 1, the main points that distinguish this work from the literature are listed below: 9 

• Despite the literature, we study a multi-product version of the hub-and-spoke network design problem 10 

where multiple products are consolidated in the hubs and they need to be processed before being 11 

transferred toward their destinations.  12 

• Almost all of the papers in the literature model the hubs as queuing system with arrival and/or service 13 

rates with Poisson distributions (i.e., M/M/c and M/D/c queuing systems), while the stochasticity nature 14 

of the demand between OD nodes imposes a high degree of uncertainty on the arrival rate of the products. 15 

On the other hand, high variety of demands results in varying service rate of the products. Accordingly, 16 

this paper develops a general GI/G/c queuing system to model the hubs. 17 

• Since each hub processes multiple products simultaneously, products experience the same mean waiting 18 

time in each hub. Therefore, an aggregation model is required that considers all products and calculates 19 
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the overall waiting time in each hub. In this paper we consider for the first time a queue-based 1 

aggregation model for calculating the overall waiting time in a hub-and-spoke network. 2 

• In addition to the contributions in the mathematical model, this paper proposes a new hybrid 3 

metaheuristic algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) and a learning 4 

based Iterated Local Search (L-ILS) algorithm. The idea of this hybridization is to develop an algorithm 5 

that is powerful in terms of both diversification (global search) and intensification (local search) and 6 

intelligently learns information during the searching process. 7 

• Finally, sensitivity analyses are performed to investigate the performance of the network under stochastic 8 

disruption of the queuing systems as well as under the prioritization of the products. 9 

3. Mathematical Model 10 

In this section the congested bi-objective multi-product single allocation hub-and-spoke network problem 11 

under congestion is presented. Hereafter, this problem is simply called BiMSHC problem. In this problem, the 12 

goal is to locate h hubs in the network from H potential candidate locations. Then, a set of N spokes are allocated 13 

to located hubs. Each product p originating from a spoke is consolidated only in a single hub (i.e., single 14 

allocation). The graph of hubs is complete, meaning that each pair of located hubs are directly connected. 15 

Accordingly, the product flow between each pair of OD spokes, requires to pass through at least one hub (when 16 

both OD spokes are allocated to the same hub) or at most two hubs (when OD spokes are allocated to different 17 

hubs). Due to the limited capacity of the network, congestion happens in both 1) hubs that process the products 18 

by unloading, sorting, packaging and loading of products, and 2) connection links.  19 

The rest of this section is organized as follows. Necessary notations are first presented in Section 2.1. 20 

Next, Section 2.2 presents the BiMSHC problem in terms of a mixed-integer non-linear programming (MINLP) 21 

model. Afterwards, Section 2.3 and 2.4 model the congestion in the connection links and the hubs, respectively. 22 

Finally, a piecewise function technique is proposed in Section 2.5 to linearize the proposed non-linear BiMSHC 23 

model. 24 

3.1. Notations 25 

Necessary notations are provided in this section.  26 

Sets � Set of spokes � Set of potential hubs � Set of products 
  
Indices �, � ∈ � Indices of spokes �, 	 ∈ � Indices of hubs 
 ∈ � Index of products 
  
Parameters ��
 Fixed cost of locating a hub at candidate node k to serve product p. ���
  Transportation cost of transferring product p between spokes i and j. ���
  Mean transportation time of transferring product p between spokes i and j. ���
  Flow of product p between spokes i and j. ��
 Service rate of processing product p at hub k. ��,�
  Service time of processing product p at hub k (i.e., ��,�
 � 1 ��
⁄ ) . “S” stands for service. ��,
��  Squared coefficient of variation (SCV) of the inter-arrival time of product p from spoke i. “A” stands 

for arrival. ��,
��  SCV of the inter-arrival time of product p at hub k. 
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��,
��  SCV of the service time of product p at hub k. ���  Capacity of link between hubs k and l for transferring the products. “S” stands for service. �� Number of servers at hub k. � Number of hubs to be located in the network. �� Cost discount factor of transferring flow between hubs (i.e., 0 ! �� ! 1). �" Time discount factor of transferring flow between hubs (0 ! �" ! 1). 
  
Decision variables #��
  1 if spoke i is allocated to hub k for product p; 0 otherwise.  $� 1 if a hub is located at candidate node k; 0 otherwise. #����
  1 if the flow of product p between spokes i and j passes first through hub k then hub l. %����
  Variable transportation time of transferring product p originated from spoke i with destination to 

spoke j passing first through hub k then hub l. %��
  Variable transportation time of transferring product p from hub k to hub l. &�,�
  Flow of product p arriving at hub k. '�
 Variable waiting time of processing product p at hub k. (��
 Amount of flow of product p traversing the link between hub k and l in both directions. 
 1 

3.2. Proposed MINLP Model 2 

Based on the notations provided in Section 3.1, the proposed mixed-integer non-linear programming 3 

model, to present the BiMSHC problem, is proposed as follow. Consider �����
 � ���
 ) �����
 ) ���
 . 4 

*+ � min	00000���
�����
 #����
1
�2+

3
�2+

3
�2+

1
�2+

4

2+ )00��
$�3

�2+
4


2+  (1) 

*� � min max�,�,�,�,
7%����
 8 (2) 

s.t.   

0$�3
�2+ � �  (3) 

00#����
3
�2+

3
�2+ � 1 ∀�, �, 
 (4) 

#����
 : $� ∀�, �, �, 	, 
 (5) #����
 : $� ∀�, �, �, 	, 
 (6) #����
 , $� ∈ ;0,1< ∀�, �, �, 	, 
 (7) 
 5 

Objective function (1) minimizes the sum of total transportation cost and the fixed cost of locating the 6 

hubs. Objective function (2) minimizes the maximum transportation time between each pair of OD nodes; 7 

wherein %����
  is the transportation time of transferring product p originated from spoke i with destination at spoke 8 

j passing first through hub k then hub l. Constraint (3) determines the number of hubs to be located in the 9 

network. Constraint (4) ensures the single allocation of the spokes to the hub nodes for each product. Constraints 10 

(5) and (6) guarantee that the routes between OD nodes only traverse located hubs. Finally, constraint (7) is the 11 

integrality constraint for the decision variables. 12 

Objective function (2) is not a linear function; therefore, its linear form is provided through a new 13 

objective function (8) and constraint (9), wherein = is the maximum transportation time between each pair of 14 

OD nodes. 15 min=  (8) %����
 : = ∀�, �, �, 	, 
 (9) 
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In constraint (9), the variable %����
  is the sum of the transportation time on the route from spoke i to spoke 1 

j as well as the waiting time of the products at the hubs k and l. Accordingly, %����
  is calculated as Equation (10).  2 

%����
 � >���
 )'�
 ) �"%��
 )'�
 ) ���
?#����
  ∀�, �, �, 	, 
 (10) 

The variable transportation time of product p between hubs k and l, %��
  , and the variable waiting time of 3 

product p at hub k, '�
, are calculated in Sections 3.3 and 3.4, respectively. 4 

3.3. Variable inter-hub transportation time 5 

A typical consideration in the hub-and-spoke literature is that the transportation time over the hub 6 

network is deterministic or stochastic but independent of the congestion of the connection links. In this section, 7 

we model the transportation between each pair of hub nodes (as the most congested connection links) as a 8 

function of a) capacity of the link and b) the amount of the flow traversing the link (Mohammadi et al., 2019a). 9 

For this aim, the Burea roads link performance function (Lo and Tung, 2003) is employed. It should be noticed 10 

that the mean transportation time of product p at hub k to hub l, %��
 , is equal for all products. Accordingly, the 11 

mean transportation time at hub-to-hub link k to l, %�� , is formulated as Equation (11): 12 

%��@(�� , ���A � ��� B1 ) C�� DEFGHFGIJFGK  (11) 

where ��� is link free-flow travel time between hubs k and l, and (�� is the total flow of products traversing the 13 

link from hub k to hub l (i.e., (�� � ∑ (��

 ). It is also considered that the transportation time is the same for all 14 

types of the products. As the congestion ratio (�� ���⁄  increases, the transportation time of the link increases. The 15 

overload happens in the link if 
EFGHFG > 1 and no overload happens for cases where 0 ! EFGHFG : 1. In Equation (11), 16 

the constant and deterministic parameters C��  and N��  determine how the congestion ratio affects the 17 

transportation time. The parameter C��  determines how the congestion ratio ‘directly’ affects the transportation 18 

time and the parameter N��  is the shape of this effect that could be linear (N��=1), polynomial (N��=2) or with 19 

higher degrees (N�� > 2). For instance, if C��=1 and N��=2, the congestion ratio affects the transportation time 20 

over the link between hubs k and l in a polynomial manner (i.e., %��@(�� , ���A � ��� B1 ) DEFGHFGI�K).  21 

3.4. Variable waiting time at hub 22 

In general, the products arriving in a hub have to wait in a queue if the hub is busy (Sedehzadeh et al., 23 

2014). This waiting mainly depends on the rate at which the products arrive at the hub and the rate at which the 24 

hub processes the products. Since the inter-arrival time between the two arrivals and the service time of the hub 25 

are not deterministic and distributed around a mean value, it is essential to include the variability in time and its 26 

distribution while evaluating the performance indicators that account for the congestion in the hub (i.e., waiting 27 

time, queue length, throughput rate). Although most of the papers in the literature model the hubs as queuing 28 

system with arrival and/or service rates with Poisson distributions (i.e., M/D/c and M/M/c queuing systems), the 29 

stochasticity nature of the demand between OD nodes imposes a high degree of uncertainty on the arrival rate of 30 

the products. In addition, high variety of demands results in varying service rate of the products. Accordingly, 31 

we model each hub as a multi-server GI/G/c queue, wherein the inter-arrival times between flow units of each 32 

product p are given by a random variable with general distribution and mean 1 &�,�
⁄ . The service times are 33 

random variables with general distribution and mean 1 ��
⁄ . At each hub, there exists a queue with infinite size, 34 

wherein the products are served in a first-come-first-served (FCFS) rule. At hub k, �� parallel servers process the 35 
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products and each server serves only one unit of each product at a time and devotes all of its resources to 1 

complete the service. The throughput rate of product p at hub k is P�
 � &�,�
 @����
AQ  (i.e., P�
 � ��,�
 @����,�
 AQ ).  2 

