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Abstract—Millimeter-wave (mmWave) and multiple-input
multiple-output (MIMO) combination technologies have at-
tracted extensive attention from both academia and industry
for meeting future communication challenges and requirements.
As a viable option to deal with the trade-off between hardware
complexity and system performance, hybrid analog/digital archi-
tectures are regarded as efficient mmWave MIMO transceivers.
While acquiring channel state information (CSI) is a challenging
task to design the optimal beamformers/combiners, especially
in mmWave communications due to a lot of challenges. Fortu-
nately, the sparse nature of the channel allows to leverage the
compressed sensing (CS) tools and theories. However, the critical
challenge to develop a CS-based formulation for estimating the
mmWave channel is the codebook design (sensing matrices) and
its pilot symbol numbers. In this paper, we proposed a multi-
stage CS-based algorithm to estimate the channel explicitly using
pilot and data symbols which enable increasing the number of
measurements to enhance the estimation accuracy and maximize
the spatial diversity by reducing the overlapping between training
beams. Simulations confirmed that our proposed method has the
best results compared to the existing methods based on codebook
schemes.

Index Terms—Millimeter-wave channel estimation, Multi-stage
compressed sensing, MmWave MIMO transceiver, Detection
algorithms, Greedy algorithms

I. INTRODUCTION

To accommodate the huge wireless communications capac-
ity, millimeter-wave (mmWave) frequency band (30–300 GHz)
is considered as a potential candidate to host very high data
rate communications [1], by the fundamental solving of the
spectrum congestion problem [2], thanks to the large band-
width available at these frequencies [3]. However, mmWave
signals suffer from severe propagation loss, penetration loss
and rain fading compared to signals in lower frequencies
[4]. Therefore, large directional beamforming powered by
multiple-input multiple-output (MIMO) systems is highly rec-
ommended at the transceiver to achieve high-quality commu-
nication links. Fortunately, the short-wavelength allows more
antenna elements to be integrated into mmWave devices. Ac-
tually, due to the hardware complexity and power consumption
constraints, hybrid analog/digital architectures are regarded as
efficient transceivers for mmWave MIMO communication sys-
tems [5]. In this architecture, the MIMO processing is splitted
into the analog and digital domains where a small number

of radio frequency (RF) chains are tied to a large antenna
array. The number of RF chains can be reduced to equal the
number of transmitted/received data streams, which is, gener-
ally, much lower than the number of antenna elements [6].
Moreover, optimal beamformers/combiners design is based
on the availability of channel state information (CSI) at the
transceiver. On the other hand, acquiring CSI in the mmWave
MIMO system is hard due to a lot of challenges such as the
large antenna array, the very low received signal-to-noise ratio
(SNR), and the sparse scattering nature of mmWave channels.
According to the sparsity of the mmWave channel matrix,
methods and developments based on compressed sensing (CS)
tools are mainly leveraged to estimate the mmWave channel.
In [7], based on adaptive CS-based tools and a multi-resolution
hierarchical codebook design, a hierarchical search algorithm
is proposed for jointly estimating the different parameters of
the channel paths, namely the angle of departure (AoD), the
angle of arrival (AoA), and each path’s gain. Although the
hierarchical search algorithm can avoid an exhaustive beam
search, its performance tends to be limited by the training
beam patterns [8]. Besides, an excessive channel feedback
requirement makes the adaptive CS approach less attractive
in practical mmWave systems despite its robustness to noise
[9]. Unlike the hierarchical search algorithm, the authors in
[8] exploited an explicit channel estimation technique based
on CS formulation that allows directly using the orthogonal
matching pursuit (OMP) algorithm. the critical challenge to
develop a CS-based formulation for estimating the mmWave
channel is the codebook design and its pilot symbol number.
As known, sensing random matrices provide an adequate
constant mutual coherence and satisfy the restricted isometry
property (RIP) condition that guarantees the exact sparse
signal recovery or estimation. Therefore, randomly permuting
the columns of hybrid beamformer/combiner matrix is widely
used to generate the sensing matrices in order to enhance the
CS-based mmWave channel estimator performance. On the
other hand, using i.i.d. random vectors as pilots are difficult
because the RF beamformers, which are employed to increase
the SNR, yield directional training beams that are correlated
with each other [8], which leads to decrease the performance.
Also, the orthogonality of the deterministic pilots is limited by
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their number. The work in [10] proposed a precoder column
ordering algorithm to achieve a lower mutual coherence where
the pilot symbol columns are chosen from the discrete Fourier
transform (DFT) matrix. However, the pilot orthogonality is
affected, because the pilot columns size equal to RF chain
numbers in hybrid mmWave MIMO systems as mentioned
above.
In this work, we propose a multi-stage CS-based algorithm
to estimate the channel for the hybrid mmWave MIMO
transceiver. Our proposed method performs the explicit chan-
nel estimation using pilot and data symbols which allow the
limitation of random pilot number in order to maintain the
orthogonality of the training beams throughout the estimation
process. Hence, reducing the effect of the overlapping between
training beams leads to maximize spatial diversity. In addition,
using the data symbols improve also the spectral efficiency
of mmWave MIMO systems. Meanwhile, using data symbols
increases the number of measurements and consequently aug-
ment the estimation accuracy.

