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Two-stage multi-scale breast mass segmentation for full

mammogram analysis without user intervention
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Abstract

Mammography is the primary imaging modality used for early detection and

diagnosis of breast cancer. X-ray mammogram analysis mainly refers to the

localization of suspicious regions of interest followed by segmentation, towards

further lesion classification into benign versus malignant. Among diverse types

of breast abnormalities, masses are the most important clinical findings of breast

carcinomas. However, manually segmenting breast masses from native mammo-

grams is time-consuming and error-prone. Therefore, an integrated computer-

aided diagnosis system is required to assist clinicians for automatic and precise

breast mass delineation. In this work, we present a two-stage multi-scale pipeline

that provides accurate mass contours from high-resolution full mammograms.

First, we propose an extended deep detector integrating a multi-scale fusion

strategy for automated mass localization. Second, a convolutional encoder-

decoder network using nested and dense skip connections is employed to fine-

delineate candidate masses. Unlike most previous studies based on segmentation

from regions, our framework handles mass segmentation from native full mam-

mograms without any user intervention. Trained on INbreast and DDSM-CBIS

public datasets, the pipeline achieves an overall average Dice of 80.44% on IN-

breast test images, outperforming state-of-the-art. Our system shows promising
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accuracy as an automatic full-image mass segmentation system. Extensive ex-

periments reveals robustness against the diversity of size, shape and appearance

of breast masses, towards better interaction-free computer-aided diagnosis.

Keywords: breast cancer, X-ray mammogram, mass segmentation, multi-scale

detection, deep convolutional encoder-decoder, computer-aided diagnosis

1. Introduction

Breast cancer is ranked first among all cancers in terms of frequency, accounting

for 25% of cancer cases and 15% of cancer-related deaths [1]. It is also the

leading cause of cancer death among women from 20 to 59 years old [2]. X-ray

mammography is known as a key tool for cost-effective early detection of breast5

abnormalities and help women prevent and fight against breast cancer.

Among diverse types of breast abnormalities (mass, calcification, asymme-

try, distortion...), masses are the most important clinical symptoms of breast

carcinomas. Texture, shape and margin characteristics of masses play a key role

for further breast tissue analysis [3]. Despite massive screening, many patients10

are given heavy treatments by mistake due to the lack of second reading [4].

Computer-aided diagnosis (CAD) systems for mammogram interpretation have

been designed to avoid time-consuming and tedious second opinions. Recent sys-

tems rely on deep learning methods for their ability to outperform traditional

approaches without hand-crafted features. However, due to the requirements in15

clinical practice, some studies report that current CAD tools are inefficient and

not automatic enough to significantly improve diagnosis guidance [5].

Low signal-to-noise ratio and variability in mass shapes and contours make

mass segmentation challenging from whole mammograms. Most existing CAD

tools focus on segmentation from low-resolution mammograms or from manually20

extracted suspicious areas [6, 7]. Even if those solutions largely simplify the seg-

mentation process, they come at the cost of overall robustness and applicability

in routine. First, mass patches are less representative than the entire image.

Second, accurate pre-selected mass regions are not available during screening.
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In this work, we address breast mass segmentation from native full X-ray25

mammograms, one of the most essential and challenging task towards efficient

automated mammogram analysis. Related works mainly rely on one-stage deep

architectures [8, 7, 9]. However, we argue that the tasks of localizing mass areas

from mammograms and extracting precise boundaries for each mass are natu-

rally two tasks with contradictory focuses: context-level semantic information30

for the former, resolution-level details for the latter. Addressing both challenges

into one single network may lead to a sub-optimal trade-off and thus hinder pre-

cise full mammogram delineations. Additionally, increasing the network depth

which could cover more spatial context and extract higher level features cannot

be done ad-infinitum for memory and computational reasons.35

To tackle the aforementioned problems, we propose a two-stage multi-scale

pipeline which performs automatic and highly precise mass segmentation from

native high-resolution X-ray mammograms. The proposed framework (Fig.1)

consists of two steps. First, image-based mass localization using a novel multi-

scale fusion is performed for automatic mass selection. Specifically, mass detec-40

tor can be trained at multiple scales such that the localization procedure can

also be extended by fusing predictions performed at multiple scales. Thus, we

aim at identifying masses of any size, position or shape from the whole image,

regardless of the resolution details. Second, we propose to employ a region-based

mass segmentation model relying on a convolutional encoder-decoder architec-45

ture with nested and dense skip connections to obtain better mass delineations

than standard deep segmentation models. Through our pipeline, we drastically

reduce the number of unsuccessful detections while allowing a variable number

of candidate regions to be automatically selected for segmentation without any

expert interventions, leading to more reliable mass contours from full mammo-50

grams. The proposed approach can be easily integrated into clinical routine and

is able to help diagnosis by acting as a relevant fully-automated second opinion.