Since obtaining an exact value for a performance indicator for hubs modeled by GI/G/c queues is difficult 3 

if not impossible, an approximation technique is required. As the first time in the hub location problem, the fork-4 

join analysis (Satyam and Krishnamurthy, 2008) is adopted to evaluate the performance of each hub separately. 5 

In this analysis, the arrival products are aggregated into a single product (called aggregated product ℙ) and the 6 

performance of the hub is evaluated for the aggregated product. The parameters for the aggregated product are 7 

approximated based on the parameters of the original products at each hub. Figure 1 illustrates hub k that 8 

processes a given set of products. 9 

 10 

Figure 1. Hub k and aggregated product (Mohammadi et al., 2019b) 11 

 12 

Based on the notations in Section 3.1, Equations (12) to (17) are proposed to estimate the parameters of 13 

the aggregated product (Mohammadi et al., 2018, 2019b). 14 

&�,�
 � 000���
#����
3
�2+

1
�2+

1
�2+ )000���
#����
3

�2+
1
�2+

1
�2+  ∀�, 
 (12) 

&�,�ℙ � 0&�,�
4

2+  ∀� (13) 

��,�ℙ � 0S&�,�

&�,�ℙ T ��,�
4


2+  ∀� (14) 

��,
�� � U
�V
�� ) >1 − U
�? ∀�, 
 (15) ��,ℙ�� � X�Y�� ) @1 − X�A ∀� (16) 

��,ℙ�� � Z∑ S&�,�
&�,�ℙ T >��,
�� ) 1?>��,�
 ?�4
2+ [ − >��,�ℙ ?�
>��,�ℙ ?�  

∀� (17) 

 15 

where U
� � \1 ) 4>1 − P
�?�@^
� − 1A_`+, P
� � ∑ S∑ ∑ abcdebFGcdfGghicgh j∑ ∑ acbdecGFbdfGghicghkFd T� , V
�� �16 

∑ S∑ ∑ abcdebFGcdfGghicgh j∑ ∑ acbdecGFbdfGghicghlm,Fd T ��,
���  and ^
�`+ � ∑ S∑ ∑ abcdebFGcdfGghicgh j∑ ∑ acbdecGFbdfGghicghlm,Fd T�� . In addition, X� �17 

n1 ) 4@1 − Pℙ�A�@^� − 1Ao`+, Y�� � ∑ plm,Fd
lm,Fℙ q ��,
��
  and ^�`+ � ∑ plm,Fd

lm,Fℙ q�
 . After calculating the parameters of 18 

the aggregated product ℙ at hub k, the waiting time of product p in the queue at hub k, '�
, is provided as 19 

Equation (18), where in P�ℙ � &�,�ℙ ��,�ℙ ��⁄ . The main point is that all the products entering a particular hub, 20 

where there is no priority between them, experience the same waiting time in that hub. 21 

'�
 ≈ '�ℙ ≈ s�ℙ��,�ℙ1 − P�ℙ × ��,ℙ�� ) ��,ℙ��2 × u�ℙ ∀�, 
 (18) 
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where s�ℙ and u�ℙ are calculated as Equations (19) and (20): 1 

s�ℙ � >��P�ℙ?vF��! @1 − P�ℙA x0 >��P�ℙ?yz!
vF`+
y2{ ) >��P�ℙ?vF��! 11 − P�ℙ|

`+
 ∀� (19) 

u�ℙ �
}~�
~�exp �−23 × 1 − P�ℙP�ℙ × >1 − ��,ℙ�� ?���,ℙ�� ) ��,ℙ�� � ,							0 : ��,ℙ� : 1
exp S−>1 − P�ℙ? × ��,ℙ�� − 1��,ℙ�� ) ��,ℙ�� T,													��,ℙ� > 1								 ∀� (20) 

 2 

 3 

3.5. Linearization of the MINLP model: A piecewise function 4 

The proposed model in Section 3.2 along with the variable transportation time and approximated waiting 5 

time of the Sections 3.3 and 3.4 is non-linear. Accordingly, finding an optimal solution even for some small-size 6 

instances of the problem might be impossible or very time-consuming. In this section, we employ a piecewise 7 

linear approximation technique (Mohammadi et al., 2019a) to approximately linearize the non-linear terms %��  8 

and '�
.  9 

Let f(a) be the piecewise linear approximation of a single variable by considering S number of sampling 10 

coordinates �+, … , �� on the s axis (breakpoints), on which the function is evaluated. The function is then 11 

approximated by the linear term �>��, �@��A?, >��j+, �@��j+A?� @� � 1,… , � − 1A. Therefore, for any given a 12 

value, where �� : �� : ��j+, the function value �≈@��A is approximated as Equations (21) and (22). 13 �� � ��� ) @1 − �A��j+ (21) �≈@��A � ��@��A ) @1 − �A�@��j+A (22) 

where � is a (unique) value in [0,1]. 14 

To use this linearization technique, a set of new variables and constraints should be defined to associate 15 

any a value to the proper pair of consecutive breakpoints. Since %��
  and '�
 are non-linear variables, two 16 

piecewise linear approximations are needed. Consider a continuous variable �̂ for each breakpoint s, where �̂ ∈17 n0,1o; @� � 1,… , �A. In addition, �� is a binary variable associated with the sth interval n��, ��j+o	@� � 1,… , � −18 1A, where �{ � �� � 1 at the extremes. Finally, the approximate value �≈ can be obtained by imposing the 19 

following constraints and introducing special �̂ and �� corresponding to each nonlinear term. Required 20 

notations are first presented and additional constraints are then presented to linearize the non-linear terms of 21 

objective function (2). 22 

Parameters: &�,�,�ℙ  �th breakpoint of the total flow arriving at hub k (&�,�ℙ ). (��,� �th breakpoint of the total flow traversing the link k to l ((��). '>&�,�,�ℙ ? Waiting time corresponding to the total flow &�,�,�ℙ  arriving at hub k. %>(��,�? Transportation time corresponding to the total flow (��,� traversing the link k to l. 
G An arbitrary large number. 
Decision variables: 

�̂�,� Continuous variable for breakpoint � associated with '>&�,�,�ℙ ?. 

�̂",�� Continuous variable for breakpoint � associated with %>(��,�?. ���,� Binary variable for breakpoint � associated with '>&�,�,�ℙ ?. ��",�� Binary variable for breakpoint � associated with %>(��,�?. 
 23 
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Constraints (23) to (34) are provided to linearly approximate the non-linear terms %��  and '�
 in the 1 

proposed model. 2 

0���,��`+
�2+ � 1 ∀� (23) 

�̂�,� : ��`+�,� ) ���,� ∀�, � ∈ � (24) 

0 �̂�,��
�2+ � 1 ∀� (25) 

&�,�ℙ � 0 �̂�,��
�2+ &�,�,�ℙ  ∀� (26) 

'�ℙ � 0 �̂�,��
�2+ '>&�,�,�ℙ ? ∀� (27) 

0��",���`+
�2+ � 1 ∀�, 	 (28) 

�̂",�� : ��`+",�� ) ��",��  ∀�, 	, � ∈ � (29) 

0 �̂",��
�

�2+ � 1 ∀�, 	 (30) 

(�� � 0 �̂",��
�

�2+ (��,� ∀�, 	 (31) 

%�� � 0 �̂",��
�

�2+ %>(��,�? ∀�, 	 (32) 

�̂�,�, �̂",�� ∈ n0,1o ∀�, 	, � ∈ � (33) ���,� , ��",�� ∈ ;0,1< ∀�, 	, � ∈ � (34) 
 3 

Finally, the final proposed mixed-integer linear programming model is presented as follow: 4 

*+ � min	00000���
�����
 #����
1
�2+

3
�2+

3
�2+

1
�2+

4

2+ )00��
$�3

�2+
4


2+  (1) 

*� � min= 
 

(8) >���
 )'�
 ) �"%��
 )'�
 ) ���
?#����
 : = ∀�, �, �, 	, 
  
s.t.: Constraints (3)-(7), (23)-(34)  
 5 

4. Hybrid metaheuristic solution algorithm 6 

Due to the complexity of the hub-and-spoke network design problem to find the optimal solution (Alumur 7 

and Kara, 2008), metaheuristic algorithms have been widely proposed to solve this problem (Rodríguez et al., 8 

2007; Mohammadi et al., 2016; Rahimi et al., 2016; Mohammadi et al., 2017; Zhalechian et al., 2018; 9 

Mohammadi et al., 2019a). Among them, hybrid metaheuristic algorithms, as the combination of evolutionary 10 

algorithms (EAs) and local search (LS) algorithms, have attracted higher attention for their outperformance in 11 

terms of both diversification and intensification of the solution space (Mohammadi et al., 2019a). 12 

In recent years, the combination between evolutionary algorithms (EAs) and machine learning (ML) and 13 

has received considerable attention from the research community. Interested readers are referred to (Jourdan et 14 

al., 2006; Zhang et al., 2011; Calvet et al., 2017) and references therein. In this regard, this section develops a 15 

hybrid metaheuristic solution algorithm to solve the proposed BiMSHC model based on Non-dominated Sorting 16 

