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aInserm, LaTIM UMR 1101, 22 rue Camille Desmoulins, 29238 Brest, France
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A B S T R A C T

Breast cancer screening benefits from the visual analysis of multiple views of routine
mammograms. As for clinical practice, computer-aided diagnosis (CAD) systems could
be enhanced by integrating multi-view information. In this work, we propose a new
multi-tasking framework that combines craniocaudal (CC) and mediolateral-oblique
(MLO) mammograms for automatic breast mass detection. Rather than addressing
mass recognition only, we exploit multi-tasking properties of deep networks to jointly
learn mass matching and classification, towards better detection performance. Specifi-
cally, we propose a unified Siamese network that combines patch-level mass/non-mass
classification and dual-view mass matching to take full advantage of multi-view in-
formation. This model is exploited in a full image detection pipeline based on You-
Only-Look-Once (YOLO) region proposals. We carry out exhaustive experiments to
highlight the contribution of dual-view matching for both patch-level classification and
examination-level detection scenarios. Results demonstrate that mass matching highly
improves the full-pipeline detection performance by outperforming conventional single-
task schemes with 94.78% as Area Under the Curve (AUC) score and a classification
accuracy of 0.8791. Interestingly, mass classification also improves the performance of
mass matching, which proves the complementarity of both tasks. Our method further
guides clinicians by providing accurate dual-view mass correspondences, which sug-
gests that it could act as a relevant second opinion for mammogram interpretation and
breast cancer diagnosis.

c© 2021 Elsevier B. V. All rights reserved.

1. Introduction1

Breast cancer is the second most common cause of cancer-2

related deaths in women (Rakhlin et al., 2018), responsible for3

25% of cancer cases and 15% of cancer deaths (Torre et al.,4

2017). Mammography is the main imaging modality used to5

detect breast abnormalities at early stage. Standard mammog-6

raphy views are bilateral craniocaudal (CC), extracted from7

∗Corresponding author: Tel.: +33-229-001-411;
E-mail: pierre-henri.conze@imt-atlantique.fr (P.-H. Conze)

top-down, and mediolateral-oblique (MLO), an oblique view8

taken under 45◦. These two views comprise routine screen-9

ing mammography. Dual-view analysis is an effective way for10

clinicians to reduce both morbidity and mortality associated11

with breast cancer (Jørgensen and Bewley, 2015). Examining12

the correspondence between suspicious findings in multiples13

views enables radiologists to improve interpretations (Vijayara-14

jan and Jaganathan, 2014). Compared to single-view screen-15

ing, the clinical use of dual-view techniques therefore reduces16

false-positive cases and improves cancer detection rates (War-17

ren et al., 1996). This analysis is mainly related to the de-18
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tection and classification of lesions such as masses, calcifica-19

