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Abstract—People counting plays an important role in many
people-centric applications including crowd control, traffic man-
agement and smart home energy management. With the ad-
vancements in wireless sensing, it is now possible to intelligently
sense the presence of people with wireless signals. Yet, a lot
of challenges arise when Wi-Fi solutions are used for counting
humans due to the uncertainty of the states in the environment.
In this paper, we propose a novel 3D-Convolutional Neural
Network (3D-CNN) architecture able to extract features from
range-Doppler images to count the number of people present
in an indoor environment by detecting their movements. We
generate the range-Doppler images from a Celeno Wi-Fi pulse
Doppler radar that uses the 5 GHz frequency band. To the best
of our knowledge, this work is the first to count people based on
a Wi-Fi Doppler radar. Our experimental results show that our
deep learning model is able to estimate the number of people for
up to four with an average accuracy of 89%.

Index Terms—Wi-Fi sensing, Doppler radar, presence detec-
tion, people counting, deep learning

I. INTRODUCTION

Wireless sensing has received great attention in recent years.

A lot of research efforts have revealed the sensing ability to

recognize human activity, human identification, localization

and beyond [1]. In particular, Wi-Fi environmental sensing

plays an important role in the areas of health care, smart home,

security and virtual games [2]. Among its various applications,

people counting in indoor environments is of great interest

to many people-centric, Internet of Things (IoT) applications

including crowd control, traffic management and smart home

energy management. Classical solutions to this problem are

devised into two broad categories: image-based and non-image

based solutions. Image-based counting solutions use specific

hardware (e.g., camera) for people counting. In addition to

being an expensive approach, this method has many drawbacks

such as Line-of-Sight (LOS) requirement, lighting conditions

requirements, and privacy problems.

Non-image based solutions perform counting based on wire-

less signals (infrared, ultrasound, Wi-Fi, etc.). These solutions

alleviate the previous drawbacks as they can perform in a

Non-Line-of-Sight (NLOS) environment. They do not require

lighting conditions, they significantly reduce privacy concerns

and they are economical and practical solutions since they do

not require additional equipment to be installed. Among the

different radio technologies, Wi-Fi emerges as a promising

and effective solution in wireless sensing. This can be best

achieved by utilizing the Channel State Information (CSI)

values captured from Wi-Fi signals highlighting the different

multipaths distortions based on human activity [3].

Feature extraction combined with Machine Learning (ML)

models have received great attention in activity recognition

and people counting during the last decade [1]. In particular,

Deep Learning (DL) has paved the way as an appealing option

in extracting useful features for different classification tasks

while adapting to real-world imperfections. One of the earliest

work on counting people using DL is found in [4]. The authors

explored the correlation between people count (up to five

people) and Wi-Fi CSI variations using a fully connected

feed-forward neural network with two hidden layers. Their

model achieved an accuracy of 78% when neither action nor

position restrictions are imposed on the volunteers. The work

was extended in [5] where a Convolutional Neural Network

(CNN) combined with Long Short Term Memory (LSTM)

DL architecture was adopted to resolve the dependencies

of number of people and CSI. With this architecture, the

accuracy was improved to 84.6%. In another work on counting

humans using DL, the authors in [6] leveraged Recurrent

Neural Network (RNN) to count people walking in an indoor

environment by placing the transmitter and receiver behind the

walls. The authors tested their system for a total number of

10 simultaneous people reaching an accuracy of 59%. In a

similar work, the authors in [7] proposed a CNN architecture

to extract features from the received CSI information to link

it with the number of moving people. The model achieved an

average accuracy of 71% for counting up to five people in

different indoor locations.

The above mentioned work considered the relationship

between CSI waveforms and people counting. Doppler radar

systems have been also proposed to capture the human body

motion. Opportunistic monitoring using passive Doppler radar

was considered in [8]. With a wireless energy transmitter and

a radar sensor, the authors generated Doppler spectrograms

to extract the person’s activity from a set of actions. In a

similar work, the authors in [9] studied Doppler scalograms for

different human activities including walking, clapping, falling

and sitting.