Genetic Algorithm-II (NSGA-II) (Deb et al., 2000) and a Learning-based Iterated Local Search (L-ILS) 17 
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algorithm. The well-known �-means clustering algorithm (Likas et al., 2003) is used as the machine learning 1 

technique. For simplicity, the proposed hybrid algorithm is then called GAMLS.  2 

As a population-based EA, NSGA-II can present a set of non-dominated Pareto (NDP) optimal solutions 3 

of the multi-objective optimization problems (MOOPs) with a set of conflicting objective functions (Deb et al., 4 

2000). NSGA-II evolves a population of randomly generated solutions with size Psize using elitism, crossover and 5 

mutation operators. Though elitism, a percent ER (elitism rate) of the best solutions are directly transferred to the 6 

next generation. The rest of the population of the new generations are filled by crossover and mutation operators 7 

with rates CR and MR, respectively, where ER + CR + MR = 1. In crossover, a pair of selected parents (using 8 

tournament selection mechanism) are crossed with the hope of creating better children. Despite crossover, 9 

mutation operator is employed on an individual solution in order to diversify the solution space and escape from 10 

the local optimum. These operators are employed to generate new solutions as a next offspring so that the current 11 

population and generated offspring are combined together for creating next generation according to non-12 

dominance and crowding distance (CD) techniques. The CD is a measure of the density of solutions. The value 13 

of the CD presents an estimate of the density of solutions surrounding a particular solution. Accordingly, a 14 

solution with higher CD value is preferred. The idea behind the CD is that isolated solutions with high CD value 15 

belong to undiscovered regions and keeping these solutions in the population increases the diversification 16 

capability of the algorithm. This evolution process continues until a maximum iteration ��������  is reached. 17 

ILS is a well-known metaheuristic algorithm for solving NP-hard optimization problems due to its 18 

effectiveness in both intensification and diversification as well as its simplicity in practice. When a search is 19 

trapped in a local optimum, ILS helps the search to escape the trap without losing many of the good properties of 20 

the current solution. The main iteration loop of the ILS algorithm does three main following steps (Karimi-21 

Mamaghan et al., 2020): 1) ILS algorithm performs a Perturbation(.) function over the current local optimum 22 

solution ��∗ to help the search to escape the local minimum; whereby an intermediate solution ��� is generated. 23 

Through this random perturbation, the local optimum solution ��∗ can be transferred to another place in the 24 

solution space, 2) After applying the Perturbation(.) function, the LocalSearch(.) function is performed on the 25 

intermediate solution ��� to obtain a new local optimal solution ��∗�, and 3) After applying the LocalSearch(���) 26 

function, AcceptanceCriterion(��∗,��∗�,�����) is employed to check whether to accept the current local optimal 27 

solution ��∗ comparing to the ��∗. The AcceptanceCriterion(.) function can only accept better solution or it can 28 

even accept worse solution with a small gap (e.g., 5% gap from ��∗). It is furtherly checked if ����� can be also 29 

updated. These three steps continue until a maximum iteration ������ ¡�  is reached. 30 

4.1. Proposed hybrid GAMLS algorithm 31 

In hybrid algorithms for solving MOOPs, three main issues need to be resolved concerning the local 32 

search mechanism: 1) which solutions to initiate the local search, 2) how to select solutions from a set of 33 

candidate solutions, and 3) how to perform the local search on the selected solutions in order to escape from the 34 

local optimum and find better solutions. Regarding the first issue, the set of NDP solutions are more preferable 35 

to be the candidate to perform local search (Chiang et al., 2011; Wang and Tang, 2017). Sometimes, the number 36 

of NDP solutions are too high and performing a local search over each of them is computationally inefficient (if 37 

not impossible). But it should be noted that the number of initial solutions should be also enough to have a good 38 

diversification. So a set of representative solutions among the NDP solutions to initiate the local searches are 39 

necessary. For the third issue, the local search algorithm should be not only powerful in intensification, but also 40 
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performant enough in terms of diversification. In addition, an efficient mechanism should exist to escape from 1 

the local optimum. 2 

Based on this motivation, the hybrid GAMLS algorithm is proposed to handle these three issues. The 3 

NSGA-II, as a powerful population-based EA, is responsible to obtain NDP solution to initiate the ILS. In the 4 

meantime, �-means clustering algorithm is used as the link between NSGA-II and ILS to select the 5 

representative solutions from the results of NSGA-II and to feed them to ILS algorithm.  6 

Once the NSGA-II obtains the NDP solutions, the �-means algorithm is employed to find � 7 

representative solutions (Repst. Sol) from the NDP set. Actually, the �-means clustering algorithm is employed 8 

over the solution representation of the solutions. The �-means algorithm creates � separate solution clusters, 9 

wherein the solutions in each cluster are closed together and probably from the same region of the solution space 10 

(i.e., same local optimum); while the solutions of a cluster are probably far from the other clusters’ solutions 11 

(i.e., different local optimums). One may create clusters based on the objective function values of the solutions 12 

but it does not guarantee that the solutions in one cluster are closed together. Indeed, two solutions may have the 13 

same objective function but they belong two different regions of the solution space. Afterward, the solution at 14 

the center of each cluster or the closest solution to the center of the cluster will represent the whole cluster. The 15 

closeness of two solutions is defined as the minimum difference between the solution representations of those 16 

two solutions. Finally, these � representative solutions are fed to the ILS algorithm and their neighborhood is 17 

intensified. At the end, the new found NDP solutions via ILS executions are combined with those of NSGA-II 18 

and the final NDP solutions are returned. Figure 2 depicts the overall mechanism of the hybrid GAMLS 19 

algorithm.  20 

 21 

 22 

Figure 2. Mechanism of the hybrid GAMLS algorithm 23 

 24 

4.2. Solution representation 25 

The solution vector representation in every EA should be as compact as possible but should contain 26 

enough information to represent any solution of the problem. The way of representing solutions significantly 27 

affect the choice of searching operators. Accordingly, efficient representation of the solutions helps to use well-28 

known operators in the literature that their high performance has been proved. An important recommendation is 29 

that represent the solution in a way that applying operators do not possibly lead to infeasible solutions. But if a 30 
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solution vector is infeasible and violates one or certain number of constraints, a penalty value can be added to its 1 

corresponding objective function values. This penalty value decreases the chance of that solution to participate in 2 

the reproduction procedures. Generally, it is much better to propose a representation that only includes feasible 3 

solutions. 4 

In this paper, a solution is represented as a (P×N) matrix where the arrays are the h values from {1,…,H}. 5 

Figure 3 depicts a hub-and-spoke network with P=2 products, N=8 spokes, and h=3 hubs among a set of H=6 6 

possible candidate locations. It can be seen that spokes 1 to 8, transfer product 1 to hubs 3, 3, 1, 5, 1, 5, 5, and 3, 7 

respectively. For product 2, the assignment of spokes is to hubs 5, 1, 1, 3, 3, 5, 1, and 3, respectively. Figure 4 8 

depicts the corresponding hub-and-spoke network of Figure 3.  9 

 Spokes 
 1 2 3 4 5 6 7 8 
Product 1 3 3 1 5 1 5 5 3 
Product 2 5 1 1 3 3 5 1 3 

Figure 3. Solution representation of a multi-commodity hub-and-spoke network 10 

 11 

 12 

Figure 4. Hub-and-spoke network design of Figure 3 13 

 14 

Having the structure of the hub-and-spoke network (e.g., Figure 3 and 4), the objective functions of the 15 

proposed model can be easily calculated. The first objective function is calculated based on the decision 16 

variables that shows which spokes have been allocated to which hubs and which hubs have been located in the 17 

network. These decision variables can be calculated through the structure of the network determined by the 18 

solution representation. For the second objective function, two terms should be calculated, the mean 19 

transportation time at hub-to-hub link k to l, %�� , and the waiting time in hub k for product p, '�
. In these terms 20 

of the second objective function, the amount of flow of products traversing the spoke-to-hub and hub-to-hub 21 

links should be first calculated. To calculate these amounts of flow, it should be noted first that each spoke i is 22 

allocated to only a single hub k (single allocation) for each product p. Next, the flow of product p over the 23 

connection link from spoke i to hub k is equal to the total flow originating from spoke I (∑ ���
� ). The amount of 24 

flow between each pair of hubs k and l ((��) can be simply calculated based on the spokes allocated to these two 25 

hubs k and l and the corresponding flow between each pair of the spokes. Having the amounts flow traversing 26 

the hub network, the mean transportation time at hub-to-hub link k to l, %�� , and the waiting time in hub k for 27 

product p, '�
 are calculated by equations (11) and (18)-(20), respectively. 28 

4.3. Crossover, mutation & local search operators 29 

For doing crossover on two selected parents, two types of crossover operators are used as one-point 30 

crossover and two-point crossover (Mohammadi et al., 2013). In one-point crossover, two parents are crossed 31 

from one cutting point across the columns of the solution matrix. In two-point crossover, two parents are crossed 32 
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from two cutting point across the columns of the solution matrix. At each call of crossover function, one operator 1 

is employed randomly. For employing mutation on a single solution, two types of mutation operators are used as 2 

reversion and random generation. In the reversion operator, two columns far enough each other are selected and 3 

the permutation of the in-between columns are reversed. In the random generation mutation, a new solution is 4 

generated randomly. Similar to crossover, mutation function uses one operator at each call of doing mutation.  5 