This paper is organized as follows. In Sect.2, we present background ma-

terial related to mass detection and segmentation using deep learning. The

proposed two-stage framework associating mass localization and segmentation55
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Figure 1: Two-stage multi-scale pipeline for mass localization and segmentation from high-

resolution X-ray mammograms. Red (green) lines indicate estimated (ground truth) delin-

eations. MSF deals with the proposed multi-scale fusion strategy for automatic mass selection.

is presented in Sect.3. In particular, we describe a novel multi-scale fusion ap-

proach which improves the identification of suspicious areas. Sect.4 provides

experiments on public databases and prove the effectiveness of the whole frame-

work. We end up with a discussion in Sect.5 and conclusions in Sect.6.

2. Related works60

In the past few years, statistical models [10] and machine learning techniques

[11, 12] have been mainly used for lesion detection [13], classification [11, 3, 14]

and segmentation [10, 12, 15] tasks to assist clinicians for computer-assisted

diagnosis of breast cancer. Some studies also focus on mammographic density

characterization [15, 16, 17] to target breast cancer management. In particular,65

Olivier et al. [15] propose a pixel-based support vector machine (SVM) classifier

for breast density segmentation. Hizukuri et al. [10] introduce a level set method

which is based on an energy function defined with region, edge and regularizing

terms to segment breast masses. Hmida et al. [12] perform mass segmentation

using a fuzzy active contour model obtained by combining fuzzy C-means and70

Chan-Vese models before classifying masses based on possibility theory. All

these tasks are now routinely carried out in a purely data-driven fashion us-

ing convolutional neural networks (CNN). Specifically, many contributions have
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been proposed for breast imaging segmentation, which is an important and ac-

tive research area. Deep learning-based segmentation is usually performed using75

convolutional encoder-decoder (CED) architectures such as fully convolutional

networks (FCN) [18], U-Net [8] and Seg-Net [19] where the encoder performs

multi-scale feature extraction whereas the symmetric decoder upsamples fea-

ture maps to recover spatial resolution. U-Net uses skip connections to combine

corresponding encoder and decoder feature maps to better recover high-level80

details [8] and works quite well with relatively small datasets.

The CED paradigm has been widely adopted by most of the recent ap-

proaches designed for breast mass segmentation. Owing to large but highly

similar contextual features of mammograms and unpredictable shapes and sizes

of masses, most segmentation techniques focus on pre-segmented regions of in-85

terest (RoI). Li et al. [6] integrate the benefits of residual learning to improve

the performance of U-Net to address gradient vanishing and exploding issues

arising when increasing CNN depth. More recent studies introduce generative

adversarial networks (GAN) [20] where the adversarial network enforces the gen-

erative network to provide realistic contours. Thus, Singh et al. [7] advocate90

conditional GAN with mass RoI as conditioning inputs for mass delineation.

Caballo et al. [21] also exploit GAN [20] but as an augmentation strategy to

generate synthetic breast images to further improve deep segmentation. Byra

et al. [22] develop a selective kernel U-Net to adjust receptive fields through an

attention mechanism and fuse feature maps with dilated and conventional con-95

volutions. Alternatively, U-Net++ employs an CED with nested and dense skip

connections [23]. However, these strategies focus on local segmentation while

neglecting crucial contextual information. Afterwards, a multi-scale cascade

of U-Net architectures as a one-stage full image mass segmentation method

has been proposed [9] using multi-level image information fusion from high-100

resolution mammograms. Different from these works, we focus on a two-stage

pipeline where masses are firstly localized before being precisely delineated.

Regarding breast mass detection, although many recently proposed object

detection models [24, 25, 26, 27] have achieved great success on common object
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detection tasks, automatic mass detection still remains a challenge due to the105

low signal-to-noise ratio and the unpredictable appearance of masses in X-ray

mammograms. Sapate et al. [13] propose a machine learning based algorithm to

calculate the correspondence score of each lesion pair in dual views before fusing

information to discriminate malignant tumours from benign masses using SVM.