In this paper, we propose a novel 3D-CNN model able

to extract features from range-Doppler images to count the

number of people present in an indoor environment. The

experiment is carried out using a commercial Wi-Fi pulse

Doppler radar that operates in the 5 GHz frequency band. This

radar can be integrated in any classical Wi-Fi access point that



uses the same frequency band. To the best of our knowledge,

this work is the first to count people based on Doppler and

micro-Doppler frequencies measured from movements such

as walking and breathing. In contrast to [4]–[7] that measure

the CSI between two locations, in this paper, and for the

best of our knowledge, we propose the first solution to use

a single device able to generate range-Doppler images for

feature extraction to classify people count. We achieve an

accuracy better than the ones attained in the previous presented

literature. Different from [8], [9] that limit the work to one

person only, our model extends the presence detection up to

four people.

The rest of the paper is organized as follows. Section II

describes the pulse Doppler radar used in this work and

details the signal processing steps. In Section III, we detail the

architecture of the 3D-CNN used in this work. The evaluation

of our proposed model is reported in Section IV. Finally,

Section V concludes the paper.

II. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first present the hardware description

and the performance of the pulse Doppler radar used in this

work to sense the environment. Then, we detail the signal

processing steps performed to generate the range-Doppler

images capturing the presence of people. Finally, we describe

the experimental setup carried out in this work. The overview

of the system design block diagram is summarized in Fig. 1.
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Fig. 1: Block diagram system overview.

A. Wi-Fi radar overview and performance

The measurements in this paper have been carried out by an

active pulse Doppler radar based on Celeno 802.11ac Wi-Fi

chipset in the 5 GHz frequency band [10]. This radar contains

one transmitter and 4 receiving antennas. Its antenna elements

geometry corresponds to a uniform linear array. For calibration

purposes, a reference channel that usually contains the signal

from source is acquired by one of the receiving antennas’ port.

The radar uses 80 MHz of bandwidth to generate Wi-Fi radio

pulses with a period of 1 ms (can be modified), then it collects
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Fig. 2: Average power delay profile over the different receive

antennas.

the back scattered echos in the form of CSI data of the shifted

Doppler frequencies. We summarize in Table I the radar radio

characteristics.

TABLE I: Celeno radar radio characteristics.

Carrier frequency 5.54 GHz
Bandwidth 80 MHz
Pulse duration 40 µ s
Pulse period 1 ms
EIRP 11 dBm
Directivity 30

◦ lobe at 3 dB and 60
◦ lobe at 6 dB

Celeno radar has the potential to detect objects as far as 10

meters in LOS and 5-6 meters in NLOS depending on obstruct-

ing materials. It has a range resolution of ∆r = c/2B = 1.875
m. The Doppler frequency resolution ∆Fd is a function of the

observation time frame Tframe, ∆Fd = 1/Tframe. In order

to be able to detect people with different movement activities

(e.g. walking and breathing), a fine Doppler resolution is

required. In the next section, we discuss how to adjust the

Doppler resolution to detect the sensitivity from different

actions.

B. CSI processing

The presence of people in an indoor environment can be

detected using pulse Doppler radar by either sensing move-

ment or detecting breathing. These features can be obtained by

measuring the Doppler frequencies received from the reflected

signals of moving objects (in this case people). We divide the

signal processing into two parts:

1) Reduce spectral leakage: We plot in Fig. 2, the average

Power Delay Profile (PDP) over the different receive antennas

during a total time duration T . The radar samples its total

80 MHz bandwidth into 48 sample points. We then add zero

padding of size 3 × 48 to resolve the waveform signal. This

results in 48 × 4 = 192 samples. These samples can also be
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Fig. 3: Average power delay profile over the different receive

antennas with Hanning window on the range axes.

interpreted as range or distance points. The received signals are

calibrated by the reference transmitted signal and the average

PDP is calculated as follows:

ri(τ) = hi(τ)× s(τ) = hi(τ)× r4(τ) (1a)

Ri(F ) = FFT(ri(τ)) = Hi(F )×R4(F ) (1b)

PDP(τ) = hi(τ) = iFFT(Hi(F )) (1c)

where τ is the propagation delay, ri is the received signal at the

i-th receiver, s is the transmitted pulse and hi is the channel

gain between the object and receiver i. Since the transmitter

is directly connected to the port of r4, s(τ) can be substituted

by r4(τ). FFT and iFFT are the Fast Fourier Transform and

inverse Fast Fourier Transform, respectively.