tions, asymmetry or distortions. Among those abnormalities,20

masses are the most important clinical symptoms of carcino-21

mas. Characterized by medium gray to white regions within22

the breast area, masses exhibit a great diversity of size, shape23

(irregular, oval, lobulated, round), contours (circumscribed, ill-24

defined, spiculated, obscured) and texture (Yan et al., 2019).25

Mammogram analysis is usually performed manually by a26

radiologist. This task is time-consuming and prone to strong27

inter-expert variability (Hamidinekoo et al., 2018). Moreover,28

it is difficult and impractical for clinicians to perform double29

reading in most screening situations. This leads to a consider-30

able amount of patients which are given heavy treatments by31

mistake (Myers et al., 2015). Computer-aided diagnosis (CAD)32

systems have been designed for supplemental lesion detection,33

classification and segmentation purposes. However, conven-34

tional CAD systems for mammogram interpretation are inef-35

ficient and not automatic enough to significantly improve diag-36

nosis performance (Lehman et al., 2015). The use of multi-view37

contexts is a known weakness of current CAD technology.38

In recent years, deep learning has achieved remarkable39

breakthroughs in medical image analysis through convolutional40

neural networks (CNN). Deep models have shown the most41

promising performance in recent breast cancer mammography-42

related competitions (Hamidinekoo et al., 2018). CAD systems43

that employ deep learning demonstrate stronger robustness in44

clinical implementation than traditional methodologies. The45

main advantage lies in avoiding the need of hand-crafted fea-46

tures and automatically learning representative features directly47

from data. Nevertheless, breast mass detection and classifica-48

tion are still open issues due to the strong variations in mass49

appearance (Yan et al., 2019). It remains therefore difficult to50

distinguish a mass from its surrounding healthy tissues. Some51

studies (Geras et al., 2017; Zhu et al., 2017; Zhang et al., 2018;52

Shen et al., 2019) focus on whole mammograms which sim-53

plify such complex problem by providing a unique image-level54

label (normal, benign or malignant). The drawback is that it55

avoids conducting a comprehensive analysis comprising lesion56

types and locations. Other works are mostly region-based meth-57

ods (Wang et al., 2018; Choukroun et al., 2017; Arevalo et al.,58

2015; Lévy and Jain, 2016; Zhou et al., 2017), where images59

are first decomposed into regions to further distinguish normal60

from abnormal tissues. However, most of the above methods61

use single-view mammograms only, thus neglecting the rich in-62

formation that can be extracted from multi-view images.63

To address the limitation of single-view processing, we aim64

at taking advantage of information arising from CC and MLO65

mammograms, as do clinicians when making decisions in clini-66

cal practice (Vijayarajan and Jaganathan, 2014). There is a huge67

potential to improve the performance of CAD systems by inte-68

grating information from paired views. The concept of multi-69

view information fusion was recently introduced to improve the70

performance of detection, classification or content-based mam-71

mogram retrieval tasks (Jouirou et al., 2019). Several multi-72

view fusion schemes learn on full images from each view sep-73

arately and concatenate respective features afterwards. (Geras74

et al., 2017) proposed to apply CNN models to each view sepa-75

rately to obtain view-specific representations for further classi-76

fication purposes. Nevertheless, such late-fusion schemes only77

exploit image-level view-specific representations.78

Alternatively, we propose a novel multi-tasking Siamese79

deep model that combines CC and MLO mammograms to im-80

prove breast mass detection. A Siamese model includes two81

identical sub-networks with shared weights, such that features82

from two different input images can be extracted simultane-83

ously. Previous related works (Ma et al., 2019; Perek et al.,84

2018) also employ Siamese networks (Koch et al., 2015) for85

multi-view study. However, these are single-task studies ded-86

icated to mass detection (Ma et al., 2019) or mass matching87

(Perek et al., 2018) only. To design a more comprehensive and88

efficient CAD system, we aim at exploiting the multi-tasking89

properties of deep CNN. Multi-task learning processes multi-90

ple tasks jointly with many advantages such as saving computa-91

tion time and resources as well as improving robustness against92

overfitting (Ruder, 2017). The network parameters from feature93

extraction layers are updated through the optimization of a com-94

bined loss dealing with both mass/non-mass classification and95

matching. Contrary to (Ma et al., 2019; Perek et al., 2018), our96

method can provide both classification and matching results.97

Specifically, our contributions are two-folds. First, we propose98

a new deep learning algorithm that capitalizes on multi-view fu-99

sion and multi-task learning to improve breast mass detection.100

To the best of our knowledge, our framework is the first that ex-101

ploits multi-tasking abilities of deep learning models to improve102

mass detection using multi-view matching. Second, we conduct103

a comprehensive evaluation of various networks towards multi-104

task learning on public datasets. Both quantitative and visual105

results prove the effectiveness of the proposed strategy.106

This paper is organized as follows. We present background107

material and previous works related to mass classification, de-108

tection and matching using deep learning in Sect.2. Sect.3 fo-109

cuses on our methodology for jointly learning mass/non-mass110

classification and matching. Sect.4 reports and discusses exper-111

imental results extending a preliminary study presented in (Yan112

et al., 2020a). We end up with conclusions in Sect.5.113

2. Related works114

2.1. Mass detection and classification115

Deep learning methods have shown impressive performance116

in medical image applications. CNN models make it possible117

to automatically extract and learn features without feature en-118

gineering. Several works have started to explore deep learn-119

ing for mass detection and classification. Arevalo et al. (2015)120

applied a hybrid approach in which CNNs are used to learn121

the feature representation in a supervised way. Zhou et al.122

(2017) analyzed the effectiveness of CNN in abnormality de-123

tection and classified lesions as benign or malignant. Lévy124

and Jain (2016) evaluated three different CNN architectures in-125

cluding shallow CNN, AlexNet (Krizhevsky et al., 2012) and126

GoogLeNet (Szegedy et al., 2015) for breast mass classifica-127

tion and further studied the performance reached by each archi-128

tecture. Afterwards, Zhu et al. (2017) conducted benign/malign129
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mass classification based on whole mammograms using an end-130

