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ABSTRACT

Variational models are among the state-of-the-art formulations
for the resolution of ill-posed inverse problems. Following
recent advances in learning-based variational settings, we in-
vestigate the end-to-end learning of variational models, more
precisely of the regularization term given some observation
model, jointly to the associated solver, so that we can optimize
the reconstruction performance. In the proposed end-to-end
setting, both the variational cost and the gradient-based solver
are stated as neural networks using automatic differentiation
for the latter. We consider an application to inverse problems
with incomplete datasets (image inpainting and multivariate
time series interpolation). We experimentally illustrate that
this framework can lead to a significant gain in terms of recon-
struction performance, including w.r.t. the direct minimization
of the variational formulation derived from the known genera-
tive model.

Index Terms— inverse problems, missing data, varia-
tional models, regularization, optimizer learning, end-to-end

1. INTRODUCTION

Solving an inverse problem consists in computing an accept-
able solution of a model that can explain measured observa-
tions. Inverse problems involve so-called forward or generative
models describing the generation process of the observed data.
The inversion of the defined forward model is frequently an ill-
posed problem. Variational approaches are very popular in this
context. They state the resolution of the inverse problems as
the minimization of an energy or cost. This cost can be broken
down into two terms: a data fidelity term related to a specific
observation model and a regularization term characterizing the
space of acceptable solutions. From a Bayesian point of view,
it refers to a trade-off between the data fidelity term and the
regularization term specified independently from a particular
observation configuration.

*This work was supported by LEFE program (LEFE MANU project IA-
OAC), CNES (grant SWOT-DIEGO) and ANR Projects Melody and OceaniX.
It benefited from HPC and GPU resources from Azure (Microsoft EU Ocean
awards) and from GENCI-IDRIS (Grant 2020-101030).

Overall, for a given inverse problem, it is necessary to spec-
ify accurately the observation model, to define an appropriate
regularization term and to implement a suitable optimization
method. These three steps are the key elements in solving an
inverse problem using variational approaches. An important
issue is that there is no guarantees in general that the solution
of the resulting optimization problem is actually the true state
from which the observed data have been generated (see Fig[T)).
This mismatch can have several causes: discrepancy between
the forward model and the actual data generation process, un-
suitable regularization term or optimization algorithm stuck in
a local minimum.

Here, through a focus on interpolation (inpainting) prob-
lems, we show that deep learning frameworks provide new
means for the design and implementation of such variational
models. We introduce an end-to-end framework to jointly
learn in a supervised setting the variational cost and the asso-
ciated solver. This is done by formulating this joint learning
problem as a meta-learning problem where the regularization
term is stated as a neural network. From the defined variational
representation, we design a learnable gradient-based algorithm
(in an inner solver loop), whose iterations are implemented
through a recurrent neural network. An outer optimization
loop is performed simultaneously via automatic differentiation
to minimize the reconstruction error on the true parameters,
thus learning an adapted variational cost and solver at the same
time. As illustrated in Fig[l] the learned regularization term
is therefore no longer independent of the generative model
and the available observation data, and the associated solver is
adapted to the configuration at hand.

Our main contributions are as follows: (i) a versatile end-
to-end framework for solving interpolation problems by jointly
learning the variational cost and the corresponding solver; (ii)
experiments showing that learned solvers can greatly speed
up and improve the interpolation performance compared to a
standard gradient descent for predefined generative models;
(iii) experiments showing that the joint learning of the vari-
ational representation and the associated solver may further
improve the reconstruction performance, including when the
true forward model is known.

This paper is organized as follows. Section 2] introduces
the problem statement. We detail the proposed end-to-end



framework in Section [3] We report results in Section 4] and
concluding statements in Section 3]

2. PROBLEM STATEMENT AND RELATED WORK

This work addresses the resolution of ill-posed inverse prob-
lems stated as the minimization of a variational cost [[1]]

2 = argmin Uo(z,y) + Ur(z) (1)

where x is the unknown state, y an observation, Uy the ob-
servation or data-fidelity term and U, the regularization term.
The role of the latter is to constrain the inversion of the obser-
vation model to a realistic set of solutions.