Agarwal et al. [28] analyze the performance of popular deep CNN architectures110

in terms of mass/non-mass classification. Alternatively, Jung et al. [29] propose

a mass detector based on RetinaNet [30] exploiting a feature pyramid network

optimized through a focal loss. Yap et al. [31] automate breast lesion detec-

tion using Faster-RCNN [25] with Inception-ResNet-v2 [32]. However, these

learning-based detectors may fail in identifying masses of any size, position or115

shape from the whole image. Existing detectors might therefore not produce

sufficiently good proposals for further breast mass segmentation purposes.

Many studies focus on building multi-stage networks or integrating series of

steps together. Dhungel et al. [33] propose a cascade of deep belief networks and

Gaussian mixture models to provide mass candidates, followed by two cascades120

of CNN and random forest to refine detection results. Once suspicious areas are

identified, they employ deep structured learning to perform mass segmentation.

Al-Antari et al. [34] propose an integrated mass detection, segmentation and

classification pipeline from downsampled mammograms. Although their system

could assist radiologists in multi-stage diagnosis, they still manually eliminate125

false localized candidate masses before the segmentation stage, which is imprac-

tical as an automatic CAD system. Apart from that, they exploit low-resolution

mammograms. Image details are therefore lost during this process. In compar-

ison, our approach aims at avoiding complex processing pipelines and human

interventions, towards accurate and precise breast mass segmentation.130

3. Material and methods

To deal with mass segmentation from native resolution mammograms arising

from public datasets such as INbreast [35] or DDSM-CBIS [36] (Sect.3.1), we
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propose an integrated framework (Fig.1) consisting of two modules: image-

based mass detection (Sect.3.2) followed by region-based mass segmentation135

(Sect.3.3). The former is based on a deep detection model extended based on

a novel multi-scale fusion procedure to reduce wrong proposals and further im-

prove detection accuracy (Sect.3.2). This stage performs coarse mass detection

on entire mammograms and provides suspicious regions to the second stage.

The latter conducts refined mass segmentation on extracted areas relying on140

a deep convolutional encoder-decoder architecture with nested and dense skip

connections. An image reconstruction step is finally followed to visualize both

mass location and segmentation results in high-resolution full mammograms.

3.1. Imaging datasets

We focus on mass detection and segmentation from 2048 × 1024 full mammo-145

grams arising from two publicly-available mammogram datasets: INbreast [35]

and DDSM-CBIS [36]. INbreast1 [35] consists of 410 mammograms from 115

examinations. Four types of lesions (masses, calcifications, asymmetry and dis-

tortions) are included, but only 107 images containing masses as well as accurate

delineations made by specialists are used. Conversely, DDSM-CBIS2 (Digital150

Database for Screening Mammography) [36] is a relatively larger database con-

taining approximately 2,500 mammograms including normal, benign and ma-

lignant cases and coarse ground truth manual delineations. In this work, 1514

DDSM-CBIS images containing masses are employed in the training phase.

3.2. Image-based mass detection155

Among existing deep detectors, YOLOv3 [24] is adopted in this work for mass

localization from full mammograms thanks to its good trade-off between accu-

racy and efficiency. However, other detectors such as SSD [37], Faster R-CNN

[25] or RetinaNet [30] can also be applied as alternative detection schemes.

160

1http://medicalresearch.inescporto.pt/breastresearch/
2https://doi.org/10.7937/K9/TCIA.2016.7O02S9CY
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YOLOv3 detector. The employed YOLO (You Only Look Once) implemen-

tation exploits the Darknet-53 backbone architecture consisting of 53 successive

3 × 3 and 1 × 1 convolutional layers as well as some shortcut connections. Fea-

ture maps from different scales are used to deal with huge mass size and aspect

ratio variance, i.e., larger feature maps are assigned to detect smaller masses and165

vice versa. Following [24], YOLOv3 uses anchor boxes to predict through re-

gression the coordinates of bounding boxes. Different from Faster R-CNN [25]

which uses manually selected boxes, k-means clustering is used to recompute

the 9 anchor settings to adapt YOLOv3 to the target mammography datasets.