II. SYSTEM MODEL

We consider time division duplexing (TDD) system pro-
tocols and downlink data transmission techniques for the
mmWave point-to-point hybrid MIMO system shown in Fig. 1.
The transmitter (Tx) is equipped with Ntx transmit antennas
and Ntx

RF RF chains to send Ns streams of data symbols
whereas, the receiver (Rx) has Nrx antennas and Nrx

RF RF
chains. The number of data streams is constrained to be
bounded at the Tx and Rx by Ns ≤ Ntx

RF ≤ Ntx and
Ns ≤ Nrx

RF ≤ Nrx, respectively. To transmit the symbols at
the time instance n in a hybrid architecture, the Tx applies
a hybrid precoder Fn ∈ CNtx×Ns which is composed of
an Ntx

RF × Ns baseband precoder FBB,n followed by an
Ntx×Ntx

RF RF precoder FRF,n, such that Fn = FRF,nFBB,n.
If FRF,n realized by analog phase shifters, its entries are
constrained to satisfy ([FRF,n]:,i[FRF,n]

H
:,i)`,` = N−1tx , where

(·)`,` denotes the `th diagonal element, i.e., all entries are of
equal norm. At the Rx, the hybrid combiner Wn ∈ CNtx×Ns

composed of an Nrx
RF × Ns baseband combiner WBB,n and

an Nrx × Nrx
RF RF combiner WRF,n is used to measure

and to detect the instantaneous transmitted signal through
a narrowband block-fading channel. Therefore, the received
signal vector at the same time instance n is given by

yn =
√
γWH

n HFnsn +WH
n ηn (1)

where γ denotes the average transmit power, and sn ∈
CNs×1 is the instantaneous transmitted signal vector. ηn ∼
CN (0, σ2

nI) is the additive noise vector, and H ∈ CNrx×Ntx

represents the channel matrix.
For the mmWave MIMO channel, we adopt a widely used

Saleh-Valenzuela model with limited L paths as in [8] [10]
[11], where the downlink channel can be expressed as

H =

√
NrxNtx

L

L∑
i=1

αi arx(θi)a
H
tx(φi) (2)

where αi is the complex gain of the ith path and it can define
the channel type (Rayleigh, Rician or Nakagami), whereas φi
and θi ∈ [0, 2π] are the ith path’s azimuth angles of departure
or arrival (AoDs/AoAs) of the Tx and Rx, respectively.
Assuming only the azimuth angles and uniform linear array
(ULA) configuration, the transmit and receive array response
vectors corresponding to AoD/AoA, respectively, are written
as

atx(φi) =
1√
Ntx

[
1, ej

2π
λ d sin(φi), . . . , ej(Ntx−1) 2π

λ d sin(φi)
]T

arx(θi) =
1√
Nrx

[
1, ej

2π
λ d sin(θi), . . . , ej(Nrx−1) 2π

λ d sin(θi)
]T
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Fig. 1. hybrid beamforming architecture at the transceiver.

where d denotes the distance between antenna elements, and
λ denotes the wavelength of the signal. The channel can be
represented by matrix product form as

H = Arx diag(α)A
H
tx (3)

where α = [α1, . . . , αL]
T , Atx = [atx(φ1), . . . ,atx(φL)],

and Arx = [arx(θ1), . . . ,arx(θL)].