to-end deep multi-instance network without any detection or131

segmentation annotations for training. Dhungel et al. (2017)132

proposed an integrated cascade of deep belief networks and133

gaussian mixture models to provide mass candidates, followed134

by cascades of CNN and random forest classifiers to refine de-135

tection results. Agarwal et al. (2019) developed an end-to-end136

mass detection framework using a patch-level classification ap-137

proach. However, the above methods only exploit single-view138

mammograms, and therefore neglect the rich information aris-139

ing from multi-view images which appears as essential to im-140

prove breast cancer diagnosis.141

2.2. Multi-view mammography analysis142

To address the single-view interpretation issue, a growing143

number of works focus on multi-view information fusion. Vi-144

jayarajan and Jaganathan (2014) extracted 2D features from145

whole mammograms, obtained the locations from CC and MLO146

views and merged this information to get a 3D view of the mass147

location. Carneiro et al. (2015) trained a separate CNN model148

for each view and finally applied a CNN classifier that estimates149

the BI-RADS score using features learned from unregistered150

CC and MLO mammograms, as well as respective mass delin-151

eations. Geras et al. (2017) proposed to apply a CNN model152

separately to each view to obtain view-specific representations153

for further classification purposes. All the above studies are154

designed based on whole mammograms. However, there may155

be multiple different benign or malignant masses in a given ex-156

amination. In order to simplify the complex analysis of whole157

mammograms, some studies assign a unique label (benign, ma-158

lignant or normal) to the whole image. The drawback is that it159

avoids conducting a comprehensive analysis of each mammo-160

gram, comprising lesion types and locations.161

2.3. Patch-based matching162

Patch-based image matching has been extensively used in163

computer vision. Han et al. (2015) presented MatchNet, a deep164

convolutional approach based on Siamese networks for patch-165

based matching between two images I1 and I2. The MatchNet166

architecture consists of a feature network followed by a metric167

network. The former is a “two-tower” structure network which168

jointly processes two patches (one extracted from I1, another169

from I2) and maps them to a feature representation. The lat-170

ter models the similarity between the paired features through171

fully-connected (FC) layers and a softmax layer to get a match-172

ing score. Zagoruyko and Komodakis (2015) made use of and173

explored CNN architectures to encode a general similarity func-174

tion to quantify the correspondence between image patches.175

Amit et al. (2015) combined unsupervised segmentation and176

random-forest classification to detect candidate masses in CC177

and MLO views before estimating the correspondence between178

pairs of candidates in the two views. Ma et al. (2019) ex-179

ploited the latent relation information between the correspond-180

ing mass regions of interest (RoI) from the two paired views181

using a cross-view relation region-based CNN for mass detec-182

tion. Based on MatchNet (Han et al., 2015), Perek et al. (2018)183

proposed a dual-view Siamese network that learns patch repre-184

sentations and similarity for lesion matching. This suggests a185

potential added value of multi-view matching to improve breast186

mass detection, with respect to single-view detection strategies.187

3. Methods188

We first formally define the problem settings and provide an189

overview of the proposed unified framework for mass classifica-190

tion and matching in Sect.3.1. Multi-view mass matching com-191

bining Siamese networks and contrastive learning is described192

in Sect.3.2. As presented in Sect.3.3, this methodology is then193

extended to address both patch matching and classification si-194

multaneously. Multi-task learning is followed to obtain bet-195

ter predictive breast mass classification performance than tra-196

ditional single-task learning schemes.197

3.1. Overview198

Our multi-tasking framework (Fig.1) takes unregistered199

CC/MLO view pairs as inputs and provides as outputs accu-200

rate mass detections along with correspondences between mass201

regions in both views. Among existing deep detectors includ-202

ing Faster R-CNN (Ren et al., 2015) or SSD (Liu et al., 2016),203

YOLOv3 (Redmon and Farhadi, 2018) is adopted for candidate204

patch generation and selection from high resolution full mam-205

mograms (Yan et al., 2020b), since it offers an excellent trade-206

off between accuracy and efficiency.207

Given a pair of mammograms {ICC , IMLO}, YOLO predicts208

two sets of candidate mass patches PCC = {p1
CC , ..., pN

CC} and209

PMLO = {p1
MLO, ..., pM

MLO}. Although recent deep learning-based210

detectors have yielded impressive accuracy for object detection211

in natural images, it still remains difficult to reach the same212

level of performance when applied to medical images, espe-213

cially mammograms. The following reasons arise. First, object214

size variance may affect the performance. In our context, mass215

sizes and aspect ratios vary strongly (Yan et al., 2019). Second,216

mass detection is generally more difficult than common object217

detection since masses are visually less obvious and less con-218

trasted with respect to their surrounding healthy tissues, com-219

bined with a great diversity of shape and texture. On top of220

that, we should also struggle with the barrier between true and221

false masses to retain as much as possible true positives while222

reducing false positives.223

To further finely select mass candidates and discover the la-224

tent relation between CC and MLO views, we design a com-225

bined model through a Siamese network that jointly deals with226

patch-level mass/non-mass classification and matching (Fig.1).227

We sample candidate mass patches PCC and PMLO to the same228

size via a data sampler, while performing data augmentation229

to prevent from overfitting. These samples are then fed into230

our combined network. Based on robust generic feature extrac-231

tion, the result of our model is whether each patch of the two232

views contains mass as well as the correspondence between two233

patches of two views. Subsequently, we can visualize final de-234

tection results on both views to further guide clinicians in their235

mammogram interpretation task.236
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Fig. 1. Proposed multi-tasking deep pipeline. In images, green contours indicate ground truth delineations, red (yellow) boxes indicate false (true) detec-
tions.

Fig. 2. Matching Siamese network. A: Two-branch feature network which takes as input both positive (green patch) and negative (red patch) patch samples
of CC and MLO views separately to compute features. Resulting features f1 and f2 are concatenated for patch comparison. B: Metric network.

