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A B S T R A C T

Breast cancer screening benefits from the visual analysis of multiple views of routine mammograms. As for clinical practice, computer-aided diagnosis (CAD) systems could be enhanced by integrating multi-view information. In this work, we propose a new multi-tasking framework that combines craniocaudal (CC) and mediolateral-oblique (MLO) mammograms for automatic breast mass detection. Rather than addressing mass recognition only, we exploit multi-tasking properties of deep networks to jointly learn mass matching and classification, towards better detection performance. Specifically, we propose a unified Siamese network that combines patch-level mass/non-mass classification and dual-view mass matching to take full advantage of multi-view information. This model is exploited in a full image detection pipeline based on You-Only-Look-Once (YOLO) region proposals. We carry out exhaustive experiments to highlight the contribution of dual-view matching for both patch-level classification and examination-level detection scenarios. Results demonstrate that mass matching highly improves the full-pipeline detection performance by outperforming conventional singletask schemes with 94.78% as Area Under the Curve (AUC) score and a classification accuracy of 0.8791. Interestingly, mass classification also improves the performance of mass matching, which proves the complementarity of both tasks. Our method further guides clinicians by providing accurate dual-view mass correspondences, which suggests that it could act as a relevant second opinion for mammogram interpretation and breast cancer diagnosis.

Introduction 1

Breast cancer is the second most common cause of cancer-2 related deaths in women [START_REF] Rakhlin | Deep convolutional neural networks for breast cancer histology image analysis[END_REF], responsible for 3 25% of cancer cases and 15% of cancer deaths (Torre et al.,4 2017). Mammography is the main imaging modality used to 5 detect breast abnormalities at early stage. Standard mammog-6 raphy views are bilateral craniocaudal (CC), extracted from 7 tection and classification of lesions such as masses, calcifications, asymmetry or distortions. Among those abnormalities, masses are the most important clinical symptoms of carcinomas. Characterized by medium gray to white regions within the breast area, masses exhibit a great diversity of size, shape (irregular, oval, lobulated, round), contours (circumscribed, illdefined, spiculated, obscured) and texture [START_REF] Yan | Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in high-resolution mammograms[END_REF].

Mammogram analysis is usually performed manually by a radiologist. This task is time-consuming and prone to strong inter-expert variability (Hamidinekoo et al., 2018). Moreover, it is difficult and impractical for clinicians to perform double reading in most screening situations. This leads to a considerable amount of patients which are given heavy treatments by mistake (Myers et al., 2015). Computer-aided diagnosis (CAD) systems have been designed for supplemental lesion detection, classification and segmentation purposes. However, conventional CAD systems for mammogram interpretation are inefficient and not automatic enough to significantly improve diagnosis performance (Lehman et al., 2015). The use of multi-view contexts is a known weakness of current CAD technology.

In recent years, deep learning has achieved remarkable breakthroughs in medical image analysis through convolutional neural networks (CNN). Deep models have shown the most promising performance in recent breast cancer mammographyrelated competitions (Hamidinekoo et al., 2018). CAD systems that employ deep learning demonstrate stronger robustness in clinical implementation than traditional methodologies. The main advantage lies in avoiding the need of hand-crafted features and automatically learning representative features directly from data. Nevertheless, breast mass detection and classification are still open issues due to the strong variations in mass appearance [START_REF] Yan | Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in high-resolution mammograms[END_REF]. It remains therefore difficult to distinguish a mass from its surrounding healthy tissues. Some studies (Geras et al., 2017;[START_REF] Zhu | Deep multi-instance networks with sparse label assignment for whole mammogram classification[END_REF][START_REF] Zhang | Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks[END_REF][START_REF] Shen | Deep learning to improve breast cancer detection on screening mammography[END_REF] focus on whole mammograms which simplify such complex problem by providing a unique image-level label (normal, benign or malignant). The drawback is that it avoids conducting a comprehensive analysis comprising lesion types and locations. Other works are mostly region-based methods [START_REF] Wang | Breast mass classification via deeply integrating the contextual information from multi-view data[END_REF]Choukroun et al., 2017;Arevalo et al., 2015;Lévy and Jain, 2016;[START_REF] Zhou | Mammogram classification using convolutional neural networks[END_REF], where images are first decomposed into regions to further distinguish normal from abnormal tissues. However, most of the above methods use single-view mammograms only, thus neglecting the rich information that can be extracted from multi-view images.