For training, we use pre-trained weights arising from ImageNet [38] pre-training.170

Extension using multi-scale fusion. Although recently proposed detection

models [24, 25, 26, 27] have achieved excellent results on public common object

detection datasets such as Pascal VOC [39] or Microsoft-COCO [40], they are not

optimal to be applied directly to mammograms for two main reasons. First, they175

are still struggling with object size variance. Typically, most object detectors

have worse performance for small objects than for medium or large structures.

Especially in our context, this problem becomes more serious as the size and

aspect ratio of masses vary strongly. Second, mass detection is generally more

difficult than common object detection since masses are visually less obvious180

and less contrasted with respect to surrounding healthy tissues, combined with

a great diversity of shape and texture. Therefore, single-scale prediction might

not provide sufficiently good proposals, leading to the failure of the next stage

dedicated to breast mass segmentation.

In addition, previous works including [34] that also use YOLO as mass de-185

tection model tend to manually select candidate masses to avoid false-positive

proposals before the segmentation stage. We argue, however, that such ap-

proaches assume that they have already box-level expert annotations during

validation and test phases, which is less practical and not obvious. As a matter

of fact, an automatic and fully-integrated CAD system should not require any190

expert annotations for clinical purposes.
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160× 320 256× 512 320× 640 480× 960

Figure 2: YOLOv3 predictions performed at multiple scales for one given mammogram. Red

boxes correspond to mass RoI candidates with associated probabilities in magenta. Green

contours arise from ground truth annotations.

To address the problem of unsuccessful single-scale detection and avoid man-

ual selection, we propose a multi-scale fusion (MSF) strategy. Note that one

of the important designs in YOLOv3 is the multi-scale training, for which in-

put images are dynamically resized every 10 batches instead of fixing the input195

image resolution. Image resolutions are randomly chosen from multiples of 32

since the model downsamples by a factor of 32. As a consequence, our MSF

extension tends to fully exploit the multi-scale features extracted by YOLOv3

during training to further refine the generated candidates. Moreover, it allows

us to be robust to the input size so that images with different resolutions can200

be processed without multiple training. In the same spirit as for training, we

propose in the prediction stage to exploit results from different resolutions to

make the network being more sensitive to masses with very small or large spa-

tial extents. As shown in Fig.2, we are able to perform different predictions

at different scales using the same network. Thus, for a given mammogram, we205

propose to fuse predictions arising from multiple scales.

The proposed MSF scheme consists of three main steps (Fig.3). For a given

mammogram, detections are first carried out at different image scales (Fig.3a).

Since larger resolution will exceed the memory limits while smaller resolution
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(a) (b) (c) (d)

Figure 3: Proposed multi-scale fusion (MSF) applied to YOLOv3 predictions. The MSF

strategy focuses on redundant information in multiple predictions. Red boxes correspond to

mass RoI candidates. Green contours arise from ground truth annotations.

will reduce the accuracy, we use the following 5 image ratios: (160 × 320),210

(256 × 512), (320 × 640), (416 × 832), (480 × 960). Second, we collect all B

coordinates of candidate bounding boxes and the corresponding confidence score

sets C provided in the previous step by YOLOv3. For each of these boxes

Bi, we create a confidence mask Mi where the value of the box region is the

corresponding confidence score ci. Let (X,Y )i be the set of coordinates from215

bounding box Bi. For each (x, y) in (X,Y )i, we assign Mi(x, y) = ci with

ci ∈ C. After that, a single confidence mask Ms (Fig.3b) is created by fusing

the set of confidence masks {M1,M2, . . . ,MB} obtained at each prediction scale.

Ms is computed and normalized as follows:

Ms =

B∑

i=1

Mi

N ×max(c1, c2, . . . , cB)
(1)

220

Third, we consider an empirically selected threshold λ to implement majority

voting (Fig.3c) to the fusion mask Ms by keeping areas where Ms ≥ λ. Then,

we measure the properties of labeled Ms and find bounding box(es) that de-

scribe the fusion mask most properly (Fig.3d), i.e. we find bounding box tuples
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(minx,miny,maxx,maxy) such that pixels of the same label belong to the same225

bounding box in the half-open intervals [minx; maxx) and [miny; maxy).