III. MULTI-STAGE COMPRESSED SENSING

In this section, we present our method based on multi-stage
CS approach to estimate the mmWave channel for the system
shown in Fig. 1. To formulate the channel estimation problem,
we assume that Tx sends M known pilot followed by N −M
unknown data symbols. By vectorizing the right-hand side of
the signal model in (1), the downlink received signal vector
by Rx at the nth time is rewritten as follows:

yn =
√
γ (sTnF

T
n ⊗WH

n ) vec(H) + ηn (4)

n = 1, . . . , N
where ηn is the noise vector after combining. To exploit the
sparse nature of the channel, we adopt the concept of discrete
virtual angular domain (VAD) channel model [12] to provide
an approximation of H in (2) by assuming that the AoDs and
AoAs are taken from grids that have size G, where φi, θi ∈
{0, 2πG , . . . ,

2π(G−1)
G } with G� L. Then, the discrete virtual

channel can be written as

H = ArxHαA
H

tx (5)

where Hα ∈ CG×G is a channel matrix that has only L non-
zero elements in the positions corresponding to the AoAs and
AoDs, Arx ∈ CNrx×G and Atx ∈ CNtx×G are dictionary



matrices at the Tx and Rx respectively. Substituting (5) into
(4) and exploit the properties of Kronecker product, i.e.,
vec(H) = ADhα, where AD ∈ CNrxNtx×G2

is dictionary
matrix, such that AD = A

∗
tx ⊗Arx. hα ∈ CG2×1 is vector

which contains the path gains of the channel matrix H . We
get

yn =
√
γ(sTnF

T
n ⊗WH

n )ADhα + ηn (6)

By stacking N instantaneous received signal vector, we have

ỹG =
√
γ
[
sT1 F

T
1 ⊗WH

1 , . . . , sTNF
T
N ⊗WH

N

]T
ADhα + η̃G

=
√
γ [ψ1, . . . ,ψN ]

T
ADhα + η̃G

=
√
γΨAD︸ ︷︷ ︸

ΦG

hα + η̃G (7)

where ỹG =
[
yT1 , . . . ,y

T
N

]T
is the collected received signal.

ΨG = [ψ1, . . . ,ψN ]
T is the collected sensing matrix, where

ψn = sTnF
T
n ⊗WH

n , whereas ΦG is the total measurement
matrix, and η̃G =

[
ηT1 , . . . ,η

T
N

]T
is the collected noise

vector. Now, we divide the compressed sensing model in (8)
to split the total measurement matrices into two measurement
matrices, one correspond to the pilot and the other corresponds
to unknown data symbols as given by

y1
...
yM
yM+1

...
yN


=
√
γ

Φ1

Φ2

hα +



η1
...
ηM
ηM+1

...
ηN


(8)

Therefore, we have two-stage, where the M pilots are used
in the first stage to estimate the channel where its received
training signal model is given as

ỹ1 = Φ1hα + η̃1 (9)

In the second stage, we can exploit the estimated channel from
the first stage to detect the unknown data, then the received
signal model of the second stage is written as

ỹ2 = Φ2hα + η̃2 (10)

A. First stage
To estimate the channel at the first stage, we adopt the open-

loop channel estimator approach that performs explicit channel
estimation. This approach applies the compressed sensing (CS)
model that allows using the greedy algorithms to recover the
sparse channel vector. Therefore, the estimated channel hα is
obtained by solving the following problem:

ĥα = arg min
hα

∥∥ỹ1 −√γΦ1hα
∥∥
2

subjet to ‖hα‖0 = L
(11)

The above optimization problem in (11) is a non-convex
optimization with L0 norm and is difficult and intractable to
solve. For this, we use the orthogonal matching pursuit (OMP)
algorithm as a greedy CS algorithm to solve (11).