In the ILS algorithm, local search operators are swap, re-allocation and hub-removal operators. In a swap 6 

operator, two adjacent arrays at each row of the solution matrix are swapped. In re-allocation, a spoke is selected 7 

at each row of the solution matrix and it is re-allocated to an existing hub. Finally, in hub-removal operator, a 8 

hub is selected from the network and is replaced by a non-existing hub. The perturbation operator of ILS is a 9 

consecutive employment of reversion and hub-removal operators. 10 

Indeed, the crossover operator may create infeasible solutions that violate Constraint (3). In this situation, 11 

two cases happen: 1) the number of located hub is less than h or 2) the number of located hubs is greater than h. 12 

For the first case, a penalty is added to the objective value of that solution. In the second case, the redundant 13 

hubs are eliminated from the solution and their spokes are allocated to their closest hubs. The redundant hubs are 14 

the hubs with higher fixed cost. Finally, the Pseudo code of the proposed GAMLS algorithm is as Algorithm 2. 15 

 16 

Algorithm 2. GAMLS algorithm  

Set parameters: �������� , Psize, ER, CR, MR, ������ ¡� , � // k is the number of clusters in the �-means algorithm ¢ = {} // Archive of NDP solutions 
  

Generate initial random population of size Psize NSGA-II Global Search Algorithm 
Evaluate the objective functions of each solution  
Rank the solutions based on the non-dominance sorting // 1st ranked solutions are NDP solutions 
Calculate CD for each solution  // CD is calculated among the same-ranking solutions ¢ := Update archive of NDP solutions via 1st ranked solutions  
While ��������  not reached Do  

NG = {} // NG: Next Generation 
NG = NG ⋃ {Best ER NDP solutions with high CD from ¢} // Elitism 
For CR/2 times Do  

s1, s2 := Select two solutions via TS  // TS: Tournament Selection 
o1, o2 := Perform crossover on s1, s2 // Creating offspring using crossover operator 
NG = NG ⋃ {o1,o2}  

EndFor  
For CM times Do  

s3 := Select a solution randomly  
sM := Perform mutation on s3 // Diversifying solutions using mutation operator 
NG = NG ⋃ {sM}  

EndFor  ¢ := Update archive of NDP solutions  
Evaluate the objective functions of each solution  
Rank the solutions based on the non-dominance sorting  
Calculate CD for each solution  

EndWhile   
  

[NDP1, …, NDP�] := Select � NDP solutions by �-means  Machine Learning Algorithm 
   

For �� in [NDP1, …, NDP�] Do Iterated Local Search Algorithm ��∗ := LocalSearch(��)  ����� :=	��∗   

While stopping criterion not reached Do  ��� := Perturbation(��∗)  ��∗� := LocalSearch(���)  ��∗ := AcceptanceCriterion(��∗,��∗�,�����)  

EndWhile  ¢ := Update archive of NDP solutions  

EndFor  
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 1 

4.4. Time complexity of the proposed GAMLS algorithm 2 

The time complexity of an algorithm is concerned about how fast or slow that algorithm performs and 3 

describes the amount of time it takes to run that algorithm. Time complexity is usually calculated by counting 4 

the number of elementary operations performed by the algorithm, supposing that each elementary operation 5 

takes a fixed amount of time to perform. Therefore, the amount of time taken by an algorithm is the number of 6 

elementary operations multiplied by a constant factor (Oliveto and Witt, 2015). Since the execution time of an 7 

algorithm may vary among different inputs of the same size, one usually considers the worst-case time 8 

complexity, which is the maximum amount of time required for inputs of a given size. The complexity of an 9 

algorithm is commonly shown as O(N), where N is the size of the problem. 10 

The complexity of the proposed GAMLS of Algorithm 2 is the sum of the time complexity of three 11 

NSGA-II, �-Means and ILS algorithms. The time complexity of each part is described as follows: 12 

• NSGA-II: The complexity of the NSGA-II is the sum of different parts as 13 

1) Population sorting of size ���¤� . Time complexity is ¥@���¤� log ���¤�A, 14 

2) Fitness function evaluation that depends on the population size (Psize), number of products (P) 15 

and number of spokes (N). Time complexity is ¥@���¤� × ���A, 16 

3) Solution generating using crossover that includes both tournament selection (TS) and 17 

crossover (XO) operator with rate CR. Time complexity is ¥ S@©ª × ���¤�«¬¬­¬¬®e¯ A × ���¤�°"� T, 18 

4) Solution generating using mutation that includes the mutation (MO) operator with rate MR. 19 

Time complexity is ¥@±ª × ���¤�A, 20 

5) The main loop of the NSGA-II with ��������  number of iterations. 21 

Finally, the complexity of the NSGA-II is equal to. 22 

• �-Means: The complexity of the �-Means clustering algorithm in the proposed GAMLS algorithms is 23 

equal to ¥@|¢| × � × �A, where |¢| is the number of the NDP solutions obtained by the NSGA-II. 24 

• ILS: The complexity of the ILS algorithm depends on the number of the NDP solutions (|¢|), local search 25 

operators’ complexity and the ������ ¡�  number of iterations. Time complexity of the ILS algorithm is equal 26 

to ¥@������ ¡� × |¢| × �A.  27 

 28 

5. Computational experiment  29 

The performance of the proposed GAMLS algorithm is validated through a benchmark with three 30 

metaheuristic algorithms in the literature, classical NSGA-II (Deb et al., 2000) and two new recently developed 31 

hybrid algorithms that employ machine learning to improve the performance of the metaheuristic algorithms 32 

(Sun et al., 2019; Zhang et al., 2016). The classical NSGA-II algorithm is similar to GAMLS without performing 33 �-means and ILS algorithms. The aim of this comparison is to discover how hybridizing the NSGA-II with 34 

machine learning and ILS algorithm improves the quality of the NDP solutions. 35 

Sun et al. (2019) propose an adaptive MOEA for MOOPs. In their algorithm, a �-means clustering 36 

method is employed to learn the Pareto optimal set’s manifold structure adaptively, in accordance with the 37 

regularity property of MOOPs, along the evolution. A new offspring is generated in two ways: either 1) a 38 

solution in each cluster is Gaussian-perturbed using the variance-covariance matrix within its cluster, or 2) a 39 

solution is generated using differential evolution (DE) operator from two parents and a global solution from 40 

different clusters. These two strategies make balance between diversification and intensification. Zhang et al. 41 

(2016) propose a self-organizing multi-objective EA (MOEA), wherein a self-organizing mapping (SOM) 42 

method with (m−1) latent variables is applied to establish the neighborhood relationship among current 43 
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solutions. Their method only allows the mate between neighboring solutions to generate a new solution. To 1 

reduce the computational overhead, the self-organizing training step and the evolution step are conducted in an 2 

alternative manner.  3 

Although these algorithms have been proposed for optimization problems with continuous variables and 4 

differentiable objective functions, we adapt their idea and develop two new algorithms: one based on NSGA-II 5 

and �-means (Sun et al., 2019) and second one based on NSGA-II and self-organizing map (SOM) method 6 

(Zhang et al., 2016). These algorithms are, respectively, called HEU1 and HEU2 hereafter. The �-means and 7 

SOM are used to make clusters and the clusters are updated at each iteration of the algorithms if significant 8 

difference happens between the new generated solutions and those of the previous generation; otherwise, the 9 

most recent clusters are used in the new iteration of the algorithm. Once clusters are generated, new solutions are 10 

generated to search the solution space. When generating new solutions using crossover, two intra-cluster and 11 

inter-cluster search mechanisms are adapted. For intra-cluster mechanism, inside each cluster, two solutions are 12 

randomly selected using a binary tournament selection and one-point crossover operator (Section 4.3) is applied 13 

to create two new offspring. For inter-cluster mechanism, three solutions s1, s2 and s3 are selected in such a way 14 

that s2 and s3 are from the same cluster and s1, is the best solution in the population (in terms of dominance and 15 

crowding distance) but not in the same cluster as s2 and s3. Solution s1 is named as the target solution. Afterward, 16 

solutions s2 and s3 are first crossed using one-point crossover (Section 4.3). Then, new created solution from s2 17 

and s3 is crossed by the target solution s1 again using one-point crossover. The idea of inter-cluster mechanism is 18 

not only to keep the similarity of solutions in a cluster but also to diversify the solutions between clusters. Inter-19 

cluster mechanism is applied as many as the number of solutions in the population. For doing mutation, at each 20 

iteration, a solution is randomly selected from each cluster and reversion operator (Section 4.3) is employed. 21 

All algorithms are compiled in Python 3 programming language executed on a Pentium 8 CPU with 3.4 22 

GHz processor and 32 GB of RAM. 23 

5.1. Design of experiments 24 

This section design a set of 20 instances with three size categories to compare the performance of the 25 

proposed GAMLS algorithm with those of NSGA-II, HEU1 and HEU2. The three categories are created based 26 

on the computational time required to find the optimal Pareto solutions. Categories A and B consist of the 27 

instances that obtaining optimal Pareto solutions for them takes [82s, 2h] and [3h, 5h], respectively. Finally, 28 

category C includes the instances that cannot be solved to optimality in reasonable time (i.e., the augmented ³-29 

constraint method cannot find even a single Pareto optimal solution in a reasonable time). Table 2 shows the 30 

property of the instances in terms of number of products P, number of spokes N, and number of hubs h. It is 31 

worth mentioning that the generation of these data has been inspired from classical instances in hub-and-spoke 32 

network design problem (i.e., CAB, AP, USA423, Turkish network). Actually, this inspiration has been only 33 

to get the idea on the range of input parameters such as flow and cost. In addition, the transportation 34 

time between each pair of nodes has been calculated based on the distance between cities. On the other 35 

hand, since the CAB, AP and other data sets do not contain other parameter that our model requires, 36 

these parameters have been generated randomly but based on real assumption. For example, hubs with 37 

higher fixed cost have higher performance when serving the arrival flow. Therefore, the CAB, AP and 38 

other data sets could not be used directly in the proposed model. Finally, we consider that αC = 0.75, αT = 39 