To address the limitation of single-view processing, we aim at taking advantage of information arising from CC and MLO mammograms, as do clinicians when making decisions in clinical practice [START_REF] Vijayarajan | Breast cancer segmentation and detection using multi-view mammogram[END_REF]. There 2019) developed an end-to-end mass detection framework using a patch-level classification approach. However, the above methods only exploit single-view mammograms, and therefore neglect the rich information arising from multi-view images which appears as essential to improve breast cancer diagnosis.

Multi-view mammography analysis

To address the single-view interpretation issue, a growing number of works focus on multi-view information fusion. Vijayarajan and Jaganathan (2014) extracted 2D features from whole mammograms, obtained the locations from CC and MLO views and merged this information to get a 3D view of the mass location. Carneiro et al. (2015) trained a separate CNN model for each view and finally applied a CNN classifier that estimates the BI-RADS score using features learned from unregistered CC and MLO mammograms, as well as respective mass delineations. Geras et al. (2017) proposed to apply a CNN model separately to each view to obtain view-specific representations for further classification purposes. All the above studies are designed based on whole mammograms. However, there may be multiple different benign or malignant masses in a given examination. In order to simplify the complex analysis of whole mammograms, some studies assign a unique label (benign, malignant or normal) to the whole image. The drawback is that it avoids conducting a comprehensive analysis of each mammogram, comprising lesion types and locations.

Patch-based matching

Patch-based image matching has been extensively used in computer vision. Han et al. (2015) presented MatchNet, a deep convolutional approach based on Siamese networks for patchbased matching between two images I 1 and I 2 . The MatchNet architecture consists of a feature network followed by a metric network. The former is a "two-tower" structure network which jointly processes two patches (one extracted from I 1 , another from I 2 ) and maps them to a feature representation. The latter models the similarity between the paired features through fully-connected (FC) layers and a softmax layer to get a matching score. [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF] are similar and 0 otherwise. m > 0 is a margin that defines a radius: dissimilar pairs contribute to the loss only if their distance is within this radius. N is the number of samples. Unlike conventional learning systems where the loss function is a sum over samples, the contrastive loss runs over pairs of feature vectors { f 1 , f 2 } such that there is no more need for FC and softmax layers. Moreover, compared to cross-entropy which learns the patch "match" or "not match" in an inexplicable manner, the contrastive loss optimizes the mass matching task by manipulating the distance between pairs in feature space. Therefore, the contrastive loss is more in line with matching requirements than binary sample classification. The loss function L mat (Eq.1)

279 L mat (Y, X 1 , X 2 ) = 1 2N N n=1 Y D 2 W + (1 -Y) max (m -D W , 0) 2 (1) 280 where D W (X 1 , X 2 ) = f 1 -f 2 2
is minimized using stochastic gradient descent (SGD). 
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In what follows, we present the datasets used in this study in 435

Improvements obtained by VGG16 using the contrastive loss 436 are also significant (acc = 0.9084, p < 1e -6 ), followed by 437 ResNet50 (acc = 0.9049), InceptionV3 (acc = 0.90) and

438

EfficientNet-B3 (acc = 0.8979), showing that using deeper 439 networks is not necessary to reach better performance. 
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In particular, it displays the best TPR@FPavg score achieved et al., 2012) between the proposed method (CMCNet with VGG16 and contrastive loss) and state-of-the-art approaches.

44 patches can be further eliminated because there is no corre-565 sponding detection in the other view. These results confirm that 566 our contributions can also provide reliable detection results in a 567 setup more similar to a screening process in real life. 