B. Second stage

After, we use the estimated channel in the second stage to
detect the unknown data symbols. In our implementation, we
used different detection techniques as least square (LS), Min-
imum mean square error (MMSE), minimum mean-squared
error with successive interference cancellation (MMSE-SIC),
simplicity [13], and semidefinite relaxation row-by-row (SDR-
RBR) [14]. According to the simulation results, we found that
the SDR-RBR detector has better performance in the QPSK
scenario. Due to this, we choose SDR-RBR to detect the
unknown data symbols. As mentioned above, considering the
N −M unknown data symbols transmitted through the esti-
mated channel, each received signal in (10) can be expressed
as:

yd,n =
√
γWH

d,nĤFd,n︸ ︷︷ ︸
Θ

sd,n + ηd,n

n =M, . . . , N

(12)

where Fd,n ,Wd,n are the precoder and combiner that are used
in second stage to send the unknown data, sd,n ∈ CNtx

RF×1

is the unknown data vector, and ηd,n is noise vector after
combining at Rx. The MIMO data detection problem in the
symbol constellation set S = {±1± j} is equivalent to:

ŝd,n = arg min
sd,n∈S

‖yd,n −
√
γΘsd,n‖2 (13)

The problem in (13) can be solved by maximum likelihood
(ML) detection for yielding the minimum error probability in
the data detection process during the second stage. However,
ML detection has high computational complexity due to the
exhaustively searching for all the candidate vectors. Therefore,
SDR-RBR detector deals with the ML detection problem,
especially with BPSK/QPSK constellation to reduce the com-
plexity. To apply the SDR-RBR solution, we convert the model
in (12) to an equivalent real-valued system as follow:

yc,n =
√
γΘcsc,n + ηc,n (14)

where yc,n ∈ R2Nrx
RF×1 is the real-valued received signal

vector, Θc ∈ R2Nrx
RF×2N

tx
RF is the real-valued matrix version

of Θ, whereas sc,n ∈ R2Ntx
RF×1 is real-valued unknown data

vector, and nc,n ∈ R2Nrx
RF×1 is real-valued additive Gaussian

noise vector. Then, the SDR problem can be written as

ŝc,n = arg min
sc,n∈S2Nrx

RF

{
Tr(ΘT

c ΘcS)− 2sTc,nΘ
T
c yc,n + ‖yc,n‖22

}
subject to S � sTc,nsc,n

Sii = 1, i = 1, . . . , 2Nrx
RF

(15)
We adopt the row-by-row (RBR) method [14] to solve this

SDR problem.



C. Last stage
Finally, we exploit the pilot of the first stage and the detected

data in the second stage into the CS model in (8) to refine the
re-estimation of the mmWave channel by solving:

h̃α = arg min
hα

∥∥ỹG −√γΦGhα
∥∥
2

subjet to ‖hα‖0 ≤ L
(16)

In the last stage, it appears that we have more measurement
numbers which leading to perform the recovery process of the
true support of hα. As the augmented of the row numbers
of the noise vector, we exploit the gOMP algorithm to finish
the mmWave channel re-estimation with fast processing speed
and competitive computational complexity [15]. Algorithm 1
summarizes all algorithms that are used in each stage.

Algorithm 1 multi-stage compressed sensing for estimating
the mmWave channel
Initialization:
i) H; ii) randomly generation of F /W
First stage : Estimating ĥα

Formulate the model defined in(9)
estimate hαby solving:[
ĥα = arg min

hα

∥∥ỹ1 −√γΦ1hα
∥∥
2

subjet to ‖hα‖0 ≤ L
. using OMP Algorithm

Second stage : Detecting ŝd,n

Input : Ĥ
for M + 1 6 n 6N do∣∣∣∣∣∣∣∣
Training Fn/Wn

∀ n : yc,n =
√
γΘcsc,n + ηc,n[

Detection sc,n
by solving problem in (15) . using SDR-RBR Algorithm

end for
Last stage : Re-estimating h̃α

Formulate the model defined in (7)
re-estimate hα by solving:[
h̃α = arg min

hα

∥∥ỹG −√γΦGhα
∥∥
2

subjet to ‖hα‖0 ≤ L
. using gOMP Algorithm

IV. SIMULATION RESULTS

In this section, we provide numerical simulation results
to evaluate each stage performance of our proposed channel
estimator algorithm for the hybrid MIMO system. We assume
that the transceiver is equipped with Ntx = Nrx = 32
and Ntx