Through the proposed MSF, we focus on redundant information that appears

in multiple scales. From a statistical point of view, MSF allows to identify the

most frequently detected regions in multiple predicted maps in order to limit

false-positive predictions. Conversely, areas detected in few prediction maps230

or areas with low confidence scores are unlikely to be selected. Moreover, we

analyze the effect of the empirical parameter λ in order to keep an high level of

sensitivity while improving specificity. Accordingly, we are able to remove most

of the uncertainty and find the most reliable predictions. Final detections are

resized to 256× 256 patches and fed into our second stage.235

3.3. Region-based mass segmentation

After the image-based mass detection stage, we propose a region-based mass seg-

mentation stage that performs refined mass delineation from candidate patches

using a deep convolutional encoder-decoder. Among recent advances of segmen-

tation approaches, we implement a powerful deep architecture with nested and240

skip connections, following U-Net++ [23].

So far, general semantic segmentation in natural images has achieved great

success [18, 19, 41]. Recently proposed conditional residual U-Net [6], condi-

tional GAN [7] and cascaded U-Net [9] implemented for breast mass segmenta-

tion are all extensions of standard U-Net [8]. Essentially, they share a key idea:245

shortcut connections from the encoder to the decoder that fuse downsampled

features with upsampled features to recover high-level details more accurately.

However, such models suffer from loss of space resolution details and semantic

gap along skip connections. Rather than using standard shortcuts, the employed

model builds connections through a series of nested dense convolutional blocks250

as a convolutional pyramid to enhance feature fusion. Concatenating interme-

diate subsequent layers bridges the semantic gap between feature maps. Then,

a deep supervision is applied to prevent gradient vanishing issues in the middle

part during back-propagation while ensuring a better segmentation accuracy.
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The architecture is derived from standard U-Net: we employ in practice the255

vgg19 network as backbone for the encoder, which consists of 16 convolutional

layers with repeated 3 × 3 convolutions followed by ReLU activation function

and 2× 2 max-pooling (3 fully-connected layers are not included). The decoder

is symmetrically designed. The proposed mass segmentation method is referred

as v19U-Net++. Since reaching a generic from-stratch model without overfit-260

ting is difficult, we pre-train the encoder branch using ImageNet [38] following

[42] to reduce the data scarcity issue while allowing faster convergence. We

exhaustively implemented four segmentation models for comparison: U-Net [8],

cGAN [7], cascaded U-Net [9] as well as v19U-Net++ as suggested. Once we

get segmentation results, we can reconstruct high-resolution full mammograms265

with mass identification and delineation for visualization purposes.

4. Experiments and results

In what follows, we report experimental settings and results for image-based

detection (Sect.4.1) and segmentation (Sect.4.2) of breast masses. In particular,

evaluations of final segmentation results are carried out both quantitatively and270

qualitatively. All experiments are implemented using Keras backend with a

single Nvidia GeForce GTX 1080Ti GPU.

4.1. Image-based mass detection

Experiments of this stage focus on mass detection from 2048 × 1024 mammo-

grams. Typically, training a detection model on an insufficient dataset such275

as INbreast does not guarantee precise results. Therefore, a transfer learning

technique is used to leverage a deep learning model on one task to another re-

lated task. In this work, we use convolutional weights pre-trained on ImageNet

[38], then we conduct transfer learning from DDSM-CBIS to INbreast. The

DDSM-CBIS database is only employed in the detection stage, where all 1514280

images containing masses are employed to pre-train the YOLOv3 model for 60k

iterations before fine-tuning on INbreast for 30k iterations with batch size 32.
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Figure 4: Precision-recall curves of the YOLOv3 [24] detection results on 5 test sets (from T1

to T5) extracted from the INbreast [35] dataset.

The initial learning rate is set to 0.001 and decreases by 0.1 after 10k and 20k

iterations. The INbreast dataset is too small to be representative if being di-

vided into three subsets (train, validation and test sets). Therefore, we employ a285

ratio of 70% to split INbreast into train and test subsets containing respectively

74 and 33 images. In order to eliminate the bias error, we use 5 random splits

(denoted as T1, T2, ..., T5) to provide averaged results with cross-validation.