3.2. Dual-view mammogram matching237

Essential to make decisions in clinical routine, the infor-238

mation presented in the two paired CC/MLO views is highly239

complementary and could serve as a second source of deci-240

sion (Jouirou et al., 2019). However, due to breast deformation241

and different acquisition conditions combined with the lack of242

3D information, multi-view fusion for dual-view mammogram243

analysis is a challenging task. Therefore, only few deep convo-244

lutional methods for breast screening consider learning jointly245

effective features from both views.246

Inspired by (Perek et al., 2018) and (Han et al., 2015), we247

employ a Siamese framework to identify correspondences248

between masses in both CC/MLO views. The deep architecture249

for multi-view mammogram matching is shown in Fig.2. Patch250

pairs from CC and MLO views are fed separately to the two251

branches of the network. The feature network A is a Siamese252

model in which two fully convolutional networks with shared253

weights are employed for feature extraction. For illustration254

(Fig.2), we use a VGG16 architecture (Simonyan and Zisser-255

man, 2014) with repeated 3 × 3 convolutions followed by an256

activation function (ReLU) and 2 × 2 max pooling. To reduce257

the number of parameters and avoid overfitting, we apply258

a global average pooling layer before subsequent FC layers259

(Szegedy et al., 2015; He et al., 2016). Particularly, different260

widely used deep convolutional models such as VGG16261

(Simonyan and Zisserman, 2014), ResNet50, ResNet101262

(He et al., 2016), InceptionV3 (Szegedy et al., 2016) and263

EfficientNet (Tan and Le, 2019) can be exploited for feature264

extraction purposes. For feature comparison, two manners are265

explored based on different loss functions. First, one can use a266

metric network as in (Perek et al., 2018) and (Han et al., 2015)267

consisting of several FC layers and softmax layers, trained268

with a cross-entropy loss. Alternatively, we can rather employ269

a contrastive loss (Hadsell et al., 2006) to improve the repre-270

sentation ability of network A to extract discriminative features.271

272

Contrastive loss for matching. Contrastive learning, whose la-273

bels are used to guide the choice of positive and negative pairs,274

is employed to learn powerful feature representations. The con-275

trastive loss is usually exploited for image retrieval tasks, along276

with Siamese networks to learn paired data relationships. Dur-277

ing training, an image pair is fed into the model with their278

ground truth relationship Y. The loss function is as follows:279

Lmat (Y, X1, X2) =
1

2N

N∑
n=1

YD2
W + (1−Y) max (m − DW , 0)2(1)280

where DW (X1, X2) = ‖ f1 − f2‖2 represents the Euclidean dis-281

tance between two sample features f1 and f2. Y is the label282

of whether the two samples match. Y = 1 if the two samples283



Yutong Yan et al. / Medical Image Analysis (2021) 5

Fig. 3. The proposed Combined Matching and Classification Network (CMCNet). Green (red) patches correspond to positive (negative) samples.