It may be noticed that, only for very specific parameteri-
zations of the above observation and regularization terms, the
minimization of the variational cost truly retrieves the true
state 2"“¢ associated with observation y, or even minimizes
the reconstruction error of the true state. For a given obser-
vation model Up, one would theoretically expect to retrieve
some optimal parameterization ® of regularization term Up
such that the reconstruction error for the true state is truly
minimized. This typically leads to considering the following
bi-level optimization problem [2]]

argming 30, |24 — &,
@)

s.t. Vn, T, =argming, U (Tn,Yn)

where U(z,y) = Uo(z,y)+Ur(x) and ® refers to the param-
eterization of regularization term Ugr. One may consider the
direct minimization of this bi-level optimization criterion w.r.t.
both ® and {z,, },,. Here, we investigate a different approach
where we define an end-to-end neural-network architecture
to solve the inner optimization based on the considered varia-
tional formulation. As described in the next Section, we state
the inner optimization as the output of a learnable iterative
solver, which exploits as input the gradient of variational cost
U. As such, we may distinguish the observable and learnable
variational cost U, which can be computed from the available
observation dataset for any state x, and the target loss to be
optimized, which includes here the reconstruction error for the
true state. To our knowledge, no related previous works, e.g.
[13,14]], considers such learnable iterative solvers which exploits
the automatic differentiation of the learnable variational cost.

As an illustration, we focus on interpolation issues such
that the observation term Up (z, y) writes

Uo(z,y) = ||z — yll3 3)

where () is the domain on which observation y is actually
available. This applies to n-dimensional tensors, such as scalar
and multivariate signals, images and image series. For instance,
for a scalar image, {2 refers to a spatial domain and ||z —y||3, is
computed as [, 2(p)?dp. This formulation holds for a variety
of applications, including among others inpainting problems
[5], matrix completion [6]] and data assimilation problems [[7]].

3. PROPOSED END-TO-END FRAMEWORK

This section presents the proposed end-to-end framework for
the joint learning of a variational representation and of the as-
sociated solver with a view to solving an interpolation problem.
We introduce in Section [3.1] the considered parameterizations
@ for regularization term Up in (), the proposed end-to-end
architecture in Section [3.2]and the learning strategy in Section

B3

3.1. NN parameterization for regularization term Up

Here, the regularization term Up, is parameterized as
Ur(z) = Ap([lz — @(z)|) 4)

where @ is a neural network operator and p a scalar-valued
function, typically the square function or the absolute value.
This parameterization relates to a variety of classical regular-
ization terms for the resolution terms. Among others, we may
cite gradient norms [1} 8] where ® relates to the discretization
of the gradient operator onto the image grid, dictionary-based
terms [9, [10]] or Markov Random Fields [[11}[12]. Operator ®
may be interpreted as a projection operator, which encodes the
manifold in which state = lives. In our experiments, we set
p(u) = u?. Other parameterizations could be considered as
well, including trainable ones.

In the neural network (NN) literature, auto-encoder ar-
chitectures naturally arise as possible parameterizations for
operator ®. Such architectures impose that state  may be
represented by a lower-dimensional state according to some
possibly non-linear mapping. This is similar to the dictionary-
based setting. The constraint that x is fully described by a
lower-dimensional state may appear restrictive. For instance,
it can be expected to result in smoothing out fine-scale pat-
terns when considering image inpainting issues. One may then
rather consider any NN architecture such that input and output
states have the same dimension. This includes any previously
proposed architecture to solve inverse problems [[13 14} [15]].
Here, we focus on U-Net architectures, initially introduced
for image segmentation purposes [16]. U-Net architectures
embeds multi-scale representations, which are particularly ap-
pealing to address interpolation issues. Here, we consider a
two-scale U-Net-like architectures such that

O(x) = Up (P1 (Dw(x))) + Po(x) 5)

where Up and Dw are upsampling (ConvTranspose layer) and
downsampling (AveragePooling layer) operators. ®; o are
CNNs combining convolutional layers and ReLu activations.
We may point out that the resulting regularization term may
be regarded as Gibbs random field prior where the cliques
are implicitly specified through the kernels of the convolution
layers [[L1].

When considering space-time interpolation issues for
physical processes, we may also exploit physics-informed



parameterizations for operator ®. Assuming that x is a
time-dependent process governed by an Ordinary or Partial
Differential Equation (ODE/PDE) such that
dx(t)
dt

we may define ® as the associated flow operator

= ¢ (x(1)) (©)

t

¢ (z(w)) du @)

t—A

O(x)(t) =x(t —A)+

with A the considered integration time step. The resulting
NN architecture involves the implementation of a numerical
integration scheme [17, [18]]. Here, as in [19], we consider a
fourth-order Runge-Kutta integration scheme for a given NN
parameterization of ODE operator ¢.