Mass localization evaluation. We evaluate the detection performance of290

YOLOv3 by calculating the average precision (AP) score for masses present

in each test set. Fig.4 shows precision-recall curves for each test set using an

intersection over union ≥ 0.5. Precision-recall curves summarize the trade-off

between the true positive rate and the positive predictive value using different

probability thresholds. Then, we compute the average precision scores which295

summarize the weighted increase in precision with each change in recall for the

thresholds in the precision-recall curve. From Fig.4, we can clearly see that the

precision-recall curves are fairly consistent between different test sets, which

13



Metrics T1 T2 T3 T4 T5 average

AP (%) 78.64 70.24 76.11 79.05 73.28 75.46±1.7

Table 1: Performance of YOLOv3 [24] on the INbreast [35] dataset using average precision

(AP) scores. T1 to T5 correspond to 5 experimental test sets.

Figure 5: Free response operating characteristic (FROC) curves of detection results on IN-

breast [35], representing true positive rate (TPR) and average false positive per image (FPavg).

Curves from Scale-1 to Scale-4 display results of single-scale predictions at 160×320, 256×512,

320× 640 and 480× 960. Stars shows TPR@FPavg of the final decision at fixed thresholds.

demonstrates the consistency of YOLOv3. Tab.1 displays the corresponding

AP scores of each curve. YOLOv3 yields an averaged AP of 75.46% with a300

standard error of 1.7. For comparison, most state-of-the-art methods achieve a

mean AP of 80% on PASCAL VOC and 60% on MS-COCO, which reveals very

reasonable precision given the complexity of the mass detection task.

We fuse prediction results obtained at resolutions 160 × 320, 256 × 512,

320 × 640, 416 × 832 and 480 × 960 for multi-scale fusion (Sect.3.2). We use305

free-response receiver operating characteristic (FROC) as evaluation criterion.

Fig.5 illustrates the performance of MSF for test set T1 as example. The FROC

curve is created by plotting the true positive rate (TPR) against the average
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λ
TPR@FPavg

T1 T2 T3 T4 T5

λ = 0 0.91@1.58 0.97@1.39 0.89@1.30 0.91@1.55 1.0@0.87

λ = 0.5 0.97@0.18 0.94@0.27 0.91@0.18 0.92@0.36 0.97@0.12

λ = 0.6 0.94@0.12 0.94@0.24 0.91@0.18 0.92@0.30 0.97@0.06

λ = 0.7 0.94@0.09 0.89@0.27 0.91@0.15 0.89@0.18 0.97@0.06

Table 2: Performance of the proposed MSF method on INbreast [35] using TPR@FPavg scores

with different λ. T1 to T5 correspond to the 5 experimental test sets.

false positive per image (FPavg) using various thresholds. Since MSF uses an

empirical threshold λ to make final decisions, we tested a set of thresholds310

λ ∈ {0, 0.5, 0.6, 0.7} to get different TPR@FPavg scores. λ = 0 means that we

keep all the detections of YOLO, while λ = 0.5 means that we keep the part

of mask Ms ≥ 0.5 (Eq.1) and so on. Fig.5 indicates that TPR@FPavg scores

of MSF are all located in the upper left corner of FROC space, showing that

our MSF strategy largely boosts the accuracy of mass localization compared315

to single-scale detections, with a more reliable TPR and less FP proposals.

Additionally, the TPR@FPavg scores shown in Tab.2 highlights the influence

of λ. With a higher threshold, the false positives tend to be reduced while the

TPR reaches the peak levels at around λ = 0.5 ∼ 0.6. We finally choose λ = 0.6

considering the trade-off between true-positives and false-positives proposals.320

We also compare the image-based mass detection with respect to state-of-

the-art using TPR@FPavg (Tab.3). Even if results are only for reference since

datasets used for training and testing are not identical, it highlights that MSF

(0.94@0.22) significantly outperforms [13, 43, 28] in both TPR and FPavg and

shows consistent TPR with respect to [33] (0.95@5) while providing less FP.325

4.2. Mass segmentation

Region-based mass segmentation. We perform extensive experiments on

INbreast [35] to validate the employed CED network with nested and dense skip

connections (v19U-Net++, Sect.3.3). We compared it with the baseline U-Net
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Methods TPR@FPavg dataset images

Sapate et al. (2020) [13] 0.88 @1.51 DDSM 148

Ribli et al. (2018) [43] 0.90 @ 0.3 INbreast 107

Dhungel et al. (2017) [33] 0.95 @ 5 INbreast 410

Agarwal et al. (2019) [28] 0.92 @ 0.5 INbreast 410

YOLOv3+MSF (ours) λ = 0.5 0.94 @ 0.22 INbreast 107

Table 3: Detection performance comparisons between the proposed MSF and state-of-the-art

[13, 43, 33, 28]. Our provided TPR@FPavg score is the average of T1 to T5 test sets at λ = 0.5.