are similar and 0 otherwise. m > 0 is a margin that defines a284

radius: dissimilar pairs contribute to the loss only if their dis-285

tance is within this radius. N is the number of samples. Unlike286

conventional learning systems where the loss function is a sum287

over samples, the contrastive loss runs over pairs of feature vec-288

tors { f1, f2} such that there is no more need for FC and softmax289

layers. Moreover, compared to cross-entropy which learns the290

patch “match” or “not match” in an inexplicable manner, the291

contrastive loss optimizes the mass matching task by manipu-292

lating the distance between pairs in feature space. Therefore,293

the contrastive loss is more in line with matching requirements294

than binary sample classification. The loss function Lmat (Eq.1)295

is minimized using stochastic gradient descent (SGD).296

3.3. Combined mass matching and classification297

Mass classification and dual-view matching are two tasks of a298

very different nature. The challenge is thus to learn generic fea-299

tures for both tasks. We propose to exploit Siamese networks300

towards simultaneous deep patch-level matching and classifi-301

cation. In this direction, we design a multi-tasking learning302

model (Fig.3) referred as Combined Matching and Classifica-303

tion Network (CMCNet). Positive and negative patch sam-304

ples of CC/MLO views arising from YOLOv3 detector are305

fed into the two-branch feature network (Fig.3-A) to compute306

robust patch representations. Apart from the matching net-307

work (Sect.3.2, Fig.3-B), we incorporate into the pipeline two308

branches (Fig.3-C) for CC/MLO mass classification purposes.309

Each of these branches has its own FC layers. We not only310

jointly learn representations from the two views but also simul-311

taneously learn matching and classification tasks to exploit the312

potential relationship between view-points.313

The combined learning of classification and matching refers314

to the idea of multi-task learning which has been proven to315

improve learning efficiency and generalization performance of316

task-specific models. We expect thus that the dual-view match-317

ing task can improve the robustness of mass classification, to-318

wards better predictive results than classification-only strate-319

gies. The designed loss L is the sum of three losses to optimize320

the entire CMCNet parameters through SGD:321

L = αLcls,CC + βLcls,MLO + γLmat (2)322

where Lcls,CC and Lcls,MLO represent the classification loss323

(cross-entropy) for CC and MLO view respectively. Lmat is the324

matching loss which can be cross-entropy or contrastive loss325

(Eq.1). α, β and γ are coefficients balancing the loss terms.326

4. Experiments and results327

In what follows, we present the datasets used in this study in328

Sect.4.1. Sect.4.2 reports the experimental settings. We evalu-329

ate the proposed approach both quantitatively and qualitatively330

in Sect.4.3. Deep models for patch classification and match-331

ing are implemented using pytorch. Experiments are performed332

with a single Nvidia GeForce GTX 1080Ti GPU (11GB/s).333

4.1. Imaging datasets334

We focus on mass detection from high-resolution 2048×1024335

mammograms arising from two publicly-available mammo-336

gram datasets: INbreast (Moreira et al., 2012) and DDSM-337

CBIS (Lee et al., 2017). Here are the dataset characteristics:338

- INbreast (Moreira et al., 2012) has a total of 410 mammo-339

grams from 115 examinations, with four images per case340

corresponding to the four standard views used in screening341

mammography: R-CC, L-CC, R-MLO, and L-MLO where342

L and R stand respectively for left and right. Four types of343

lesions (masses, calcifications, asymmetry and distortions)344

are included but only 107 images contain masses for which345

accurate contours made by specialists are provided. In this346

work, we selected 35 CC/MLO pairs (70 images) out of347

107 examinations with mass.348

- DDSM-CBIS (Digital Database for Screening Mammog-349

raphy) (Lee et al., 2017) is a larger database which con-350

tains approximately 2,500 mammograms including nor-351

mal, benign, and malignant cases with verified pathology352

information and coarse ground truth manual delineations.353
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DDSM-CBIS INbreast
training validation test full-pipeline

classif. 4690/4690 1170/1170 700/700 125/225
matching 2345/4690 585/1170 350/700 125/225

Table 1. Data distribution setting for experiments. Each cell has the follow-
ing format: number of positive samplings / number of negative samplings.

Network learning rate batch size margin (m) γ

VGG16 0.0005 128 15 0.1
ResNet50 0.0005 128 15 0.1
ResNet101 0.001 64 10 0.1
InceptionV3 0.001 32 10 0.1
EfficientNet-B3 0.001 128 10 0.1

Table 2. Optimal hyper-parameters used for each deep network.