3.2. End-to-end architecture

We state the resolution of the considered inverse problem as
the implementation of an iterative gradient-based solver from
variational cost U (I). We assume that we are provided as
inputs an observation y, the associated observation domain €2
and some initialization z(°), Following meta-learning schemes
[20], we investigate an LSTM-based solver. More precisely,
the k*" update of the proposed iterative solver is given by

g* Y = LSTM [a-V,Us (20, y, Q) h(k),c(k)]

Pk = L) gy (g(’““))
®)

where g(*+1) is the output of an LSTM cell, h(k), c(k) the in-
ternal states of the LSTM cell, o a normalization scalar and H
a linear or convolutional mapping. At each iteration, the LSTM
updates its internal states based on gradient VU (z(*), 3, Q),
which automatically derives from the automatic differentiation
of variational cost U w.r.t. state x.

Overall, the proposed end-to-end architecture implements
K steps of the proposed LSTM iterative updates. Let us denote
by \If@,r(l‘(o) ,y, Q) the output of the resulting K -step gradient
solver using as inputs initialization z(°), observation y and
observed domain {2. We may point that one may consider other
types of solvers, for instance a fixed-step gradient descent as in
[4], a conjugate gradient descent [3] or fixed-point solvers [21].
Experimentally, the proposed LSTM-based solver has been
proven more efficient and has been considered in this study.
Regarding the complexity of this end-to-end architecture, it
involves the parameters of operator ® for regularization term
Ur, weight A and the parameters of the gradient-based LSTM
solvers, which comprise the parameters of a LSTM cell, scalar
parameter « and linear operator H.

3.3. Learning scheme

We benefit from the considered end-to-end architecture to
learn jointly all parameters, that is to say that we jointly learn

the variational cost U and the associated solver so that we
minimize the reconstruction error as targeted in (2)). As such,
we may learn a regularization term adapted to the available
observation setting. More precisely, the considered training
loss decomposes as follows

~ 2 2
L = 1 Zn llzn — an V2 En lzn — (I)(xn)H

+ 3y, B @ (jn)H2

with 11 2 3 weighing parameters. In this loss, we complement
the minimization of the reconstruction error with the minimiza-
tion of the projection error x — ®(x) for both the true states
and the reconstructed ones. The latter terms are regarded as
regularization terms to better constrain the training scheme so
that the learnt regularization term leads to low energy values
for both the true states and the reconstructed ones. Thus, to
some extent, these additional constraints may be related to
energy-based GAN formulations [22].

For a given end-to-end architecture Wg r, we apply
stochastic optimizers such as Adam to jointly learn all pa-
rameters from the minimization of the above learning loss.
Experimentally, we notice that the training phase depicts better
convergence features if we gradually increase the number
of iterations of the LSTM solvers (typically, from 1 to 20
iterations). Weights v 2 3 were empirically set to 1., 0.05 and
0.05.

)

Model Joint

. Solver R-Score P-score
P learning

DICT No OMP 0.25 0.21
No Lasso 0.20 0.21
PCA No FSGD 0.39 0.12
No LSTM-S 0.15 0.12

U-Net No LSTM-S 0.21 <le-3
Yes LSTM-S 0.09 0.02

Table 1. MNIST experiment: We report the performance of
different inpainting methods based on the considered varia-
tional formulation with a fixed-step gradient descent (FSGD)
and a trainable LSTM solver (LSTM-S). Regarding the pa-
rameterization of the regularization term, we consider a linear
PCA and a two-scale U-Net architecture. For benchmarking
purposes, we also include two sparse coding schemes (DICT)
adapted from [[10]. We refer the reader to the main text for the
description of the performance score and additional informa-
tion on the considered schemes.

4. RESULTS

4.1. MNIST data

We first report image inpainting experiments for MNIST data,
especially to provide a comparison with dictionary and auto-
encoder priors [9} [10]. We simulate observed images with
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Fig. 1. Solvers’ energy pathways: we depict the energy path-
ways vs. the reconstruction error for a mini-batch for different
solvers (FSGD,— and LSTM-S,-) for PCA (cyan) and U-Net
(magenta) parameterizations of variational cost U. The U-Net
regularization is learnt jointly to the LSTM solver.