0.70, C��=1 and N��=2.  40 
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It is obvious the performance of an algorithm is significantly affected by the value of its parameters. 1 

Higher performance of each algorithm can be obtained by appropriate tuning of its parameters using response 2 

surface methodology (RSM) (Azizmohammadi et al., 2013; Mohammadi et al., 2014). RSM is defined as a 3 

collection of mathematical and statistical method-based experiments, which can be used to optimize processes. 4 

Regression equation analysis is used to evaluate the response surface model. To tune the parameters, two levels 5 

for each parameter are considered. Each factor is measured at two levels, which can be coded as −1 when the 6 

factor is at its low level (´) and +1 when the factor is at its high level (ℍ). The coded variable can be then 7 

defined as ¶� � >�� ) 0.5@¹ ) ºA? 0.5@¹ − ºA⁄ , where xi and ri are coded as variable and real variable, 8 

respectively. ¹ and º represent high level and low level of the factor. Using RSM, tuned parameters of the 9 

GAMLS, NSGA-II, HEU1 and HEU2 algorithms are considered as follows: 10 

 11 

Table 2. Problem instances to evaluate the performance of GAMLS algorithm 12 

Category Instance Parameters 
P N h w* (unit/h) c* µ* (unit/h) 

mean SCV mean SCV 
Cat. A I1 2 6 2 [10,30] [1,5] 2 [40,80] [1,5] 

I2 2 8 3 [30,50] [4,8] 2 [60,100] [4,8] 
I3 3 8 2 [50, 80] [6,10] 3 [100,180] [6,10] 
I4 3 10 4 [80,120] [8,12] 3 [150,250] [8,12] 
I5 4 10 3 [10,30] [1,5] 2 [100,180] [1,5] 
I6 5 10 4 [30,50] [4,8] 3 [60,120] [4,8] 

Cat. B I7 5 12 4 [50, 80] [6,10] 3 [200,240] [6,10] 
I8 6 12 5 [80,120] [8,12] 4 [220,300] [8,12] 
I9 6 14 3 [10,30] [1,5] 4 [180,260] [1,5] 
I10 7 14 5 [30,50] [4,8] 4 [200,300] [4,8] 
I11 7 16 4 [50, 80] [6,10] 5 [260,340] [6,10] 
I12 7 18 6 [80,120] [8,12] 5 [280,380] [8,12] 
I13 8 22 6 [10,30] [1,5] 5 [200,300] [1,5] 

Cat. C I14 8 28 6 [30,50] [4,8] 6 [300,380] [4,8] 
I15 8 36 8 [50, 80] [6,10] 6 [340,420] [6,10] 
I16 9 40 8 [80,120] [8,12] 8 [400,500] [8,12] 
I17 9 60 10 [10,30] [1,5] 8 [200,320] [1,5] 
I18 10 100 12 [30,50] [4,8] 10 [280,380] [4,8] 
I19 12 150 16 [50, 80] [6,10] 12 [400,560] [6,10] 
I20 15 200 20 [80,120] [8,12] 12 [440,600] [8,12] 

* w, c and µ stand for the flow of products, number of servers and service rate in the hubs, respectively 
 13 

• GAMLS: Psize = 100; ��������  = 100; Selection operator = “Binary tournament selection” (Mohammadi et 14 

al., 2015); Crossover & Mutation operators = see Section 4.5.2; ER = 10%; CR = 75%; MR = 15%; � = 10; 15 ������ ¡�  = 80; Local search & Perturbation operations = see Section 4.5.2; Acceptance criterion = 5-10% of 16 

gap. 17 

• NSGA-II: Psize = 200; ��������  = 200; Selection operator = “Binary tournament selection”; Crossover & 18 

Mutation operators = see Section 4.5.2; ER = 10%; CR = 75%; MR = 15%. 19 

• HEU1: Psize = 120; �������¡�+ = 150; � = 10; Selection operator = based on clusters from �-means; 20 

Mutation & Crossover operators = see beginning of Section 5. 21 

• HEU2: Psize = 120; �������¡�� = 150; � = 10; Selection operator = based on clusters from SOM; Mutation & 22 

Crossover operators = see beginning of Section 5. 23 

 24 

5.2. Numerical results 25 

This section compares the performance of the proposed GAMLS algorithm with NSGA-II, HEU1 and 26 

HEU2 algorithms through generated instances of Table 2. The performance of the algorithms in terms of 27 

obtaining (near)-optimal NDP solutions is compared with optimal NDP solutions obtained, over instances of Cat. 28 
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A and some of instances of Cat. B, by a well-known augmented ³-constraint method (Mohammadi et al., 2019a) 1 

programmed using Cplex solver. 2 

The comparison is carried out based on five common metrics used to compare the multi-objective 3 

algorithms as (Deb et al., 2000): 4 

• Convergence Metric (CM) that evaluates the tightness between the NDP solutions obtained by the 5 

algorithms and the optimal NDP solutions (for small- and some of medium-sized instances), 6 

• Quality Metric (QM) that accounts for the number of NDP solutions obtained by an algorithm in comparison 7 

to other benchmarking algorithms, 8 

• Divergence Metric (DM) that reports how large the non-dominated frontier of an algorithm is, 9 

• Spacing Metric (SM) that shows that how the NDP solutions have dispersed across the non-dominated 10 

frontier, and finally 11 

• Mean Ideal Distance (MID) metric that shows how closed the NDP solutions are from the ideal point 12 

(�+��y , ����y), where �+��y and ����y are the minimum value of the first and the second objective functions, 13 

respectively.  14 

They represent both quantitative and qualitative comparison metric and directly calculated from the NDP 15 

solutions. An algorithm with higher values of QM and DM and lower values of CM, SM and MID is a better 16 

algorithm. 17 

Tables 3 and 4 report the comparison between the metaheuristic algorithms and the ‘Optimal’ solutions 18 

obtained by the augmented ³-constraint method. The reported values for CM, DM, SM and MID metrics are the 19 

mean values for problem instances with different sizes. The user CPU-time contains min and max ([min, max]) 20 

computational time for solving corresponding instances. Detail results can be found in Appendix A. 21 

According to the mean value of CM in Table 3, it is concluded that the mean tightness of the proposed 22 

GAMLS algorithm comparing to the optimal solutions is equal to 1.03% (3% of gap) and 1.11% (11% of gap) 23 

for the instances of Cat. A and Cat. B, respectively. For instances of Cat. A and Cat. B, the effectiveness (quality 24 

of solutions) of the proposed GAMLS algorithm can be shown in terms of low CM, and its efficiency can be 25 

demonstrated by low CPU-time comparing to Cplex solver and other algorithms. Considering the CM for other 26 

algorithms from Tables 3 and 4, it is observed that the mean gaps of NSGA-II, HEU1, HEU2 in comparison with 27 

the optimal results are, respectively, equal to 11%, 7% and 9% for instances of Cat. A. These values are 32%, 28 

23% and 27% for instances of Cat. B. 29 

 30 

Table 3. Comparison with Classical Metaheuristics 31 

Metric Instance & Algorithm 
Cat. A Cat. B Cat. C 
Optimal GAMLS NSGA-II Optimal GAMLS NSGA-II Optimal GAMLS NSGA-II 

CM - 1.03 1.11 - 1.11 1.32 - - - 
QM - 0.76 0.00 - 0.99 0.00 - 1.00 0.00 
DM 1.27 1,39 1,14 1.17 1,43 1,01 - 1,47 1,07 
SM 0.63 0.37 0.53 0.70 0.32 0.53 - 0.36 0.63 
MID 0.71 0.62 1.04 0.66 0.46 0.91 - 0.60 0.97 
Time (s) [124,8976] [92,177] [129,219] [12587,-] [190,312] [231,452] - [338,752] [537,1112] 
 32 

Table 4. Comparison with Learning-based Metaheuristics 33 

Metric Instance & Algorithm 
Cat. A Cat. B Cat. C 
Optimal  GAMLS HEU1 HEU2 Optimal  GAMLS HEU1 HEU2 Optimal  GAMLS HEU1 HEU2 

CM - 1.03 1.07 1.09 - 1.11 1.23 1.27 - - - - 
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QM - 0.76 0.34 0.00 - 0.99 0.01 0.00 - 1.00 0.00 0.00 
DM 1.27 1.39 1.26 1.22 1.17 1.43 1.30 1.25 - 1.47 1.27 1.18 
SM 0.63 0.37 0.37 0.41 0.70 0.32 0.37 0.47 - 0.36 0.36 0.44 
MID 0.71 0.62 0.82 0.85 0.66 0.46 0.81 0.94 - 0.60 0.79 0.84 

Time (s) 
[124, 
976] 

[92, 
177] 

[112, 
192] 

[121, 
210] 

[12587,-
] 

[190, 
312] 

[214, 
386] 

[227, 
439] 

- 
[338, 
752] 

[419, 
911] 

[512, 
994] 

 1 

Although HEU1 and HEU2 use machine learning methods to enhance their performance, the proposed 2 

GAMLS algorithm outperforms these algorithms thank to high performance of ILS algorithm in exploiting the 3 

neighborhood of NDP solutions. On the other hand, it is also discovered that HEU1 and HEU2 outperforms 4 

classical NSGA-II in almost all instances due to their higher performance thank to clustering method and 5 

specific search mechanism that keeps a good balance between diversification and intensification. For the values 6 

of QM of each algorithm at each category of the problem, please look at both Tables 3 and 4 at the same time 7 

since the total share between all four algorithm becomes 100%. 8 

Considering instances of Cat. A and Cat. B, it is observed that the computational time for obtaining 9 

optimal NDP by Cplex solver exponentially increases from 124 to 12587 seconds when the size of the instances 10 

slightly increases. However, the proposed GAMLS obtains high quality NDP solutions less than 752 seconds 11 

even for large-enough instances of Cat. C. The results of Tables 3 and 4 particularly show the superior 12 

performance of the proposed GAMLS algorithm in comparison with NSGA-II, HEU1 and HEU2. The 13 

outperformance of the proposed GAMLS is supported by lower values of the CM, SM, and MID metric and 14 

higher values of DM.  15 

The quality of the proposed GAMLS is further demonstrated by QM, where the NDP solutions of the 16 