In this work, we selected 586 pairs of CC/MLO mammo-354

grams (1172 images).355

During training, the principle followed for CC/MLO pair se-356

lection is that both views should contain only one mass. The357

reason is that if the image contains two or more masses, multi-358

view correspondences become unknown without the help of an359

expert. Accordingly, the existence of a single pair is the only360

data selection criterion for training. However, this is not a lim-361

itation for inference or clinical use. Among the 586 DDSM-362

CBIS pairs, 80% are used for training and the remaining 20%363

for validation. The 35 INbreast pairs are only used in the testing364

stage since it is too small to be representative as training data.365

The only pre-processing step is to crop most of the blank area366

from the original image (4084×3328 or 3328×2560) and resize367

the remaining area to 2048×1024.368

4.2. Experimental settings369

Data sampling and augmentation. In our multi-task frame-370

work, sampling in training is crucial. However, regions of371

healthy tissues in a whole mammogram are much larger than372

the mass areas, leading to inevitable false positive YOLOv3373

proposals. Similarly, sample imbalance can make the deep374

classification model very biased. To minimize these effects,375

data sampling is conducted as follows. For classification376

training, positive samples are taken according to provided377

ground truth masks, while negative patches are generated by378

YOLOv3 (Sect.3.1). In particular, we randomly generate K379

patches per image with an intersection over union (IoU) with380

respect to the ground truth box larger than 0.5. In practice,381

K = 5 (respectively 10) for DDSM-CBIS (INbreast) since the382

INbreast dataset is much smaller. Likewise, we choose K383

negative patches from false YOLO predictions. We thus use384

a very small threshold (<10−4) on detection probabilities to385

retain as many predictions as possible and select the K false386

candidates with the highest scores. All patches are resized to387

64 × 64 pixels, as in Han et al. (2015) and Perek et al. (2018).388

Random rotations of 25 degree, random horizontal flips and389

random resized crops are applied for data augmentation. For390

matching, we consider a pair of positive patches of the same391

mass from the two views as a matching sample. If one of the392

patches is labeled negative, they are considered as a negative393

match. The detailed data distribution is shown in Tab.1 for both394

DDSM-CBIS and INbreast datasets.395

396

Training patch-level classification and matching. As a397

proof of concept, we conduct experiments using various model398

backbones for the feature network: VGG16 (Simonyan and399

Zisserman, 2014), ResNet50, ResNet101 (He et al., 2016), In-400

ceptionV3 (Szegedy et al., 2016) and EfficientNet (Tan and Le,401

2019). The feature size varies depending on the model used.402

Let M be the number of feature map channels and B denote403

the batch size. The FC layers of each classification branch404

will turn the input vector (B,M) into (B, 2) and pass it to the405

Softmax layer to transfer logits into probabilistic predictions.406

The input of the metric network (Fig.3-B) is the concate-407

nation of two feature vectors. For VGG16, M = 512. For408

ResNet50 and ResNet101, M = 2048. For EfficientNet, it has409

8 pre-trained models from EfficientNet-B0 to B7 where M is410

respectively {1280, 1280, 1408, 1536, 1792, 2048, 2304, 2560}.411

All deep models are initialized using pre-trained weights412

(Litjens et al., 2017) from the ImageNet dataset (Russakovsky413

et al., 2015) and trained using the SGD optimizer. Optimal414

hyper-parameters vary depending on the network. For loss415

functions, we choose α = β = 1 and γ = 1 for cross-entropy416

and γ = 0.1 and margin m ∈ {5, 10, 15} for contrastive loss417

(Eq.1). The detailed hyper parameters used are shown in Tab.2.418

419

4.3. Evaluation on clinical data420

Multi-task learning versus classification-only. Classification421

performances are measured using classification accuracy (acc).422

We calculate the accuracy of each view separately and collec-423

tively. The statistical significance of the multi-tasking model424

with respect to the classification-only baseline is estimated425

using Student’s t-tests (Tab.3). Overall, we observe better426

classification results on MLO than on CC views. In most427

cases, multi-tasking models that combine classification and428

matching are better than classification-only from 2% to 4% in429

accuracy with statistical significance (p < 0.05), which reflects430

the benefits of dual-view matching. Except for ResNet101,431

we obtain slight gains with the contrastive loss compared to432

cross-entropy. The difference between networks is not obvious.433

ResNet101 achieves the best overall accuracy with statistical434

significance (acc = 0.9098, p = 0.007 compared to baseline).435

Improvements obtained by VGG16 using the contrastive loss436

are also significant (acc = 0.9084, p < 1e−6), followed by437

ResNet50 (acc = 0.9049), InceptionV3 (acc = 0.90) and438

EfficientNet-B3 (acc = 0.8979), showing that using deeper439

networks is not necessary to reach better performance.440

441

Full detection pipeline. To further prove the effectiveness442

of our method, we conduct experiments with a full detection443

pipeline. Instead of extracting positive candidates using ground444

truth mass delineations while using YOLO as a negative patch445

generator, we use YOLO to generate all candidate patches.446

Specifically, coarse mass YOLO detections (Yan et al.,447

2020b) are performed on INbreast images to generate testing448

samples. YOLO is pre-trained on ImageNet and fine-tuned on449



Yutong Yan et al. / Medical Image Analysis (2021) 7

Network matching matching loss CC acc MLO acc overall acc p-value

VGG16 (Simonyan and Zisserman, 2014)
× - 0.8558 0.8857 0.8699 -
√

cross-entropy 0.8796 0.9163 0.8958 <1e−6
√

contrastive 0.9061 0.9156 0.9084 <1e−6

ResNet50 (He et al., 2016)
× - 0.8517 0.9034 0.8734 -
√

cross-entropy 0.8958 0.9116 0.9014 4e−4
√

contrastive 0.9010 0.9122 0.9049 <1e−6

ResNet101 (He et al., 2016)
× - 0.8680 0.9097 0.8823 -
√

cross-entropy 0.8980 0.9265 0.9098 0.007
√

contrastive 0.8891 0.9252 0.9049 0.003

InceptionV3 (Szegedy et al., 2016)
× - 0.8238 0.8980 0.8601 -
√

cross-entropy 0.8776 0.9184 0.8972 <1e−6
√

contrastive 0.8946 0.9095 0.9000 4e−4

EfficientNet-B3 (Tan and Le, 2019)
× - 0.8701 0.8803 0.8741 -
√

cross-entropy 0.8748 0.9116 0.8923 0.065
√

contrastive 0.8830 0.9163 0.8979 <1e−6

Table 3. Multi-task learning (with cross-entropy and contrastive losses) versus classification-only. Results include CC, MLO and overall classification
accuracy (acc) as well as statistical significance p-values with respect to the classification-only baseline. Best results per network are in bold.