In order to reduce spectral leakage and side lobes that might

be masking actual echos, we apply a window in the frequency

domain for the range axes. The choice of the window has

a major impact on the side lobes attenuation, and thus on

reducing the spectral leakage. Many windows exist in the

literature with different characteristics (i.e., highest side lobe

level, side lobe fall-off, etc.) [11]. In our work, we applied a

Hanning window on the range axes. This window has a wide

peak and low side lobes. In Fig. 3, we plot the average PDP

with a Hanning window applied on the range axes. Compared

to Fig. 2, we can observe the different delayed echos that were

masked by the side lobes due to spectral leakage.

For each transmitted pulse, the radar captures the CSI from

its returned signal in the form of amplitudes and phases over

the 192 sample points. For a total of N transmitted pulses, we

denote by Ci the captured CSI by the i-th receiver. It can be

expressed as follows:

Ci =









(a1,1, φ1,1) . . . (a1,192, φ1,192)
...

. . .
...

(aN,1, φN,1)
... (aN,192, φN,192)









(2)

where an,d and φn,d are the amplitude and phase received

from the n-th pulse at the d-th distance point.

A range-Doppler image Ii can be generated from the above

captured Ci by performing a Fast Fourier Transform (FFT)

over Tframe consisting of F pulses. A Chebyshev window is

applied in the time domain with a 75 dB side attenuation to

reduce spectral leakage and capture low Doppler frequencies

that are around the DC component. We can write a range-

Doppler image as follows:

Ii =









|b1,1| . . . |b1,192|
...

. . .
...

|bF,1|
... |bF,192|









(3)

where |bf,d| is the amplitude of the Doppler frequency fd at

distance point d.

From the total N transmitted pulses, we generate S Doppler

images each containing F frequency bins. The number of

images can be calculated as follows:

S =
⌊N − F

F

⌋

(4)

These images will be used later as the input of our deep

learning architecture.

2) Time-Frequency analysis: The Doppler images gener-

ated in the previous section are sampled in time. Thus, a

sequence of these images show the variations of the Doppler

frequencies in time. To address the time dependency varia-

tions, we use Short Time Fourier Transform (STFT). The idea

is to pass a sliding Chebyshev window over the received signal

to capture the frequency components. The window of width

Tframe slides on the time axis with a step duration tstep.

In order to detect human presence, a high Doppler resolution

is required to capture slow movements. Breathing for instance

results in a Doppler frequency of less then 1 Hz. We set

the radar sampling frequency fs = 200 Hz. We then set

the window size to F = 1024 pulses and a time step

tstep = 130 ms. This is equivalent to a time frame duration of

Tframe = 1024/200 = 5.12 seconds. This gives us a Doppler

frequency resolution of ∆fd = 1/Tframe = 0.195 Hz with

a maximal Doppler frequency of fmax
d = ±fs/2 = ±100

Hz. Such resolution will allow us to capture low Doppler

frequencies from respiration as well as higher frequencies from

movements such as walking.

In order to reduce the process complexity of the deep

learning process, we limit the size of the Doppler images to 64

frequency bins and 64 range points. This results in an image of

size 64×64. We do this by grouping different frequency bins to

obtain a logarithmic scale on the frequency axes that spans low

frequency components for micro movement detection (e.g.,

breathing detection) and high frequency components for macro

movement detection (e.g., walking). We illustrate in Fig. 4

some examples of generated images from different scenarios.

C. Experimental setup and datasets collection

We conducted our experiment in an apartment living room

representing a domestic indoor environment. The detail of the
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(a) Empty room
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(b) One sitting person
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(c) One walking person

5 10 15 20 25 30 35 40 45 50 55 60 64

Sampling number (Range)

-60

-40

-20

0

20

40

60

D
o

p
p

le
r 

fr
e
q

u
e
n

c
y
 (

H
z
)

0

5

10

15

20

25

30

35

40

(d) One sitting person and
one walking person
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(e) Two sitting persons and
one walking person
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(f) Four walking persons

Fig. 4: Examples of different range-Doppler images with different scenarios.

room plan is described in Fig. 5. This room has furniture: a

dining table, a small table, a bed, a closet, a desk and chairs.

The furniture is all made from wood. The radar is placed on

the floor as shown in the Fig. 5 and facing the area of interest.