  is a huge potential to improve the performance of CAD systems by integrating information from paired views. The concept of multiview information fusion was recently introduced to improve the performance of detection, classification or content-based mammogram retrieval tasks (Jouirou et al., 2019). Several multiview fusion schemes learn on full images from each view separately and concatenate respective features afterwards. (Geras et al., 2017) proposed to apply CNN models to each view sepa-rately to obtain view-specific representations for further classi-76 fication purposes. Nevertheless, such late-fusion schemes only 77 exploit image-level view-specific representations. 78 Alternatively, we propose a novel multi-tasking Siamese 79 deep model that combines CC and MLO mammograms to im-80 prove breast mass detection. A Siamese model includes two 81 identical sub-networks with shared weights, such that features 82 from two different input images can be extracted simultane-83 ously. Previous related works (Ma et al., 2019; Perek et al., 84 2018) also employ Siamese networks (Koch et al., 2015) for 85 multi-view study. However, these are single-task studies ded-86 icated to mass detection (Ma et al., 2019) or mass matching 87 (Perek et al., 2018) only. To design a more comprehensive and 88 efficient CAD system, we aim at exploiting the multi-tasking 89 properties of deep CNN. Multi-task learning processes multi-90 ple tasks jointly with many advantages such as saving computa-91 tion time and resources as well as improving robustness against 92 overfitting (Ruder, 2017). The network parameters from feature 93 extraction layers are updated through the optimization of a com-94 bined loss dealing with both mass/non-mass classification and 95 matching. Contrary to (Ma et al., 2019; Perek et al., 2018), our 96 method can provide both classification and matching results. 97 Specifically, our contributions are two-folds. First, we propose 98 a new deep learning algorithm that capitalizes on multi-view fu-99 sion and multi-task learning to improve breast mass detection. 100 To the best of our knowledge, our framework is the first that ex-101 ploits multi-tasking abilities of deep learning models to improve 102 mass detection using multi-view matching. Second, we conduct 103 a comprehensive evaluation of various networks towards multi-104 task learning on public datasets. Both quantitative and visual 105 results prove the effectiveness of the proposed strategy. 106 This paper is organized as follows. We present background 107 material and previous works related to mass classification, de-108 tection and matching using deep learning in Sect.2. Sect.3 fo-109 cuses on our methodology for jointly learning mass/non-mass 110 classification and matching. Sect.4 reports and discusses exper-111 imental results extending a preliminary study presented in (Yan 112 et al., 2020a). We end up with conclusions in Sect.5. have shown impressive performance 116 in medical image applications. CNN models make it possible 117 to automatically extract and learn features without feature en-118 gineering. Several works have started to explore deep learn-119 ing for mass detection and classification. Arevalo et al. (2015) 120 applied a hybrid approach in which CNNs are used to learn 121 the feature representation in a supervised way. Zhou et al. 122 (2017) analyzed the effectiveness of CNN in abnormality de-123 tection and classified lesions as benign or malignant. Lévy 124 and Jain (2016) evaluated three different CNN architectures in-125 cluding shallow CNN, AlexNet (Krizhevsky et al., 2012) and 126 GoogLeNet (Szegedy et al., 2015) for breast mass classifica-127 tion and further studied the performance reached by each archi-128 tecture. Afterwards, Zhu et al. (2017) conducted benign/malign mass classification based on whole mammograms using an endto-end deep multi-instance network without any detection or segmentation annotations for training. Dhungel et al. (2017) proposed an integrated cascade of deep belief networks and gaussian mixture models to provide mass candidates, followed by cascades of CNN and random forest classifiers to refine detection results. Agarwal et al. (

  Fig. 1. Proposed multi-tasking deep pipeline. In images, green contours indicate ground truth delineations, red (yellow) boxes indicate false (true) detections.

  represents the Euclidean dis-281 tance between two sample features f 1 and f 2 . Y is the label 282 of whether the two samples match. Y = 1 if the two samples

Fig. 3 .

 3 Fig. 3. The proposed Combined Matching and Classification Network (CMCNet). Green (red) patches correspond to positive (negative) samples.