1514 DDSM-CBIS images. Thereafter, we use a small thresh-450

old (10−4) on detection probabilities to ensure that predictions451

with high and low confidence are both selected. The averaged452

inference time per image is 78.7ms. We finally obtain 350 can-453

didates, labeled as positive (125 cases) or negative (225 cases)454

according to IoU (≥ or < than 0.5) between RoIs and ground455

truth. All 350 candidate patches arising from INbreast are for456

the test set and all combinations are evaluated. The perfor-457

mance of each setting (classification-only, CMCNet with cross-458

entropy and CMCNet with contrastive loss using different deep459

models) is measured using the AUC (Area Under the receiver460

operating characteristics Curve).461

Results for full-pipeline experiments (Tab.4) show that the462

classification performance is highly improved over the baseline463

models by combining dual-view matching. In terms of AUC,464

the performance of VGG16 (resp. Resnet101) increases from465

90.47% (71.46%) to 94.78% (92.82%), which corresponds to a466

gain of 3.31% (21.36%). These results prove the appropriate-467

ness of our contributions. The best AUC score (94.78%, p =468

0.001) is obtained using the VGG16 model trained with con-469

trastive loss, with an overall accuracy of 0.8791. Results us-470

ing the contrastive loss are slightly better than cross-entropy471

in most cases, except for ResNet50. InceptionV3 using cross-472

entropy and EfficientNet using both losses improve moderately473

without statistical significance (p > 0.05). Compared to Tab.3,474

the advantages of combining classification and matching are475

more highlighted with full-pipeline experiments. Higher AUC476

indicates that we can significantly reduce false positive propos-477

als resulting from YOLO. We also compute the inference time478

per image to compare computing time costs of each method479

(Tab.4). This includes testing all possible pairs. The infer-480

ence time of the CMCNet varies from 2.7 (VGG16) to 25.4ms481

(EfficientNet-B3). Since no significant improvement arises482

when using deeper models, models with low time complex-483

ity (VGG, ResNet) are more appropriate. Multi-tasking meth-484

ods do not cost more time than classification-only schemes.485

Computing time increases significantly with model complexity,486

whereas no significant improvement arises. The time increase487

with respect to YOLO detector (78.7ms per image) is almost488

negligible. This demonstrates that using very deep networks is489

not useful for our application.490

Additionally, we provide mass matching performances dur-491

ing inference. As shown in Tab.5, mass matching performance492

is measured using accuracy (acc) and AUC. We compare mass493

matching using our multi-task learning (with cross-entropy and494

contrastive losses) versus matching-only. The matching-only495

scheme refers to the matching Siamese network illustrated in496

Fig.2. Results show that the proposed multi-task learning brings497

gain from 0.62% to 8.64% in AUC and from 0.9% to 11.12%498

in acc. Best results are achieved by ResNet50 (AUC = 94.30%,499

acc = 89.49). On the basis of the experimental results, we can500

draw the conclusion that not only matching can improve classi-501

fication, classification can also improve matching, proving that502

the multi-tasking properties and the multi-view learning can503

help towards better breast cancer diagnosis and management.504

Using the INbreast dataset, we also compare the overall mass505

detection performance using the True positive rate (TPR) at the506

average false positive per image (FPavg) with state-of-the-art507

methods (Tab.6). Since there is no official split of INbreast,508

each study has its own split between training, testing and vali-509

dation subsets. Results shown in the top part of Tab.6 give an510

idea of the overall detection performance without giving a rele-511

vant comparison with these studies. For a fair comparison with512

respect to state-of-the-art, we re-implemented the recently pub-513

lished method of Agarwal et al. (2019) and conducted experi-514

ments using the same data as used in our work (80% DDSM-515

CBIS for training, 20% DDSM-CBIS for validation and 70 IN-516

breast images for testing) to obtain the Free Response Operat-517

ing Characteristic (FROC) curve of final detections. The bottom518

part of Tab.6 includes results obtained on the same testing data.519

In particular, it displays the best TPR@FPavg score achieved520

using Agarwal et al. (2019): 0.74@0.99. The best TPR@FPavg521

score (0.96@0.23) is reached by the proposed framework (CM-522

CNet with VGG16 and contrastive loss). It outperforms the523

classification-only model (0.89@0.29) and shows consistent524

performance with respect to existing approaches such as Yan525
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Fig. 4. Full-pipeline mass detection: (a) YOLO detection only, (b) YOLO followed by a classification-only model, (c) YOLO followed by the proposed com-
bined model (with VGG16 and contrastive loss). Red and blue boxes are detected mass bounding boxes. Green labels represent ground truth annotations.
Blue boxes show the matching pair selected through dual-view matching. Visual examples are labeled from (1) to (6).
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Network matching matching loss overall acc AUC (%) AUC p-value inference time (ms)

VGG16 (Simonyan and Zisserman, 2014)
× - 0.8260 90.47 - 2.7
√

cross-entropy 0.8761 94.17 2e−5 2.7
√

contrastive 0.8791 94.78 0.001 2.7

Resnet50 (He et al., 2016)
× - 0.6814 70.03 - 8.4
√

cross-entropy 0.8555 91.98 <1e−6 8.3
√

contrastive 0.8496 90.30 <1e−6 8.4

Resnet101 (He et al., 2016)
× - 0.7080 71.46 - 16.2
√

cross-entropy 0.8555 91.74 <1e−6 15.8
√

contrastive 0.8584 92.82 <1e−6 16.3

InceptionV3 (Szegedy et al., 2016)
× - 0.8112 89.75 - 17.2
√

cross-entropy 0.8201 89.86 0.9142 16.7
√

contrastive 0.8702 93.61 0.009 16.8

EfficientNet-B3 (Tan and Le, 2019)
× - 0.8142 87.97 - 25.2
√

cross-entropy 0.8378 89.80 0.1795 25.4
√

contrastive 0.8466 88.91 0.5735 24.7

Table 4. Full detection pipeline results including overall classification accuracy (acc), AUC scores, statistical significance p-values of AUC scores with
respect to the classification-only baseline, as well as inference times per image. Best results per network are in bold.