[8] as well as two other recently published architectures: cGAN [7] and cas-330

caded U-Net [9]. Experiments are carried out using the same train-test splits

on INbreast examinations as in the previous stage. Training image crops are

extracted around ground truth masses and resized to 256 × 256 pixels. His-

togram equalization is then used to enhance the contrast. We train each model

with a batch size of 4, Adam optimizer and Dice loss (the cGAN network loss335

is formulated by combining binary cross entropy and Dice losses) defined as

2TP
2TP+FP+FN

where TP, FP, TN, and FN are the pixel level true positives, false

positives, true negatives and false negatives. We use pre-trained weights from

ImageNet [38] and then train models until convergence.

To assess the final segmentation performance, we compute Dice scores over340

each test set on full mammograms for each different methodology (Tab.4).

Compared to U-Net [8] (89.20±0.5), results of cascaded U-Net (89.49±0.3) are

slightly better since it employs a multi-scale cascade of U-Net combing auto-

context [9]. The gain is relatively low considering that [9] has been designed

to tackle mass segmentation from entire mammograms. cGAN [7] also brings345

slight benefits (90.02±0.2) to the original U-Net but less than v19U-Net++ [23]

which yields the best results on all test sets with 90.86% as average Dice score.

Two-stage mass segmentation. To assess the final segmentation perfor-

mance of the proposed two-stage system (Fig.1), we compare the overall Dice350
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Methods T1 T2 T3 T4 T5 average (%)

U-Net [8] 90.47 89.76 88.16 87.97 89.66 89.20±0.5

cGAN [7] 90.30 90.53 89.70 89.33 90.22 90.02±0.2

cascaded U-Net [9] 89.20 90.40 88.83 89.18 89.82 89.49±0.3

v19U-Net++ [23] 90.94 91.42 90.56 90.23 91.13 90.86±0.2

Table 4: Average Dice score (%) of different patch-based deep segmentation methods on

INbreast [35] mass patches centered around ground truth masses. Best scores are in bold.

on full mammograms from different methods. As a proof of concept, we test the

second stage (Sect.3.3) using the candidate patches arising from the first stage

(Sect.3.2), which are resized to 256×256 pixels before feeding into segmentation

models. Tab.5 presents comparative evaluations for each model: one-stage seg-

mentation, two-stage segmentation without and with the proposed MSF on high-355

resolution full mammograms. In particular, in the two-stage without MSF setup,

mass candidates are provided by a simple single-scale prediction of YOLOv3.

Comparisons between models indicate that v19U-Net++ yields better seg-

mentation results for two-stage segmentation, with an average Dice score of

70.96% without MSF and 80.44% with MSF. Compared with one-stage segmen-360

tation, a significant gap is crossed when using a two-stage scheme, demonstrat-

ing the effectiveness of our two-stage localization-segmentation design. MSF

brings Dice improvements to the two-stage scheme from 9.17% with U-Net to

9.76% with cGAN (9.48% with v19U-Net++), showing that adding the MSF

strategy into the pipeline can further greatly improve performance. We also ob-365

serve that one-stage segmentation methods reach various level of robustness [9]

when applied to high-resolution mammograms: from 28.92% (cGAN) to 65.49%

(cascaded U-Net). Conversely, our two-stage scheme provides more stable and

reliable results, which suggests that it could be very effective in clinical practice.

Evaluation is supplemented with qualitative results. Fig.6 shows full mam-370

mogram detection and segmentation results using the proposed two-stage with

MSF compared to two-stage without MSF. We observe that by using the MSF
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Method Setup T1 T2 T3 T4 T5 average (%)