  classification and dual-view matching are two tasks of a very different nature. The challenge is thus to learn generic features for both tasks. We propose to exploit Siamese networks towards simultaneous deep patch-level matching and classification. In this direction, we design a multi-tasking learning model (Fig.3) referred as Combined Matching and Classification Network (CMCNet). Positive and negative patch samples of CC/MLO views arising from YOLOv3 detector are fed into the two-branch feature network (Fig.3-A) to compute robust patch representations. Apart from the matching network (Sect.3.2, Fig.3-B), we incorporate into the pipeline two branches (Fig.3-C) for CC/MLO mass classification purposes.Each of these branches has its own FC layers. We not only jointly learn representations from the two views but also simultaneously learn matching and classification tasks to exploit the potential relationship between view-points.The combined learning of classification and matching refers to the idea of multi-task learning which has been proven to improve learning efficiency and generalization performance of task-specific models. We expect thus that the dual-view matching task can improve the robustness of mass classification, towards better predictive results than classification-only strategies. The designed loss L is the sum of three losses to optimize the entire CMCNet parameters through SGD: 321 L = αL cls,CC + βL cls,MLO + γL mat (2) 322 where L cls,CC and L cls,MLO represent the classification loss 323 (cross-entropy) for CC and MLO view respectively. L mat is the 324 matching loss which can be cross-entropy or contrastive loss 325 (Eq.1). α, β and γ are coefficients balancing the loss terms.
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  413 et al., 2015) and trained using the SGD optimizer. Optimal 414 hyper-parameters vary depending on the network. For loss 415 functions, we choose α = β = 1 and γ = 1 for cross-entropy 416 and γ = 0.1 and margin m ∈ {5, 10, 15} for contrastive loss 417 (Eq.1). The detailed hyper parameters used are shown in Tab.2. learning versus classification-only. Classification 421 performances are measured using classification accuracy (acc). 422 We calculate the accuracy of each view separately and collec-423 tively. The statistical significance of the multi-tasking model 424 with respect to the classification-only baseline is estimated 425 using Student's t-tests (Tab.3). Overall, we observe better 426 classification results on MLO than on CC views. In most 427 cases, multi-tasking models that combine classification and 428 matching are better than classification-only from 2% to 4% in 429 accuracy with statistical significance (p < 0.05), which reflects 430 the benefits of dual-view matching. Except for ResNet101, 431 we obtain slight gains with the contrastive loss compared to 432 cross-entropy. The difference between networks is not obvious. 433 ResNet101 achieves the best overall accuracy with statistical 434 significance (acc = 0.9098, p = 0.007 compared to baseline).

Fig. 2 .

 2 scheme refers to the matching Siamese network illustrated in 496

  et al. (2020b) and Dhungel et al. (2017) obtaining respectively 0.94@0.22 and 0.95@5, while additionally providing accurate dual-view mass correspondences. Evaluation is supplemented with qualitative results on full mammograms (Fig.4). The additional classification stage (b) helps in eliminating most of false YOLO detections (a). The improvement reached by the combined model (c) compared to the classification-only scheme (b) is highlighted with further wrong proposal removals. For instance, in Fig.4 (2), the number of false positive detections decreased from 7 to 1 from (a) to (b) and further decreased to 0 without any false negatives. In addition, the combined model (c) also successfully identifies the matching patches in both views, which can provide clinicians with reference to further rule out false positives that are difficult to detect, as in Fig.4 (4). Fig.4 demonstrates that variable mass sizes and shapes can be correctly managed. All these findings suggest that exploiting multi-view relationships and multi-tasking learning can greatly guide mammogram interpretation, towards better breast cancer diagnosis and management. Closer to clinical screening conditions. To evaluate the inci-546 dence of false positives under closer to clinical breast screening 547 conditions, a test set of normal mammograms (without masses) 548 has been considered to evaluate our method. Among the 410 549 INbreast mammograms, 60 CC/MLO image pairs that contain 550 no mass were found. Coarse mass detections are firstly per-551 formed on these normal images to generate candidate patches. 552 We use YOLOv3 pre-trained on ImageNet and fine-tuned on 553 1514 DDSM-CBIS images. Then, a small threshold (10 -3 ) is 554 applied on detection probabilities to ensure that enough predic-555 tions from YOLOv3 are selected. We finally obtain 646 can-556 didates patches (374 from CC view, 410 from MLO view), la-557 beled as negative. Then, candidate patches from two views of 558 the same patient are given as inputs of the two branches of our 559 Siamese model for mass/non-mass classification and matching. 560 We finally obtained 56 false positive predictions whereas 590 561 true negatives were detected. Accordingly, the obtained speci-562 ficity was 0.9133. Concerning the 56 false positive detections, 563 only 6 pairs were considered as matched pairs. Thus, the other
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  In this paper, we propose a novel multi-tasking approach 570 that combines breast mass/non-mass classification with dual-571 view mass matching between complementary CC/MLO mam-572 mograms. We prove the effectiveness of integrating multi-view 573 information within the breast mass detection pipeline by ex-574 tensive experiments on public datasets. Based on Siamese net-575 works and contrastive learning, our method generalizes well us-576 ing different deep networks and shows impressive results as an 577 integrated CAD system. We can thus easily address the prob-578 lem of false detections without struggling with difficult whole-579 image detection schemes. More globally, the proposed contri-580 butions pave the way for robust automatic second opinions in 581 breast cancer diagnosis. 582 Even if multiple masses can still be detected using the classi-583 fication network, dealing with more than one mass with respect 584 to matching purposes should deserve further investigation. In 585 future works, our framework could also be extended by associ-586 ating detection and matching with segmentation techniques to 587 further guide clinicians in their interpretation tasks. Further-588 more, it is essential to push further data fusion by extracting 589 and integrating both multi-view and longitudinal information.