The blue dotted area represents the coordinates where people

are allowed to move. The radar is placed in this location to

have the area in interest in LOS.

We collected data samples from different scenarios. We

conducted 12 cases of measurements: 1) empty room, 2) one

sitting person, 3) one walking person, 4) two sitting persons,

5) one sitting person and one walking person, 6) three sitting

persons, 7) one sitting person and two walking persons, 8)

two sitting persons and one walking person, 9) four sitting

persons, 10) four walking persons, 11) one sitting person and

three walking persons and 12) two sitting persons and two

walking persons.

We do not limit or force the volunteers to take fixed

positions or fixed activities. The volunteers are free to move

inside the dotted area with no restrictions on the distance

between them.

III. 3D-CNN ARCHITECTURE

This section highlights the deep learning architecture which

learns from the constructed images the number of people

present inside the room. This architecture is based on CNN

and in particular 3D-CNN [12].
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Fig. 5: Room plan and measurement locations.

CNN is a class of deep learning neural networks that is used

in image processing and classification [13]. CNN networks

have shown very good performances in objects recognition by

automatically extracting features from raw inputs and ability to

learn localized patterns through weights sharing and pooling.

One important characteristic of CNN is that the extraction

of features is shift-invariant. This gives CNN the ability to

recognize patterns at different locations of the input [14]. This
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Fig. 6: 3D-CNN architecture illustrating the input images, the

output classes and the different intermediate layers.

characteristic is important in our classification problem as the

presence signal can happen at any period of time.

The main component of a CNN is the convolution layer. It

is composed of several filters or kernels that are small in size.

The goal of these filters is to extract features from the image

that is the input of the network. In a 3D-CNN, The filters

have the shape of (size 1, size 2, size 3) which is an matrix of

weights, and each point in the filter is a neuron. These filters

are applied to the input. In our problem, the input is a sequence

of images. It has the shape of (Distance, Doppler frequency,

time). The output of the convolution layer is called feature

maps having a shape of (Distance, Doppler frequency, time,

filters number). The pooling layer acts as a down-sampling

layer to reduce the system computational complexity.

We consider a CNN composed of 3 convolution layers.

Each convolution layer is followed by a max pooling layer.

The output of the last max pooling layer serves as input for

a classical Multi-Layer Perceptron (MLP) network. The role

of the MLP is to classify the extracted information (features

map) from the previous convolution layers. We illustrate in

Fig. 6 the architecture of our convolution network. The input

consists of a sequence of 38 images, each having a size of

64x64. This size represents the points in Doppler frequency

and distance. In other words, we have 64 Doppler frequencies

and 64 distances points. The number of images or frames can

be regarded as a time dimension. The convolution layers (C1,

C2 and C3) consist of 64, 25 and 16 filters, respectively. Their

kernel sizes are 3 × 3 × 10, 3 × 3 × 9 and 3 × 3 × 8. Each

convolution layer is followed by a max pooling layer (P1, P2,

and P3) of size (2 × 2 × 2). The output of the last pooling

layer (P3) enters an MLP network of size 1000 neurons and

then another MLP network of size 200. The output of the last

MLP network (M3) is the output of our network identifying

to which class the input images belongs. In order to reduce

overfitting, we add a dropout layer between the MLP layers

with a value of 0.15. The choice of the hyperparameters

are based on extensive simulations. These values resulted in

having the optimal accuracy.

IV. EVALUATION AND RESULTS

In this section, we describe the datasets used for training

and validation in our deep learning architecture. For training

the 3D-CNN, we use the Keras library with TensorFlow 1.5

back-end in Python 3.6. The training and testing phase have

been supported by two NVIDIA Quadro P5000 with CUDA

Toolkit 9.1 and cuDNN 7.1 with a batch size set to 64.

A. Evaluation setup

We consider 944 samples for training and validation. Each

sample consists of 38 range-Doppler images. Given that the

images are generated from sliding windows of size 5.12

seconds with a time step tstep = 130 ms, each sample of

38 images is 10.06 seconds long. We detail in Table II the

measurements taken for the different scenarios. We refer to

0P the case of empty room (zero person), as for 1P, 2P, 3P

and 4P the cases where there are one to four persons. Then,

we distinguish between a person sitting on a chair (s) and a

walking person (w). For each scenario, we conduct different

measurements. The total amount of measurement time is 158
minutes.