3 randomly sampled 9 x 9 gaps and an additive Gaussian
noise of variance 0.1 for the normalized MNIST dataset. In
these experiments, we test a dense auto-encoder (=500,000 pa-
rameters) and a two-scale U-Net parameterization (=550,000
parameters) for operator . In both cases, the considered
LSTM solver involves a convolutional LSTM cell with 5 chan-
nels. For benchmarking purposes, we include sparse coding
approaches using OMP (Orthogonal Matching Pursuit) and
Lasso solutions [10]. We adapt these schemes for interpo-
lation issues through iterative coding-decoding steps. For
each method, we evaluate the normalized mean square error
(NMSE) of the reconstruction over the entire image domain
(R-Score) and NMSE of the projection error z — ®(z) for
true states x (P-Score). We refer to [23]] for a more detailed
description of our experimental setting.

From Tab[I] and additional experiments in [23], a first key
result is the improvement of the reconstruction error by the
learnt LSTM solver compared with a FSGD minimization of
the variational cost with a pre-trained regularization term (e.g.,
R-Score of 0.54 vs. 1.09 for the PCA version of operator ®).
A second important result is the greater gain issued from the
joint learning of operator ® and of the LSTM solver (0.15
vs. 0.09 for the best R-scores). As illustrated through nu-
merous MNIST examples in [23]], this leads to a noticeable
visual improvement. The learnt solver (Fig. [T) identifies much
better descent pathways for the reconstruction error from the
differentiation of the learnt variational cost than the direct min-
imization of this cost, while only considering 15 iterations of
a gradient-based update. This is regarded as a key feature of
LSTM solver to go beyond a pure gradient descent algorithms
as in [34].

4.2. Multivariate signals governed by ODEs

The second case-study addresses multivariate signals governed
by an ODE so that we are provided with a theoretical ground-
truth for the true representation of the data. Here, we consider

Joint

‘ Model ¢ H . ‘ Solver ‘ R-Score ‘ P-score ‘
learning
ODE-RK4 No FSGD 5.65e-2 6.70e-7
No LSTM-S 4.46e-2 6.70e-7
U-Net Yes LSTM-S 1.94e-2 3.70e-3

Table 2. Experiment with multivariate signals governed
by ODEs: we report for Lorenz-96 dynamics reconstruction
experiments from noisy and under-sampled observations. We
let the reader refer to the main text for the details on the
experimental setting and the parameterizations considered for
operator ® in (I). The evaluation procedure is similar to Tabl[T]

Lorenz-96 dynamics, which are widely used for benchmarking
experiments in geoscience and data assimilation. Lorenz-96
dynamics involve a bilinear ODE which lead to chaotic pat-
terns under the considered parametrization. The generated
dataset involves 2000 time series with 200 time steps as train-
ing dataset and 256 as test dataset. Observation data are gener-
ated with a sampling every 4 time steps, for only 20 randomly
selected components over the 40 components of the state, and
a Gaussian additive noise with a variance of 2. We test the
proposed framework with the parameterization of operator
® as the flow operator of the true ODE with a fourth-order
Runge-Kutta scheme (RK4) and with a two-scale U-Net pa-
rameterization for operator ®. We refer to [23]] for additional
information on this experimental setting.

A surprising result of these experiments is that the ODE-
based prior with the true physical model does not lead to the
best reconstruction performance. The joint learning of the
U-Net parameterization of operator ® and of the LSTM solver
leads a relative decrease of more than 50% of the reconstruc-
tion error. Similarly to MNIST case-study, the LSTM solver
also clearly outperforms the FSGD minimization of the varia-
tional cost.

5. CONCLUSION

To the best of our knowledge, this work provides the first il-
lustration of the relevance of a joint end-to-end learning of
a regularization term of a variational formulation and of an
iterative gradient-based LSTM solver with a view to optimiz-
ing a reconstruction performance. Compared with previous
works, e.g. [3 4], our gradient-based LSTM solver may ap-
ply to any NN-based formulation of the regularization term
and fully benefits from optimizer learning strategies beyond
simpler gradient descent algorithms. They provide new means
to design and implement variational formulations and solvers
optimized for a given reconstruction performance. This work
may open new research avenues for numerous applications
beyond interpolation issues, possibly including the extension
to trainable observation models.
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