GAMLS algorithm partially or even completely dominate the NDP solutions obtained by other algorithms in 17 

almost all instances. Comparing the performance of the GAMLS algorithm and the NSGA-II reveals that 18 

hybridizing the classical NSGA-II with a learning-based ILS significantly improves the performance of the 19 

search algorithm in terms of both diversification and intensification. 20 

As another experiment, the learning part of the proposed GAMLS algorithm was removed. Removing the 21 

learning part implies that the ILS algorithm be applied on the all the NDP solutions obtained by the NSGA-II. 22 

After solving some of the large-sized instances, up to 100 NDP solutions are obtained by NSGA-II. Therefore, 23 

the ILS algorithm should be executed 100 times. However, in the proposed GAMLS algorithm, the ILS 24 

algorithm is executed only 10 times. On the other hand, we also investigated that removing the learning part does 25 

not highly affect the quality of the final non-dominated solutions. Although, higher number of non-dominated 26 

solutions were obtained but the majority of the solutions had been already obtained via the GAMLS algorithm. 27 

This explanation was added to the revised manuscript without adding the results since they do not provide useful 28 

information. 29 

 30 
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a) Instance I4 b) Instance I8 

Figure 5. Optimal vs. metaheuristics: Pareto frontier 1 

 2 

 3 

Figure 6. GAMLS vs. NSGA-II, HEU1 & HEU2: Pareto frontier of instance I20 4 

 5 

In order to visually show the performance of the proposed GAMLS algorithm, Figures 5a and 5b 6 

illustrate the Pareto frontier of the metaheuristic algorithms, respectively for the instances I4 and I8 in 7 

comparison with the optimal Pareto frontier obtained by the augmented ³-constraint method. In addition, Figure 8 

6 compares the Pareto frontier obtained by the proposed GAMLS and other metaheuristic algorithms for the 9 

instance I20. Indeed, we investigated that for the solutions with higher cost, the hubs with higher service level 10 

have been located that leads to the lower waiting time in the hubs and consequently lower total transportation 11 

time between each pair of OD nodes. 12 

6. Sensitivity Analysis 13 

In this section, the aim is to analyze the sensitivity of the proposed model regarding to the input 14 

parameters as well as some other non-parametric factors. The input parameters include flow of products, 15 

transportation cost, free-flow transportation time, service rate and number of servers at hubs. For the non-16 

parametric factors, we consider two main sources of variation that affect the performance of the hub network and 17 

even the structure of the network. These are 1) Stochastic disruption of the hubs, wherein the hubs are subject to 18 

random failures and these failures directly affect the performance of the hub during the process of the products; 19 

and 2) Product prioritization, wherein the products are processed based on their priority and the products with 20 
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lower priority (i.e., products with lower importance) should wait until the products with higher priority are 1 

processed. 2 

Another important issue in any sensitivity analysis, which has been mostly ignored in the literature, is that 3 

analyzing the impact of parameters (or non-parametric factor) only on the objective function value could be 4 

misleading. Actually, the uncertainty in a parameter is more important if the variation of that parameter affects 5 

not only the objective function value, but also the structure of the solution (e.g., the hub-and-spoke network 6 

structure in this paper). These types of parameters/factors would be more important to be controlled by the 7 

decision makers comparing to those that only affect the objective function values. This sensitivity is then called 8 

‘model sensitivity’. Accordingly, this section investigates both objective sensitivity and model sensitivity of the 9 

input parameters and non-parametric factors. In the following, these sensitivity analyses are performed 10 

separately over instance I10.  11 

 12 

 13 

 14 

6.1. Sensitivity to the input parameters 15 

In this section the aim is to investigate the objective and model sensitivities to the variation of the 16 

transportation cost (���
 ), the free-flow transportation time (���
 ), the products’ flow (���
) and the service rate at 17 

hubs (��
). The sensitivity results are shown based on changes according to the basis scenario (i.e., instance I10). 18 

For quantifying the objective sensitivity, the percentage of changes is simply calculated by comparing the 19 

objective function values. To quantify the model sensitivity, we calculate a ratio as the number of elements 20 

changed in the solution after the parameter variation over the total number of changeable elements in the 21 

solution. The elements that construct a solution contains h number of hubs and |N|×|P| number of connection 22 

links from spokes to the hubs. Therefore, the total number of elements in a hub network that may change due to 23 

parameter variations is (|N|×|P|)+h. Table 5 shows the objective and model sensitivities to the variation of the 24 

transportation cost and free-flow transportation time. In addition, Table 6 shows the sensitivities to the products’ 25 

flow and hub’s service rate. In Tables 5 and 6, column “Sensitivity (%)” represents the mean increase imposed to 26 

the corresponding parameters. Negative values in these tables show the reduction in the corresponding values. 27 

From Table 5, it can be observed (as expected) that transportation cost mostly imposes objective 28 

sensitivity over first objective function Z1 that is the sum of the total cost. More interesting, variation of the 29 

transportation does not highly affects the model structure such that in the worst case (i.e., 100% increase in the 30 

cost), only 8% of the network is changed. In addition, cost increase slightly affects the second objective function 31 

Z2 that is the maximum transportation time between each pair of OD spokes. It can be also seen that increasing 32 

the cost up to 15% does not affect the second objective as well as the network structure. It means that the 33 

obtained solutions are robust to the variation of the cost up to 15%. Looking at the changes in the free-flow 34 

transportation time, inverse results observed comparing to the transportation cost. Changes in the free-flow 35 

transportation time highly affects the structure of the network (i.e., high model sensitivity) but has less effect on 36 

the first objective function.  37 

It can be then concluded that the second objective function is highly influenced by the structure of the 38 

network. Accordingly, companies whose most important objective is the transportation time should be more 39 

careful about the variation of those parameters/factors that affect the network structure.    40 
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Table 5. Objective & Model sensitivities to input parameters – Part I 1 

Parameter Change 
(%) 

Sensitivity (%) Parameter % of 
change 

Sensitivity (%) 
Objective increase  Model Objective increase  Model 
ℤ1 ℤ2 ℤ1 ℤ2 

���
  

5 4 0 0 

���
  

5 4 3 2 
10 8 0 0 10 5 9 5 
20 15 0 0 20 8 11 14 
30 22 5 3 30 11 12 19 
40 38 8 4 40 11 16 19 
50 42 12 7 50 19 19 22 
60 53 13 8 60 19 21 22 
70 62 13 8 70 19 23 22 
80 69 13 8 80 23 24 27 
90 79 13 8 90 25 25 29 
100 86 13 8 100 29 25 29 

  2 

Figures 7 and 8 illustrate how the sensitivity in transportation cost and transportation time affect the 3 

objective functions Z1 and Z2 as well as the model structure. Comparing Figures 7 and 8 it can be figured out that 4 

transportation time has more impact on the objective and model sensitivities.  5 

 6 

 7 

Figure 7. Impact of the transportation cost increase on the objective and model sensitivities 8 

 9 

 10 

Figure 8. Impact of the transportation time increase on the objective and model sensitivities 11 
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From Table 6, more objective and model sensitivities are observed comparing to Table 5. Even small 1 

increases in the products’ flow highly affects both objective functions as well as the network structure. Once the 2 

quantity of the flow increases, the total transportation cost increases somehow linearly. However, the second 3 

objective function increases polynomially by the increase of flow. Such significant increase in the second 4 

objective function directly relates to the increased congestion of flow in the hubs and the connection links. On 5 

the other hand, when the flow increases, the structure of the network is affected significantly. It can be 6 

interpreted in such a way that the network tries to adapt itself to the changes in order to absorb these changes as 7 

high as possible.  8 

On the other hand, high sensitivities are discovered to the hubs service rate. When the service rate 9 

increases, products are processed with higher rate and consequently the waiting time of the products in the hubs 10 

is decreased. By accelerating the service rate up to 100%, the transportation time decreases up to 50%. With a 11 

simple comparison between the effects of transportation time (���
 ) and service time (��
) variations, it is seen that 12 

service rate has higher effect on the second objective function and it means that the most of the total 13 

transportation time is spent in the hubs and consequently the congestion in the hubs are very important to be 14 

taken into account in the design of hub-and-spoke network. 15 

 16 

Table 6. Objective & Model sensitivities to input parameters – Part II 17 

Parameter Change 
(%) 

Sensitivity (%) Parameter % of 
change 

Sensitivity (%) 
Objective increase  Model Objective increase  Model 
ℤ1 ℤ2 ℤ1 ℤ2 

���
  

5 3 4 3 

��
 

5 0 -2 2 
10 9 11 7 10 0 -4 5 
20 18 19 12 20 2 -10 7 
30 27 24 18 30 3 -12 11 
40 37 32 23 40 -5 -18 15 
50 47 42 25 50 -11 -22 19 
60 56 76 31 60 -11 -29 22 
70 68 105 39 70 -15 -35 24 
80 72 249 42 80 -15 -39 27 
90 83 387 45 90 -15 -42 32 
100 95 551 45 100 -15 -47 35 