Because we have a limited number of training samples, we

artificially increase our dataset by making translations on the

range axes in the range-Doppler images. This is a possible

solution since in this work we are not interested at what range

(position) the frequencies were captured. Thus, we perform

four translations for each image resulting in augmenting our

dataset by a factor of four. Then, we adopt K-Fold cross

validation method to train and validate the data collected. This

method splits the collected data into K sets. One of the k sets

is used for testing (validation), while the remaining k− 1 sets

are used for training. The cross validation is repeated K times

with each of the k sets is used exactly once as the validation

data. The overall performance is then evaluated by averaging

over the K sets. In this work, we set K = 5.

B. Benchmark algorithms

We compare our 3D-CNN architecture with two baseline

methods: Fully Connected Back Propagation (FCBP) neural

network and Gaussian Naive Bayes (GaussianNB). FCBP is

a fully connected MLP neural network which contains a lot

of tunable parameters that is suited for people counting. We

use a FCBP with two hidden layers. The first hidden layer

contains 300 neurons whereas the second hidden layer contains

100 neurons. The input layer is the sequence of 38 images

vectorized and reshaped to one dimension vector of size 64×
64× 38.

Naive Bayes model is a classical linear classification algo-

rithm that belongs to the family of probabilistic classifiers [15].

It is a supervised learning method based on applying Bayes

theorem with strong independence (naive) assumption between

features. GaussianNB assumes that the collected data are

distributed according to a Gaussian (or normal) distribution.

Naive Bayes classifiers do not require a lot of data to train

and they are simple to implement. The input of this model is

similar to the FCBP model.



TABLE II: Summary of the measurements dataset from different scenarios.

Scenario 0P
1P
(s)

1P
(w)

2P
(s)

2P
(1s,1w)

3P
(s)

3P
(1s,2w)

3P
(2s,1w)

4P
(s)

4P
(w)

4P
(1s,3w)

4P
(2s,2w)

Total

Number
of samples

94 100 100 100 100 50 100 100 50 50 50 50 944

Measurement
time (mins)

15.7 16.7 16.7 16.7 16.7 8.4 16.7 16.7 8.4 8.4 8.4 8.4 158

C. Results

In Table III, we compare the average classification accuracy

obtained by our proposed 3D-CNN architecture with FCBP

and GaussianNB. This average is obtained over the 5 exper-

iments (Ex.#) from the 5-fold cross validation. From the ob-

tained results, we observe that 3D-CNN outperforms the other

two baseline models with an average accuracy of 89.62%,

while FCBP and GaussianNB achieve 73.51% and 45.35%,

respectively. The lower performance of the GaussianNB model

is due to the assumption that the features are independent.

Thus, it processes the range-Doppler images in the sample

as one vector with independent data features. The importance

of the correlation between the range-Doppler images in one

sample can be well distinguished with the other two deep

learning architectures as the average classification accuracy

almost doubled. The accuracy achieved by FCBP shows that

it is powerful enough to count people. However, 3D-CNN

handles images sequence better by extracting features from

the applied filters, and uses these features for classification.

TABLE III: Classification accuracy obtained from our pro-

posed 3D-CNN architecture and other baseline methods.

Architecture/

Method
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Acc.

3D-CNN 89.15% 87.95% 92.19% 87.28% 91.52% 89.62%

FCBP 73.54% 69.84% 73% 78.83% 72.34% 73.51%

GaussianNB 42.72% 42.35% 47.6% 48% 46.1% 45.35%

We present in Fig. 7 the confusion matrix obtained from our

3D-CNN model describing the performance of our classifier.

The horizontal axis corresponds to the actual class whereas

the vertical axes corresponds to the predicted class.

V. CONCLUSION

In this paper, we present a novel DL model based on

3D convolutional networks to solve the problem of people

counting with a pulse Doppler Wi-Fi radar. Taking into account

the complexity of the environment and various cases such

as sitting and walking people, we achieved a good counting

accuracy of 89% for up to four people in LOS with no

constraints on the actions taken by the volunteers. For future

work, we focus on extending the model to sense human

presence and count people in a NLOS scenario and to be able

to track the positions of the people.
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