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Abstract 
Industrial Control Systems (ICS) or SCADA networks are increasingly tar-
geted by cyber-attacks as their architectures shifted from proprietary hard-
ware, software and protocols to standard and open sources ones. Further-
more, these systems which used to be isolated are now interconnected to 
corporate networks and to the Internet. Among the countermeasures to mi-
tigate the threats, anomaly detection systems play an important role as they 
can help detect even unknown attacks. Deep learning which has gained a 
great attention in the last few years due to excellent results in image, video 
and natural language processing is being used for anomaly detection in in-
formation security, particularly in SCADA networks. The salient features of 
the data from SCADA networks are learnt as hierarchical representation us-
ing deep architectures, and those learnt features are used to classify the data 
into normal or anomalous ones. This article is a review of various architec-
tures such as Convolutional Neural Network (CNN), Recurrent Neural Net-
work (RNN), Stacked Autoencoder (SAE), Long Short Term Memory 
(LSTM), or a combination of those architectures, for anomaly detection pur-
pose in SCADA networks. 
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1. Introduction 

Industrial Control Systems (ICS) are used to monitor and control industrial sys-
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tems. ICS are used to be isolated from enterprise networks, making attacks 
against them difficult. Moreover, these systems were using proprietary hardware, 
software and protocols. But as technology evolves, today’s ICS use Commer-
cial-Off-The-Shelf (COTS) software and hardware as well as open protocols such 
as Ethernet and TCP/IP. Things have worsened nowadays with the interconnec-
tion of ICS to enterprise network and to the Internet. A successful attack against 
industrial control system could have severe impact ranging from economy to 
loss of human lives [1] [2]. ICS attacks have already targeted water treatment 
systems, power grids or nuclear power plants [3] [4]. Some of the most famous 
attacks use Duqu, Flame [5], and the Stuxnet viruses [6]. Although many coun-
termeasures are deployed to secure ICS networks, Intrusion and anomaly detec-
tion systems are important complementary security measures used to protect 
them.  

In recent years, Deep Learning [7] became a hot topic among researchers with 
successes in domains such as natural language processing (NLP), image and 
video classification. 

Various works are attempting to use deep learning for networks anomaly de-
tection [8] [9] [10]. 

One of the most important features of deep learning is the use of unsupervised 
methods to autonomously learn hierarchical features in deep learning models [7] 
[11] [12] [13] [14]. 

In fact, the data most salient features are unsupervisingly learnt using the au-
tomatic learning capability of deep architectures, and those learnt features are 
used in a classifier to discriminate anomalous data from normal ones. 

In this paper we are making a review of SCADA networks anomaly detection 
systems which are using deep feature learning approach. 

After some highlights on the concept of the unsupervised feature learning in 
the next section, the third section is dedicated to the review of different anomaly 
detection systems in SCADA networks using deep unsupervised feature learning. 
In section four, we draw a conclusion of the review. 

2. Unsupervised Feature Learning 

Feature learning consists in modeling the behavior of data from a subset of fea-
tures by deriving new features from the original ones [15]. In standard machine 
learning, feature learning from data is a complex task as it requires experts of the 
domain to handcraft the original features in order to feed the machine learning 
algorithms with the best features. The data learning process could be supervised 
or unsupervised. The supervised learning also needs the intervention of human 
to correctly label the data, which is costly and error prone. To take advantage the 
huge amount of unlabeled data, deep learning algorithms can automatically 
learn important features from data in an unsupervised manner [7] [16]. Unsu-
pervised feature learning main goal is to map the original features’ set into a dif-
ferent representation more suited for a given machine learning task [17]. Deep 
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architectures help in building complex non-linear functions to better fit real 
world complex data [18]. Unsupervised feature learning can be done by using 
clustering on data using algorithms such as K-means [19], or by training stacked 
auto-encoders or convolutional networks [20]. 

3. Review of Unsupervised Feature Learning in SCADA  
Anomaly Detection Systems 

3.1. LSTM/Bloom Filter Anomaly Detector 

In order to detected anomalies due to data/command injection, reconnaissance 
or Denial-of-Service (DoS) attacks on a gas pipeline SCADA system, [8] propose 
an anomaly detection approach consisting of two detectors (Figure 1). The first 
one is a packet-level anomaly detector which checks a packet signature in its da-
tabase. The database stores network patterns and communication pattern signa-
ture as they are stable in a SCADA system. If the Bloom filter does not contain 
the signature the analyzed package, the packet is considered anomalous. The 
next detector receives normal packet that pass the Bloom filter for another de-
tection level, which uses its power of information memorization for number of 
time steps to predict the behavior of the next time step. 