RF = Nrx
RF = 2. The downlink channel has L = 9

paths and Rayleigh distributed, where the azimuth AoAs and
AoDs are uniformly distributed in [0, 2π], and the noise power
is σ = −173 + 10 log10(Bw) with transmission bandwidth
Bw = 100 MHz. The hybrid training precoders/combiners
are randomly generated using 6 quantization bits to design of
RF phases shifters. At the Tx and Rx, the number of angle
grids is assumed G = 160. We used the normalized mean

squared error (NMSE) defined as E[
∥∥∥H − Ĥ∥∥∥2

F
/ ‖H‖2F ],

where H and Ĥ are the true channel and the estimated

channel, respectively. The number of pilots used at first stage
equal 100. In addition, we provide the symbol error rate
(SER) performance comparison to evaluate the detection of the
unknown data transmitted by the QPSK modulation scheme.

Fig. 2. NMSE performance of estimated at the first stage v.s. SNR for the
LS, OMP, gOMP, and Oracle estimators

Fig. 2 shows the NMSE performance of the channel esti-
mated by the greedy algorithms (OMP, gOMP) versus SNR
and compared with the LS and oracle estimators results.
The LS method has the worst results because of the under-
determination of the model system in (9) that raised from
the fewer measurement numbers than the product of antenna
in the formulation of the total sensing matrix. The oracle
estimator has the best NMSEs results which make it a lower
bound in the comparison of other methods results, due to
the prior knowledge of AoDs/AoAs. Whereas, the greedy
algorithms show good outcomes with a similar trend to the
oracle estimator because of their capability to enhance the
recovery sparsity, but, from 5 dB SNR, their results remain
almost constant due to the small measurements, i.e., the limited
pilot numbers.

Fig. 3. Comparison of the SER performance of the different detectors used
at the second stage

As mentioned above, the estimated channel in the first stage
is used to transmit the unknown data. Fig. 3 compares SER of
SDR-RBR, MMSE-SIC, and Simplicity detectors versus SNR.
Notably, the results show that the SDR-RBR is better and
outperforms others as expected, especially, in QPSK scenario.



As known, a detector that has a good SER performance require
usually highly computational complexity. Therefore, the SDR-
RBR algorithm is enough to detect data in our case with low
complexity. After, the detected data symbols are re-used as
beam training to re-estimate the channel at the last stage.

Fig. 4. Spectral efficiency v.s. SNR, achieved by different precoding methods.

Using detected data offers more measurements to improve
the estimation of the mmWave channel without any correlation
between the training beams. Fig. 4 illustrates the NMSE
performance comparison of channel estimation for the last
stage of our multi-stage CS-based algorithm, codebook based
ordering scheme [10], codebook based minimal total coher-
ence scheme (MTC) [8], hierarchical codebook based adaptive
CS scheme [7], and oracle scheme. From this figure, we can
see that the NMSE performance of our proposed scheme
outperforms the other codebook schemes although the use
of the same quantized angle grids (G = 160). The oracle
estimator still maintains good results as the lower bound.
However, the adaptive CS scheme has lower results with grid
size G = 192 due to it needs a large number of the grid
size. Even with more grid size, the angle estimation error
is probably larger than the angle resolution (the maximum
estimation error) in theory even if there are no hardware
constraints and SNR is large enough [16]. Also, the last stage
outperformed channel estimation results with 10 dB compared
to the first stage thanks to the using of detected data which
increase the measurements.

V. CONCLUSION

In this paper, we proposed a multi-stage CS-based algorithm
to estimate the channel explicitly for the hybrid mmWave
MIMO system. Our proposed method allows the exploitation
of the detected data symbols as training beams to increases the
number of measurement sensing matrix in order to improve the
performance of the greedy algorithms that are used to estimate
the channel. Moreover, our proposed method used simple algo-
rithms in its different stages. Numerical simulations confirmed
that our proposed method has the best results compared to the
existing methods based on codebook schemes using the same
quantized angle grids. The total sensing matrix design and
performance synthesis will be considered in our future work.
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