U-Net [8]

one-stage 43.66 44.12 45.93 40.79 47.36 44.37±1.1

two-stage w/o MSF 70.59 68.46 70.56 74.66 66.06 70.07±2.8

two-stage with MSF 77.40 83.07 75.45 77.80 82.47 79.24±1.5

cGAN [7]

one-stage 25.27 30.91 24.74 23.21 40.45 28.92±3.2

two-stage w/o MSF 70.28 66.93 70.22 74.93 63.73 69.22±3.7

two-stage with MSF 75.66 81.66 76.70 77.44 83.45 78.98±1.5

cascaded U-Net [9]

one-stage 64.37 61.56 65.63 65.35 70.55 65.49±1.5

two-stage w/o MSF 70.89 67.78 70.01 73.35 65.02 69.81±3.4

two-stage with MSF 75.76 82.51 76.78 77.69 83.16 79.18±1.5

v19U-Net++ [23]

one-stage 53.38 49.38 47.44 48.85 61.80 52.17±2.6

two-stage w/o MSF 72.18 68.55 72.27 76.10 65.69 70.96±3.6

two-stage with MSF 77.51 84.38 77.39 78.80 84.12 80.44±1.6

Table 5: Average Dice score (%) obtained on final delineations from 2048×1024 full INbreast

[35] mammograms. Best scores are in bold.

strategy, we have considerable improvements in both mass localization accuracy

and mass delineation precision. It also shows that we can successfully detect

multiple masses in a single mammogram. In addition, we compare in Fig.7 the375

proposed method with cascaded U-Net [9] which also addresses full mammogram

segmentation. Our method obtains more accurate detections and boundary ad-

herence, while almost all false-positive proposals are eliminated. Moreover, the

method is robust in dealing with masses of any size, shape or texture. This

confirms that our methodology is very generalizable in handling the problem of380

strong class imbalance and tumor appearance variability.

5. Discussion

When dealing with breast mass segmentation from full mammograms at native

resolution, one-stage segmentation appears impractical due to the contradiction

between the preservation of high-level semantic information and resolution de-385

tails. In turn, CAD systems integrated into routine requires high accuracy due
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(a
)

(b
)

Figure 6: Mass segmentation using our two-stage method without (a) and with (b) multi-scale

fusion (MSF). Yellow, red and green stand for final detection, segmentation and ground truth.

to clinical requirements, i.e. high true positive rate combined with low false

positive rate. Meanwhile, the feasibility is also a key aspect that should not be

overlooked towards efficient deployment. The ideal CAD system should be able

to help with diagnosis without any additional radiologist guidance.390

In this work, we came up the idea of a two-stage method which is desired

to imitate the realistic procedure in clinical scenarios, and we tried to autom-

atize the candidate selection process using multi-scale fusion. First, the deep

network roughly localizes masses of any size, position and shape from the whole

image by fusing predictions at multiple scales. Second, we perform an effective395
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(a
)

(b
)

Figure 7: Mass segmentation using cascaded U-Net [9] (a) and our two-stage method with MSF

(b) on INbreast [35] images. Yellow, red and green lines stand for final detection, segmentation

and ground truth contours. Yellow (red) arrows highlight true-positive (false-positive) cases.

patch-based deep segmentation method with nested and dense shortcuts to ob-

tain the accurate delineation of mass contours. Our system is able to achieve

80.44% Dice, which sets the state-of-the-art performance in mass segmentation

on the publicly available INbreast dataset, outperforming one-stage segmenta-

tion schemes such as cGAN [7] (28.92%), U-Net [8] (44.37%) or cascaded U-Net400

[9]) (65.49%). The newly designed MSF brings Dice improvements to the two-

stage scheme from 9.17% (U-Net[8]) to 9.76% (cGAN [7]). Fusing predictions

performed at multiple scales addresses the problem of unsuccessful single detec-
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tion and avoids manual selection (contrary to [34]) by removing the most of the

uncertainty while finding the most reliable abnormalities without interventions.405

This makes our method very competitive for integration into clinical practice.

6. Conclusion

In this paper, we studied the problem of automated mass segmentation from

high-resolution full mammograms. We proposed a two-stage framework combin-

ing a deep, coarse-scale mass detection with a new multi-scale fusion strategy410

and a fine-scale mass segmentation using dense and nested skip connections.

Our system works as an accurate and automatic mass localization and segmen-

tation CAD system. Results on the INbreast dataset confirm that the proposed

pipeline outperforms state-of-the-art with promising model robustness and gen-

eralizability. Our contributions make full-mammogram mass segmentation more415

reliable and steadily push forward the implementation of realistic CAD systems.

Future research should consider the potential effects of fusing multi-view and

contralateral symmetry information to increase the robustness of breast lesion

detection and delineation and therefore improve clinical guidance. Further-

more, our framework is generic enough to be extended to other medical imaging420

modalities for both anatomical and pathological structure segmentation.
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