Because of the limited memory and computing resources of some of SCADA 
components, using a fast and light-weighted anomaly detector as a Bloom filter 
is of high importance. The LSTM Anomaly Detector (Figure 2) which takes the 
input of time-series learns their important features in order to predict the next 
data point by being trained to minimize a softmax function suited for multi-class 
classification [7] [21]. 

The evaluation of the combined anomaly detection framework on a gas pipe-
line SCADA dataset [22] gives an accuracy of 92%, which is higher compared to 
other approaches. However, the time required to train the LSTM model of 35 
min during 50 epochs is rather high. 
 

 
Figure 1. Stacked LSTM-based softmax model [8]. 
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Figure 2. Combined framework for package and time-series level anomaly detection [8]. 

3.2. Stacked Auto-Encoder Based Anomaly Detection 

Because of network bandwidth and data increase, [23] proposes a deep packet 
inspection in order to learn the necessary feature that would allow DoS, Probe, 
R2L and U2R attacks detection. The authors used a Deep Neural Networks 
(DNN) approach which architecture is a stacked auto-encoders for the feature 
learning, to which a softmax layer is added for the classification (Figure 3). The 
stacked auto-encoder has two hidden layers, one with 20 nodes and the second 
with 10 nodes. The dimension of the learnt features is 10 compared to the 41 
original features of the NSL-KDD dataset dataset. The overall process encom-
passes four steps i.e. a feature learning step with the stacked auto-encoder, a first 
fine-tuning step with a supervised training of the softmax. The input of this first 
fine-tuning step is the compressed representation of the data. The following step 
is a second fine-tuning with a back-propagation training applied to the whole 
network layers after the first fine-tuning step. The second fine-tuning step aims 
at refining the features of the intermediate layers to make them more relevant 
for the intrusion detection task by adjusting the network weights to minimize 
the loss function. 

Finally, the last step of the process is a classification and testing step where a 
test dataset is presented to the fine-tuned network to assess the efficiency of the 
model. Recall, accuracy, precision, and f-mesure metrics are used to evaluate the 
proposed approach against standard techniques like k-means, DBN, SOM, 
AdaBoost. 

Experimental results show that despite good detection accuracy for DoS and 
Probe attacks (97.6% and 86.34% respectively), R2L and U2R attacks give poor 
results (12.98% and 39.62% respectively). The poor performance of the latter two 
categories of attacks is due to the lack of sufficient amount of data related to R2L 
and U2R (0.04% and 0.79% respectively). 9% to 10% training data samples for 
R2L and U2R categories of attacks as with the probe attacks would have given 
better detection results. 
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Figure 3. DNN architecture [23]. 
 

However, the approach proposed by [23] gives promising results in feature 
learning and good detection rate for some classes of attacks detection. It uses the 
NSL-KDD dataset for the experiment. Those datasets may not reflect modern 
networks traffic complexity nor integrate new complex attacks. 

3.3. Stacked Auto-Encoder for Anomaly Detection in Smart Grids 

The cyber-physical integration, exposes smart grids to large attack surface with 
potential severe consequences. Among the countermeasures against such at-
tacks, Intrusion/Anomaly Detection Systems play a key role [24]. Machine 
learning approaches are used to develop data-driven anomaly detection systems. 
However, human handcrafted features for machine learning anomaly detectors 
are costly and ineffective in smart grids [25] [26]. This situation led [27] to use a 
stacked auto-encoder approach for a better feature learning for anomaly detec-
tion (Figure 4). The approach has two main phases: The model is first trained 
off-line and then follows online monitoring step. During the first phase, histori-
cal data are first collected for training purpose on different system operating 
conditions. 

Then, the stacked auto-encoder is used to learn and deliver strong and 
high-level features. Finally in the off-line training phase, all the building blocks 
are stacked and a classifier is appended to them. The obtained architecture is 
then supervisingly trained using back-propagation. Next, to the training process 
is the acquisition of measurements from SCADA in the transmission system. 
These measurements are fed to the deep neural network, and the results of the 
classification are used for applications such as situational awareness. 
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Figure 4. Stacked autoencoders training process [27]. 
 

A testbed simulating a power grid is used to evaluate the proposed approach 
(Figure 5). The proposed approach that use unsupervised feature learning 
achieves over 96% in accuracy doing slightly better than the supervised ap-
proaches used in the study. Furthermore, it provides an adaptive and automatic 
intrusion detection for smart grid environments  

3.4. CNN/LSTM Anomaly Detection in SCADA 

The Secure Water Treatment testbed (SWaT) dataset contains up to 36 different 
cyber-attacks. To evaluate the use of unsupervised feature learning for intrusion 
detection in such system, [28] proposes two models using either LSTM (Figure 
6) or 1D CNN as feature learner (Figure 7).  