Table 1 .

 1 Data distribution setting for experiments. Each cell has the following format: number of positive samplings / number of negative samplings.

	338	
	339	-INbreast (Moreira et al., 2012) has a total of 410 mammo-
	340	grams from 115 examinations, with four images per case
	341	corresponding to the four standard views used in screening
	342	mammography: R-CC, L-CC, R-MLO, and L-MLO where
	343	L and R stand respectively for left and right. Four types of
	344	lesions (masses, calcifications, asymmetry and distortions)
	345	are included but only 107 images contain masses for which
		accurate contours made by specialists are provided. In this

328 Sect.4.1. Sect.4.2 reports the experimental settings. We evalu-329 ate the proposed approach both quantitatively and qualitatively 330 in Sect.4.3. Deep models for patch classification and match-331 ing are implemented using pytorch. Experiments are performed 332 with a single Nvidia GeForce GTX 1080Ti GPU (11GB/s).

333 4.1. Imaging datasets 334 We focus on mass detection from high-resolution 2048×1024 335 mammograms arising from two publicly-available mammo-336 gram datasets: INbreast (Moreira et al., 2012) and DDSM-337 CBIS (Lee et al., 2017). Here are the dataset characteristics: 346 work, we selected 35 CC/MLO pairs (70 images) out of 347 107 examinations with mass. 348 -DDSM-CBIS (Digital Database for Screening Mammog-349 raphy) (Lee et al., 2017) is a larger database which con-350 tains approximately 2,500 mammograms including nor-351 mal, benign, and malignant cases with verified pathology 352 information and coarse ground truth manual delineations.

Table 2 .

 2 Optimal hyper-parameters used for each deep network.

			394	match. The detailed data distribution is shown in Tab.1 for both
			395	DDSM-CBIS and INbreast datasets.
			396	
			397	Training patch-level classification and matching. As a
			398	proof of concept, we conduct experiments using various model
			399	backbones for the feature network: VGG16 (Simonyan and
			400	Zisserman, 2014), ResNet50, ResNet101 (He et al., 2016), In-
			401	ceptionV3 (Szegedy et al., 2016) and EfficientNet (Tan and Le,
			402	2019). The feature size varies depending on the model used.
			403	Let M be the number of feature map channels and B denote
			404	the batch size. The FC layers of each classification branch
			405	will turn the input vector (B, M) into (B, 2) and pass it to the
			406	Softmax layer to transfer logits into probabilistic predictions.
			407	The input of the metric network (Fig.3-B) is the concate-
			408	nation of two feature vectors. For VGG16, M = 512. For
			409	ResNet50 and ResNet101, M = 2048. For EfficientNet, it has
	354	In this work, we selected 586 pairs of CC/MLO mammo-	410	8 pre-trained models from EfficientNet-B0 to B7 where M is
		grams (1172 images).		respectively {1280, 1280, 1408, 1536, 1792, 2048, 2304, 2560}.
	366			
	367	from the original image (4084×3328 or 3328×2560) and resize		
		the remaining area to 2048×1024.		
	375			
	376	data sampling is conducted as follows. For classification		
	377	training, positive samples are taken according to provided		
	378	ground truth masks, while negative patches are generated by		
	379	YOLOv3 (Sect.3.1). In particular, we randomly generate K		
	380	patches per image with an intersection over union (IoU) with		
	381	respect to the ground truth box larger than 0.5. In practice,		
	382	K = 5 (respectively 10) for DDSM-CBIS (INbreast) since the		
	383	INbreast dataset is much smaller. Likewise, we choose K		
	384	negative patches from false YOLO predictions. We thus use		
		a very small threshold (<10 -4 ) on detection probabilities to		
	393			