 18 

Figures 9 and 10 illustrate how the sensitivity in transportation cost and transportation time affect the 19 

objective functions Z1 and Z2 as well as the model structure. Comparing Figures 9 and 10 it can be figured out 20 

that transportation time has more impact on the objective and model sensitivities.  21 

These sensitivity analyses figure out that which input parameters are more important to be controlled 22 

since their variation in the real setting is unavoidable. Therefore, managers should have higher control on and 23 

better estimation of these parameters. In this study, products’ flow seems to be the most important parameters 24 

that affects the robustness of the solution. On the other hand, service rate of the hubs plays an important role to 25 

decrease the second objective function. 26 

 27 
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 1 

Figure 9. Impact of the products’ flow increase on the objective and model sensitivities 2 

 3 

 4 

Figure 10. Impact of the products’ flow increase on the objective and model sensitivities 5 

 6 

6.2. Sensitivity to the stochastic disruption at hubs 7 

We consider that hubs are subject to random failures (Mohammadi and Tavakkoli-Moghaddam, 2016). 8 

Accordingly, hub k stochastically fails with rate �� and consequently the inter-arrival time of failures in hub k is 9 

exponentially distributed with mean 1 ��⁄ . Once a failure happens, the hub becomes completely unavailable and 10 

is stochastically retrieved with rate ��. Accordingly, the time until the hub is retrieved is generally distributed 11 

with mean 1 ��⁄ , standard deviation »ª,� and squared coefficient of variation (SCV) of �ª,��  (i.e., �ª,�� � ��»ª,�). 12 

Therefore, the mean availability of hub k is ¼½� 	� ¾F¾Fj¿F (Morrison and Martin, 2007, Mohammadi et al., 13 

2019b). In addition, the new service rate (��
∗) and the new SCV of the service time (��,
��∗ ) of the hub k are 14 

updated as Equations (35) and (36). Equations (12) to (19) are modified accordingly (if necessary). 15 

��
∗ ≡ ¼½���
 � ����
�� ) ��  (35) 

��,
��∗ � ��,
�� ) >1 ) ��,
�� ? p1 − ���� ) ��q ��
@�� ) ��A  (36) 
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With the same procedure as Section 6.2, the objective and the model sensitivities to the failure rate �� and 1 

retrieve rate �� are quantified and presented in Table 7. In this experiment, �� � 0.2 and �� � 1. 2 

Based on Equation (35), it is concluded that disruption of the hub services directly affects the hub’s 3 

service rate that its impact was investigated in Table 6. In Table 7, when the failure rate increases, hubs become 4 

less available and consequently the service rate decreases. This decrease leads to the changes in the network 5 

structure and consequently the increase of the second objective function. In the other word, once a hub is 6 

disrupted, the process of the products is interrupted or done with lower speed; then the congestion is augmented 7 

in the hubs. This augmented congestion also increases the waiting time and the value of the second objective 8 

function.  9 

On the other hand, increase of the retrieve rate has inverse effect on the augmented congestion. Once the 10 

retrieve rate increases, the hub comes back to its designed processing condition and consequently the network 11 

structure is not exposed to any changes. Accordingly, managers should take the disruption of the hubs into 12 

account as an important non-parametric factor that affects the robustness of the network and try to control the 13 

failure rate and/or increase the retrieve rate of the hubs. Figure 11 summarizes the effect of input parameters in 14 

the model sensitivity and it can be figured out that through small or big variation, which parameters jeopardize 15 

the robustness of the solutions. 16 

Table 7. Objective & Model sensitivities to network disruption 17 

Parameter Change 
(%) 

Sensitivity (%) Parameter % of 
change 

Sensitivity (%) 
Objective increase Model Objective increase Model 
ℤ1 ℤ2 ℤ1 ℤ2 

�� 

5 0 5 4 

��  

5 11 15 12 
10 0 6 4 10 10 14 12 
20 2 8 6 20 9 12 10 
30 4 9 7 30 9 12 9 
40 4 11 8 40 8 12 9 
50 5 13 10 50 8 8 7 
60 7 14 12 60 8 8 6 
70 7 17 12 70 5 5 6 
80 9 18 15 80 3 4 5 
90 10 20 17 90 0 3 4 
100 11 22 19 100 0 3 2 

 18 

 19 

Figure 11. Model sensitivity vs. Parameter changes 20 
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differently, and thus products need to have different priorities. Priorities is usually divided into hot, rush and 1 

normal levels (Lee et al., 2008). A product with a higher priority spends shorter waiting time at hubs and should 2 

be processed before the lower priority products. In contrary, the products with lower priority need to wait until 3 

higher priority products finish their service and the servers become available.  4 

In this paper, we consider the products with multiple priorities in the hub-and-spoke network and figure 5 

out the impact product’s prioritization on the waiting time of products and particularly the second objective 6 

function. For this aim, a priority queuing system is developed for the hub network. All products keep their 7 

priority on all visiting hubs. In such a priority queueing system, we assume that an arriving product belongs to a 8 

priority class r (r = 1, 2, ..., R). The next product to be served is the customer with the highest priority r (e.g., a 9 

product with priority of �	has higher priority than a product with priority �� where �� > �). The products with the 10 

same priority are served upon their arrival to the hub. In addition, no preemption is allowed in the queuing 11 

system (i.e., the process of a product already in service is not preempted by an arriving product with higher 12 

priority). The mean waiting time for an arriving product p with priority level r at each hub consists of three 13 

components as (Bolch et al., 2006): 1) the mean remaining service time at hub k, ��̅, of the products in service (if 14 

any), 2) the mean service time of products in the queue with the same or higher priority as the tagged product, 15 

and 3) the mean service time of products with higher priority that arrive at the queue while the tagged product is 16 

in the queue and are served before it. 17 

For simplicity, we consider that each product has a unique priority and several products do not have the 18 

same priority (Zahiri et al., 2014; Vahdani and Mohammadi, 2015). Therefore, having P products in the system 19 

implies that we have also totally P classes of priority (i.e., R = P). We also consider that products are numbered 20 

based on their priority. For example, the product with the highest priority is 
 � 1, the product with the second 21 

highest priority is 
 � 2, and so on for other products. The mean waiting time of product p (with priority p) in 22 

hub k, '�
, can be then calculated as Equation (37). 23 

'�
 � ��̅>1 − Y�
?>1 − Y�
j+? ∀�, 
 (37) 

where Y�
 and ��̅ are calculated as Equations (38) and (39).  24 

Y�
 � 0P��4
�2
  ∀�, 
 (38) 

��̅ ≈ s�ℙ2�� 0P�� ��,��� ) ��,�����
 u�ℙ4
�2+  ∀� (39) 

 25 

This experiment is done on instance I4 containing three products and let’s name them as P1, P2 and P3. 26 

We consider that P1 has more priority than P2 and P2 has more priority than P3 and consequently P1 has higher 27 

priority comparing to P3. In Table 8, we investigate the impact of product prioritization on the product’s waiting 28 

time at hubs. For this aim, we increases the flow of products simultaneously to see how the increase of flow of 29 

the products with high priority affects the waiting time of the products with less priority.  30 

It can be seen from Table 8 that product prioritization in parallel with the flow increase catastrophically 31 

affects the second objective function and particularly the waiting time P2 and P3. The flow increase of 0% means 32 

that the flow of products is kept as the original generated flow of instance I4 and only the prioritization of the 33 

product is imposed to the model that leads to decrease in the waiting time of product P1 but increase in the 34 



29 

 

waiting time of products P2 and P3. These increase and decrease are proportional to the mean waiting time of 1 

each products before prioritization. In case of 5%, the same situation happens as the case of 0% but the value of 2 

increases are less than the case of 0% because the flow has been increased and this increase itself leads to higher 3 

congestion in the hubs and consequently higher mean waiting time in the hubs. 4 

By increasing the flow of P1 to 80%, the processing of P3 is blocked since there would be always a unit of 5 

P1 to be processed in a hub. This event happens for P2 when the flow of P1 increases up to 100%. On the other 6 

hand, the second objective function that attempts to minimize the maximum transportation time between each 7 

pair of OD spokes, increases exponentially even to infinity because of the infinite waiting time of P3. An 8 

interesting result is that prioritizing the products lead to decrease of the waiting time of P1 since it does not need 9 

to wait in the hubs in presence of other products. However, it should be noted that prioritizing in parallel with the 10 

products’ flow augmentation significantly decreases the performance of the hub-and-spoke network in terms of 11 

delivery time. 12 

 13 

 14 

Table 8. Objective & Model sensitivities to flow increase with product’s priority 15 

Flow increase (%) Waiting time increase (%)  Sensitivity (%) 
P1 P2 P3  Objective increase  Model 

 ℤ1 ℤ2  
0 -20 10 16  3 8  4 
5 -17 13 19  6 11  7 
10 -10 20 29  11 23  11 
20 -3 28 75  14 31  19 
30 1 41 142  20 84  21 
40 9 89 458  28 324  49 
50 14 148 1258  32 895  63 
60 28 215 8475  41 6794  74 
70 32 428 92187  41 85974  74 
80 38 782 Inf  41 Inf  74 
90 45 6587 Inf  41 Inf  74 
100 49 Inf Inf  41 Inf  74 