They use mean MSE as an error function and AdamOptimizer with weight 
decay. The weight decay as a regularisation technique prevent model overfitting 
and the AdamOptimizer [29] is computationally efficient and require little 
memory. The first Deep Neural Network (DNN) architecture is a stacked LTSM 
with a fully connected layer at the top for classification purpose. With the LSTM 
model, setting a learning rate (between 0.001 and 0.00001), and a decay value 
(from 0.9 to 0.99) they were able to test various depths of LSTM layers (from 64 
to 2048) and sequence lengths (between 50 and 1000). The 1D CNN architecture 
adopted the ReLU-MaxPooling scheme. Different kernel sizes were used for 
the experimentations. On top of the convolutions layer, a fully connected layer 
is added for prediction, and dropout is used to prevent overfitting. The au-
thors tested diverse variations of this CNN architecture, by adding a batch 
normalization layer or by replacing the basic CONV-RELU-POOL block with 
(CONV-RELU) × N-MAXPOOL architecture. They also replaced the convolu-
tionals layers by Inception layers [30] know to provide better performance and 
lower computational cost. The Inception layers use sparse network connections 
instead of the fully connections used by convolution layers, hence the reduction 
of the computational overhead. The experiments were conducted on the SWaT 
dataset which has 36 different cyberattacks. The proposed 1 D CNN model has 
89% of detection rate, which is fairly good, but need to be improved.  

The comparison of the different architectures (Figure 8) shows that LSTMs 
and inception-based convolution not only converge faster, but also yield to  
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Figure 5. Smart grid benchmark testbed [27]. 
 

 

Figure 6. LSTM autoencoder model [28]. 
 

 

Figure 7. 1D convolutional neural network [28]. 
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Figure 8. Test errors [28]. 
 
lower training error rate. The anomaly detection method gives high Area Under 
Curve (AUC), i.e. 0.967 for the eight layers convolutional network. The training 
and testing times of CNN are lower compared to LSTM network. The CNN 
networks performed well for anomaly detection compared to LSTM ones. The 
proposed CNN has a detection rates reaching 85% with a 100% precision.  

3.5. Conditional Deep Belief Networks for False Data Injection in  
Smart Grid 

As a countermeasure for False Data Injection (FDI) attack for electricity theft in 
smart grids, [31] proposes a detection mechanism which is formed of a State 
Vector Estimator (SVE) and a Deep-Learning Based Identification (DLBI) 
scheme. When the FDI attack bypass the SVE engine, the Deep Learning-Base 
Identification (DLBI) tries to detect the tampered data. The proposed Deep 
Neural Network is a Conditional Deep Belief Network (CDBN) that integrates 
the standard Deep Belief Network (DBN) with Conditional Gaussian-Bernoulli 
RBM (CGBRBM) (Figure 9). CGBRBM uses real value data and can model the 
impact of previously observed data on the current behavior feature learning. The 
use of CDBN allows the analysis of temporal attacks patterns [32]. On the other 
hand, using CGBRBM on the first hidden layer and regular RBM for the other 
hidden layer reduces the training and execution time of CDBN architectures. 

An unsupervised approach is used to train the proposed CDBN and a fully 
connected layer is added on top of the model with a binary output node which 
has a sigmoid activation function. The whole deep neural network structure is 
then fine-tuned with back-propagation supervised training with labeled data. 
The proposed CDBN efficiently reveal the high-dimensional temporal behavior 
features of the unobservable FDI attacks that bypass the SVE mechanism with a 
high accuracy rate over 94% even in the presence of occasional operation faults, 
meaning that unknown attacks could be detected. 
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Figure 9. CDBN architecture [31]. 

3.6. Anomaly Detection© Using RBM-Based Deep Autoencoder 

Wind turbines usually operate in harsh and variable environment, making vari-
ous parts subject to failure. This situation can lead to unavailability and even de-
struction, causing important maintenance costs. As a remedy of this situation, 
the authors [33] present a deep auto-encoder (DAE) approach to detect early 
anomalies as well as provide fault analysis of wind turbines parts. The data asso-
ciated to each wind turbine component is extracted in order to build the DAE 
model which is composed of stacked RBM [7]. The use of a DAE based on RBM 
building blocks is because of the power of RBM in highly capturing the varia-
tional potential of input data [34]. 

Two major steps are involved in the DAE training process i.e. pre-training 
and fine-tuning. The former is a layer-wise pre-training of each composing 
RBM, while the latter allows the initialization of the deep auto-encoder. During 
the pre-training phase, the long-term normal operating unlabeled SCADA data 
is used. 

Following the pre-training phase which initializes the weights and bias of the 
DAE is the fine-tuning step. The back-propagation algorithm uses the normal 
operation labeled data for a supervised learning. The SCADA data fed to the 
DAE is encoded, then decoded, and a reconstruction error is calculated (Figure 
10). 