Network matching classification matching loss matching AUC(%) matching acc

Perek et al. (Perek et al., 2018)
√

× cross-entropy 79.92 0.7504

VGG16 (Simonyan and Zisserman, 2014)

√
× cross-entropy 91.05 0.8523

√ √
cross-entropy 91.49 0.8671

√ √
contrastive 92.97 0.8714

ResNet50 (He et al., 2016)

√
× cross-entropy 92.77 0.8693

√ √
cross-entropy 92.46 0.8775

√ √
contrastive 94.30 0.8949

ResNet101 (He et al., 2016)

√
× cross-entropy 90.01 0.8345

√ √
cross-entropy 92.31 0.8716

√ √
contrastive 91.72 0.8758

InceptionV3 (Szegedy et al., 2016)

√
× cross-entropy 89.50 0.8405

√ √
cross-entropy 90.64 0.8536

√ √
contrastive 90.01 0.8588

EfficientNet-B3 (Tan and Le, 2019)

√
× cross-entropy 82.99 0.7391

√ √
cross-entropy 89.50 0.8379

√ √
contrastive 91.63 0.8503

Table 5. Mass matching AUC with the proposed multi-task learning (with cross-entropy and contrastive losses) versus matching-only schemes including
(Perek et al., 2018). Best results per network are in bold.

et al. (2020b) and Dhungel et al. (2017) obtaining respectively526

0.94@0.22 and 0.95@5, while additionally providing accurate527

dual-view mass correspondences.528

Evaluation is supplemented with qualitative results on full529

mammograms (Fig.4). The additional classification stage (b)530

helps in eliminating most of false YOLO detections (a). The531

improvement reached by the combined model (c) compared to532

the classification-only scheme (b) is highlighted with further533

wrong proposal removals. For instance, in Fig.4 (2), the534

number of false positive detections decreased from 7 to 1 from535

(a) to (b) and further decreased to 0 without any false negatives.536

In addition, the combined model (c) also successfully identifies537

the matching patches in both views, which can provide clini-538

cians with reference to further rule out false positives that are539

difficult to detect, as in Fig.4 (4). Fig.4 demonstrates that vari-540

able mass sizes and shapes can be correctly managed. All these541

findings suggest that exploiting multi-view relationships and542

multi-tasking learning can greatly guide mammogram interpre-543

tation, towards better breast cancer diagnosis and management.544

545

Closer to clinical screening conditions. To evaluate the inci-546

dence of false positives under closer to clinical breast screening547

conditions, a test set of normal mammograms (without masses)548

has been considered to evaluate our method. Among the 410549

INbreast mammograms, 60 CC/MLO image pairs that contain550

no mass were found. Coarse mass detections are firstly per-551

formed on these normal images to generate candidate patches.552

We use YOLOv3 pre-trained on ImageNet and fine-tuned on553

1514 DDSM-CBIS images. Then, a small threshold (10−3) is554

applied on detection probabilities to ensure that enough predic-555

tions from YOLOv3 are selected. We finally obtain 646 can-556

didates patches (374 from CC view, 410 from MLO view), la-557

beled as negative. Then, candidate patches from two views of558

the same patient are given as inputs of the two branches of our559

Siamese model for mass/non-mass classification and matching.560

We finally obtained 56 false positive predictions whereas 590561

true negatives were detected. Accordingly, the obtained speci-562

ficity was 0.9133. Concerning the 56 false positive detections,563

only 6 pairs were considered as matched pairs. Thus, the other564



10 Yutong Yan et al. / Medical Image Analysis (2021)

Methods TPR@FPavg dataset (INbreast)
Kozegar et al. (2013) 0.87 @ 3.67 107
Akselrod-Ballin et al. (2017) 0.93 @ 0.56 100
Ribli et al. (2018) 0.90 @ 0.3 107
Dhungel et al. (2017) 0.95 @ 5 410
Agarwal et al. (2019) 0.92 @ 0.5 107
Yan et al. (2020b) 0.94 @ 0.22 107
Agarwal et al. (2019) 0.74 @ 0.99 70 (inference only)
YOLOv3 only 0.86 @ 1.41 70 (inference only)
classification-only VGG16 0.89 @ 0.29 70 (inference only)
CMCNet VGG16 (ours) 0.96 @ 0.23 70 (inference only)

Table 6. Final detection performance comparisons on INbreast (Moreira
et al., 2012) between the proposed method (CMCNet with VGG16 and con-
trastive loss) and state-of-the-art approaches.

44 patches can be further eliminated because there is no corre-565

sponding detection in the other view. These results confirm that566

our contributions can also provide reliable detection results in a567

setup more similar to a screening process in real life.568

5. Conclusion569

In this paper, we propose a novel multi-tasking approach570

that combines breast mass/non-mass classification with dual-571

view mass matching between complementary CC/MLO mam-572

mograms. We prove the effectiveness of integrating multi-view573

information within the breast mass detection pipeline by ex-574

tensive experiments on public datasets. Based on Siamese net-575

works and contrastive learning, our method generalizes well us-576

ing different deep networks and shows impressive results as an577

integrated CAD system. We can thus easily address the prob-578

lem of false detections without struggling with difficult whole-579

image detection schemes. More globally, the proposed contri-580

butions pave the way for robust automatic second opinions in581

breast cancer diagnosis.582

Even if multiple masses can still be detected using the classi-583

fication network, dealing with more than one mass with respect584

to matching purposes should deserve further investigation. In585

future works, our framework could also be extended by associ-586

ating detection and matching with segmentation techniques to587

further guide clinicians in their interpretation tasks. Further-588

more, it is essential to push further data fusion by extracting589

and integrating both multi-view and longitudinal information.590
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