355

During training, the principle followed for CC/MLO pair se-356 lection is that both views should contain only one mass. The 357 reason is that if the image contains two or more masses, multi-358 view correspondences become unknown without the help of an 359 expert. Accordingly, the existence of a single pair is the only 360 data selection criterion for training. However, this is not a lim-361 itation for inference or clinical use. Among the 586 DDSM-362 CBIS pairs, 80% are used for training and the remaining 20% 363 for validation. The 35 INbreast pairs are only used in the testing 364 stage since it is too small to be representative as training data. 365 The only pre-processing step is to crop most of the blank area 368 4.2. Experimental settings 369 Data sampling and augmentation. In our multi-task frame-370 work, sampling in training is crucial. However, regions of 371 healthy tissues in a whole mammogram are much larger than 372 the mass areas, leading to inevitable false positive YOLOv3 373 proposals. Similarly, sample imbalance can make the deep 374 classification model very biased. To minimize these effects, 385 retain as many predictions as possible and select the K false 386 candidates with the highest scores. All patches are resized to 387 64 × 64 pixels, as in Han et al. (2015) and Perek et al. (2018). 388 Random rotations of 25 degree, random horizontal flips and 389 random resized crops are applied for data augmentation. For 390 matching, we consider a pair of positive patches of the same 391 mass from the two views as a matching sample. If one of the 392 patches is labeled negative, they are considered as a negative 411 All deep models are initialized using pre-trained weights 412 (Litjens et al., 2017) from the ImageNet dataset (Russakovsky

Table 3 .

 3 Multi-task learning (with cross-entropy and contrastive losses) versus classification-only. Results include CC, MLO and overall classification accuracy (acc) as well as statistical significance p-values with respect to the classification-only baseline. Best results per network are in bold.

	Network	matching matching loss CC acc MLO acc overall acc p-value
	VGG16 (Simonyan and Zisserman, 2014)	× √ √	-cross-entropy contrastive	0.8558 0.8796 0.9061	0.8857 0.9163 0.9156	0.8699 0.8958 0.9084	-<1e -6 <1e -6
	ResNet50 (He et al., 2016)	× √ √	-cross-entropy contrastive	0.8517 0.8958 0.9010	0.9034 0.9116 0.9122	0.8734 0.9014 0.9049	-4e -4 <1e -6
	ResNet101 (He et al., 2016)	× √ √	-cross-entropy contrastive	0.8680 0.8980 0.8891	0.9097 0.9265 0.9252	0.8823 0.9098 0.9049	-0.007 0.003
	InceptionV3 (Szegedy et al., 2016)	× √ √	-cross-entropy contrastive	0.8238 0.8776 0.8946	0.8980 0.9184 0.9095	0.8601 0.8972 0.9000	-<1e -6 4e -4
	EfficientNet-B3 (Tan and Le, 2019)	× √ √	-cross-entropy contrastive	0.8701 0.8748 0.8830	0.8803 0.9116 0.9163	0.8741 0.8923 0.8979	-0.065 <1e -6

440 441 Full detection pipeline. To further prove the effectiveness 442 of our method, we conduct experiments with a full detection 443 pipeline. Instead of extracting positive candidates using ground 444 truth mass delineations while using YOLO as a negative patch 445 generator, we use YOLO to generate all candidate patches. 446 Specifically, coarse mass YOLO detections (Yan et al., 447 2020b) are performed on INbreast images to generate testing 448 samples. YOLO is pre-trained on ImageNet and fine-tuned on

Table 4 .

 4 Full detection pipeline results including overall classification accuracy (acc), AUC scores, statistical significance p-values of AUC scores with respect to the classification-only baseline, as well as inference times per image. Best results per network are in bold.

	520	
	521	using Agarwal et al. (2019): 0.74@0.99. The best TPR@FPavg
	522	score (0.96@0.23) is reached by the proposed framework (CM-
	523	CNet with VGG16 and contrastive loss). It outperforms the
	524	classification-only model (0.89@0.29) and shows consistent
	525	performance with respect to existing approaches such as Yan

Table 5 .

 5 Mass matching AUC with the proposed multi-task learning (with cross-entropy and contrastive losses) versus matching-only schemes including[START_REF] Perek | Mammography dual view mass correspondence[END_REF]. Best results per network are in bold.

Table 6 .

 6 Final detection performance comparisons on INbreast (Moreira
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