A SCADA data samples obtained from wind turbine normal operation is used 
to train the DAE. The training process allows the DAE to extract the internal re-
lationship between the input and the output, and setup the model parameters. 
An index of part health condition is obtained by the reconstruction error of the  
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Figure 10. Structure of DAE network [33]. 
 
DAE. A dynamic adaptive threshold is then used for a better monitoring. The 
anomaly detection and fault location analysis is performed by combining the 
reconstruction error, the adaptive threshold and the input-output residual. 

The proposed DAE model allows early fault detection as well as avoids false 
alarms. Moreover, it allows the determination of the location of the faulty com-
ponent. 

3.7. Gas Turbine Combustors Monitoring with Stacked Denoising  
Auto-Encoder and Extreme Learning Machine 

In order to monitor gas turbine combustors’ health and detect abnormal beha-
viors and incipient faults earlier, [35] proposes a deep neural network approach. 
The proposed model is a Stacked Denoising Auto-encoder (SDAE) [20], to 
which an Extreme Learning Machine (ELM) [13] is added (Figure 11). The 
SDAE used for the unsupervised learning of features allow more robust feature 
learning, even though the input data is noisy. The feature learned from the 
SDAE is fed to the ELM module for classification purpose. 

Unlike in other feedforward neural networks, in ELM, don’t need to be trained. 
Unveiling the connections between hidden and output nodes is ELM training 
method, which is fast [36]. The only ELM design parameter is the number of 
hidden neurons. To test the proposed approach, the authors have used seven 
months of one turbine data containing normal and abnormal data. In order to 
demonstrate the effectiveness of unsupervised feature learning for combustor 
anomaly detection, the authors compare classification performance between us-
ing the learned features and handcrafted features (Figure 12). The results show 
that the deep learned features give significant better classification performance 
than the handcrafted features (detection rate of 99% and 96% for deep learned 
features and the handcrafted features respectively).  

4. Summary of Studied Approaches 

Table 1 shows a summary of the different approaches. 
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Figure 11. Structure of unsupervised feature learning for 
combustor anomaly detection [35]. 

 

 

Figure 12. ROCs comparison [33]. 
 
Table 1. Summary of deep learning unsupervised feature learning in ICS. 

Method Feature learner Classifier Anomaly Accuracy 

SVE + CDBN [31] 
CDBN 
RBM 

FCNN FDI > 94% 

Stacked LSTM + 
Bloom Filter [8] 

Stacked LSTM Softmax 

­ Data injection 
­ Command injection 
­ Reconnaissance 
­ DoS 

92% 

Stacked AE + 
Softmax [23] 

SAE Softmax 

­ DoS 
­ Probe 
­ R2L 
­ U2R 

97.6% 
86.34% 
12.98% 
39.62% 

CNN/LSTM 
+ FCNN [28] 

CNN/LSTM FCNN 36 attacks 
92% 

(F1-score) 

DAE-RBM [33] DAE 
DAE 

Residuals 
­ Operating anomaly detection 
­ Fault analysis 

N/A 

SAE + MLP [27] SAE MLP 
­ Data injection 
­ Comman injection 
­ Relay setting modification 

96% 

SDAE + ELM [35] SDAE ELM Operating faults 99% 
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The deep architectures are formed with stacked autoencoders, convolutional 
neural networks, long short term memories or deep belief networks, or by com-
bining these architectures. Those deep architectures are used to learn the SCADA 
networks features and softmax, fully connected neutral network, multilayer per-
ceptron or extreme learning machine are used for the classification. For each 
approach we highlight the feature learning architecture, the classifier used to 
discriminate the data, the types of the attacks detected and the results in terms of 
accuracy. 

5. Conclusions 

Deep Learning approaches are more and more used for anomaly detection in 
SCADA systems. The unsupervised feature learning capability that makes it 
possible to learn important features from available SCADA network large data in 
order to deliver high anomaly detection rate contributes to the rising interest in 
deep learning approaches. Multiple architectures such as CNN, LSTM, DBN, 
SAE, SDAE or a combination of them are used to learn the SCADA data fea-
tures, and classifiers such as Softmax layer, Fully connected neural network; 
ELM, DAE or MLP are used for the classification. In most situations, deep 
learning approaches outperform standard approaches, but their Achille’s heel 
remains the high training time required for their training. 

Interesting research direction took by the scientific community to overcome 
the high training time shortcoming is the use of distributed deep learning ap-
proaches for anomaly detection in Industrial Control Systems. In a future work, 
we will propose a distributed deep learning approach for anomaly detection in 
Industrial Control Systems.  
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