 16 

7. Conclusion 17 

In a hub-and-spoke network, commodities from different origin spokes are consolidated at hub facilities 18 

prior to be routed to an intermediate hub or to be delivered to their final destinations. The aggregation of 19 

commodities in the hub facilities allows the exploitation of scale economies due to the utilization of more 20 

efficient carriers with higher capacities on hub-to-hub connection links. Despite all advantages of economic 21 

scales, this exploitation may lead to commodity overload in a small number of hubs, or even result in heavy-22 

utilization of some hub-to-hub connections. This congestion becomes more critical for transportation companies 23 

that employs the hub-and-spoke network for shipment delivery. 24 

This paper addresses the single allocation multi-commodity hub-and-spoke network design under hub 25 

congestion. The network is modeled through a bi-objective non-linear mixed integer programming model with 26 

congestion in both hubs and hub-to-hub connection links. The proposed bi-objective model minimizes: 1) the 27 

total transportation cost and 2) the maximum transportation time between each pair of spokes. A novel 28 

aggregation model was developed based on a general GI/G/c queuing system to evaluate the congestion of the 29 

flow in the hubs. In addition, a stochastic traffic model was used to account for the congestion of flow traversing 30 

the hub-to-hub connection links.  31 



30 

 

For solving the model, a new hybrid metaheuristic algorithm was developed based on non-dominated 1 

sorting genetic algorithm-II (NSGA-II) and a learning-based Iterated Local Search (ILS). A �-means clustering 2 

method is used to link the NSGA-II and ILS to have a powerful search mechanism in terms of both 3 

diversification and intensification. The performance of the proposed hybrid algorithm was validated through a 4 

benchmark against classical NSGA-II and two new recently developed hybrid algorithms that employ machine 5 

learning to improve the performance of the metaheuristic algorithms to show how hybridization of a global 6 

search algorithm with a learning-based local search algorithm improves the performance of the searching 7 

process. It was observed that adding intelligence of machine learning methods to the metaheuristic algorithm and 8 

combining global search and local search algorithms result in high quality solutions even in reasonably low 9 

computational time.  10 

Finally, a comprehensive sensitivity analysis was conducted to test not only the sensitivity of the 11 

objective functions, but also the robustness of the solutions in terms of their structure. It was concluded that the 12 

second objective function is highly influenced by the structure of the network. Accordingly, companies whose 13 

most important objective is the transportation time should be more careful about the variation of those 14 

parameters/factors (i.e., transportation time, amount of flow and hub’s service rate) that affect the network 15 

structure.  16 

In addition, the sensitivity of the objective functions and the structure of the solutions was tested to hub 17 

disruption and products’ priority. Regarding the hub disruption, it was concluded that managers should take the 18 

disruption of the hubs into account as an important non-parametric factor that affects the robustness of the 19 

network and try to control the failure rate and/or increase the retrieve rate of the hubs. Regarding the products’ 20 

priority, it was observed that prioritizing of products in parallel with the products’ flow augmentation 21 

significantly decreases the performance of the hub-and-spoke network in terms of delivery time. Therefore, 22 

managers should be careful when prioritizing the products in a network where the flow has the possibility to be 23 

augmented.   24 

One of the main further research direction could be studying multiple allocation version of the hub-and-25 

spoke network and investigate if splitting the products and sending them to several hubs can reduce the 26 

congestion of the flow in the hubs. Regarding the solution approach, future research effort could be developing 27 

new hybrid algorithms that employs machine learning and powerful local search algorithms (e.g., ILS) not only 28 

as a posteriori method (e.g., proposed GAMLS algorithm), but also as an interactive way (Sun et al., 2019; 29 

Zhang et al., 2016). Such an algorithm is expected to be both intelligent in searching the solution space and 30 

powerful in diversification and intensification.  31 
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Appendix A 1 

 2 

Table A.1. Metaheuristics performance: CM, QM and Time 3 

Instance 

Comparison metric 

CM QM Time (s) 

GAMLS HEU1 HEU2 NSGA-II GAMLS HEU1 HEU2 NSGA-II Optimal GAMLS HEU1 HEU2 NSGA-II 
I1 1.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00 124 92 112 121 129 
I2 1.00 1.00 1.00 1.02 0.60 0.40 0.00 0.00 295 111 119 129 136 
I3 1.00 1.04 1.05 1.09 0.80 0.20 0.00 0.00 484 125 125 141 152 
I4 1.03 1.09 1.11 1.12 0.80 0.20 0.00 0.00 1286 132 142 166 174 
I5 1.05 1.12 1.14 1.18 0.90 0.10 0.00 0.00 3485 154 183 193 198 
I6 1.09 1.17 1.19 1.22 1.00 0.00 0.00 0.00 8976 177 192 210 219 
I7 1.10 1.20 1.24 1.29 1.00 0.00 0.00 0.00 12587 190 214 227 231 
I8 1.13 1.25 1.30 1.34 1.00 0.00 0.00 0.00 18654 219 234 239 242 
I9 - - - - 1.00 0.00 0.00 0.00 > 10h 228 261 279 289 
I10 - - - - 1.00 0.00 0.00 0.00 - 247 289 317 329 
I11 - - - - 1.00 0.00 0.00 0.00 - 273 316 359 364 
I12 - - - - 1.00 0.00 0.00 0.00 - 294 338 412 423 
I13 - - - - 1.00 0.00 0.00 0.00 - 312 386 439 452 
I14 - - - - 1.00 0.00 0.00 0.00 - 338 419 512 537 
I15 - - - - 1.00 0.00 0.00 0.00 - 384 459 549 589 
I16 - - - - 1.00 0.00 0.00 0.00 - 398 483 589 612 
I17 - - - - 1.00 0.00 0.00 0.00 - 419 528 629 699 
I18 - - - - 1.00 0.00 0.00 0.00 - 556 642 732 786 
I19 - - - - 1.00 0.00 0.00 0.00 - 649 829 896 923 
I20 - - - - 1.00 0.00 0.00 0.00 - 752 911 994 1112 

 4 

Table A.2. Optimal vs. GAMLS & NSGA-II: DM, SM and MID 5 

Instance Comparison metric 
DM SM MID 
Optimal GAMLS NSGA-II Optimal GAMLS NSGA-II Optimal GAMLS NSGA-II 

I1 1.41 1.52 1.19 0.54 0.44 0.61 0.72 0.59 1.05 
I2 1.22 1.35 1.29 0.64 0.27 0.53 0.71 0.68 0.82 
I3 1.09 1.25 1.20 0.72 0.41 0.52 0.81 0.61 1.19 
I4 1.26 1.29 1.09 0.59 0.24 0.45 0.67 0.67 1.18 
I5 1.23 1.45 1.13 0.78 0.35 0.62 0.62 0.49 0.86 
I6 1.41 1.47 0.95 0.53 0.48 0.46 0.73 0.67 1.11 
I7 1.03 1.51 1.08 0.67 0.38 0.45 0.68 0.48 0.61 
I8 1.31 1.48 1.13 0.73 0.24 0.48 0.63 0.47 0.93 
I9 - 1.34 1.25 - 0.48 0.46 - 0.45 0.78 
I10 - 1.51 0.91 - 0.23 0.62 - 0.42 1.12 
I11 - 1.14 0.86 - 0.36 0.64 - 0.44 0.85 
I12 - 1.52 0.89 - 0.33 0.54 - 0.43 0.92 
I13 - 1.51 0.84 - 0.23 0.51 - 0.51 1.19 
I14 - 1.42 1.15 - 0.33 0.61 - 0.47 0.64 
I15 - 1.48 1.16 - 0.38 0.67 - 0.51 1.04 
I16 - 1.58 1.28 - 0.36 0.65 - 0.69 1.15 
I17 - 1.55 0.88 - 0.41 0.46 - 0.68 1.02 
I18 - 1.43 1.03 - 0.39 0.77 - 0.56 1.09 
I19 - 1.47 0.86 - 0.29 0.67 - 0.61 0.89 
I20 - 1.33 1.19 - 0.33 0.58 - 0.70 0.99 
  6 
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Table A.3. GAMLS vs. HEU1 & HEU2: DM, SM and MID 1 

Instance Comparison metric 
DM SM MID 
GAMLS HEU1 HEU2 GAMLS HEU1 HEU2 GAMLS HEU1 HEU2 

I1 1.52 1.24 1.22 0.44 0.45 0.43 0.59 0.98 1.02 
I2 1.35 1.23 1.11 0.27 0.37 0.36 0.68 0.56 0.93 
I3 1.25 1.25 1.15 0.41 0.41 0.42 0.61 0.86 0.67 
I4 1.29 1.25 1.17 0.24 0.32 0.45 0.67 0.96 0.73 
I5 1.45 1.37 1.29 0.35 0.31 0.38 0.49 0.88 0.87 
I6 1.47 1.24 1.35 0.48 0.34 0.39 0.67 0.65 0.89 
I7 1.51 1.35 1.32 0.38 0.39 0.48 0.48 0.94 1.08 
I8 1.48 1.22 1.19 0.24 0.33 0.44 0.47 0.78 0.97 
I9 1.34 1.28 1.23 0.48 0.27 0.45 0.45 0.98 1.06 
I10 1.51 1.22 1.18 0.23 0.44 0.42 0.42 0.79 1.03 
I11 1.14 1.36 1.32 0.36 0.34 0.49 0.44 0.59 1.07 
I12 1.52 1.33 1.31 0.33 0.38 0.54 0.43 0.66 0.69 
I13 1.51 1.36 1.23 0.23 0.41 0.48 0.51 0.94 0.71 
I14 1.42 1.26 1.23 0.33 0.25 0.41 0.47 0.56 0.94 
I15 1.48 1.12 1.05 0.38 0.37 0.57 0.51 0.85 0.86 
I16 1.58 1.28 1.14 0.36 0.45 0.49 0.69 0.78 0.71 
I17 1.55 1.34 1.25 0.41 0.43 0.45 0.68 0.92 1.05 
I18 1.43 1.42 1.24 0.39 0.34 0.45 0.56 0.87 0.67 
I19 1.47 1.15 1.11 0.29 0.31 0.37 0.61 0.61 0.83 
I20 1.33 1.29 1.27 0.33 0.35 0.36 0.70 0.96 0.85 
 2 
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