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Abstract. Distributed stream processing systems are today gaining mo-
mentum as a tool to perform analytics on continuous data streams. Load
shedding is a technique used to handle unpredictable spikes in the input
load whenever available computing resources are not adequately provi-
sioned. In this paper, we propose Load-Aware Shedding (LAS), a novel
load shedding solution that, unlike previous works, does not rely nei-
ther on a pre-defined cost model nor on any assumption on the tuple
execution duration. Leveraging sketches, LAS efficiently estimates the
execution duration of each tuple with small error bounds and uses this
knowledge to proactively shed input streams at any operator to limiting
queuing latencies while dropping as few tuples as possible. We provide
a theoretical analysis proving that LAS is an (ε, δ)-approximation of the
optimal online load shedder. Furthermore, through an extensive practical
evaluation based on simulations and a prototype, we evaluate its impact
on stream processing applications.

Keywords: Load-Shedding; Stream Processing; Data Streaming; Distributed
systems

1 Introduction

Distributed stream processing systems (DSPS) and Complex Event Processing
(CEP) are today considered as a mainstream technology to build architectures
for the real-time analysis of big data. An application running in a DSPS, or a
query executed by a CEP engine, is typically modeled as a directed acyclic graph
(a topology) where data operators, represented by nodes, are interconnected by
streams of tuples containing data to be analyzed, the directed edges. The success
of such systems can be traced back to their ability to run complex applications
at scale on clusters of commodity hardware or in the cloud.
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Correctly provisioning computing resources for DSPS or CEP engines how-
ever is far from being a trivial task. System designers need to take into account
several factors: the computational complexity of the operators, the overhead
induced by the framework, and the characteristics of the input streams. This
latter aspect is often the most critical, as input data streams may unpredictably
change over time both in rate and in content. Over-provisioning is not economi-
cally sensible, thus system designers are today moving toward approaches based
on elastic scalability [11], where an underlying infrastructure can tune at runtime
the available resources in response to changes in the workload. This represents a
desirable solution when coupled with on-demand provisioning offered by many
cloud platforms, but still may be affected by transient overloads [3], caused for
example by unexpected load spikes, that could temporarily degrade performance
below the desired SLA.

Bursty input load represents a problem for both DSPS and CEP engines as it
may create unpredictable bottlenecks within the system that lead to an increase
in queuing latencies, pushing the system in a state where it cannot deliver the
expected quality of service (typically expressed in terms of tuple completion
latency). Load shedding is generally considered a practical approach to handle
bursty traffic. It consists of dropping a subset of incoming tuples as soon as a
bottleneck is detected in the system. As such, load shedding is a solution that
is complementary [24] and must coexist with resource shaping techniques (like
elastic scaling), rather than being an alternative.

Existing load shedding solutions either randomly drop tuples when bottle-
necks are detected [1] or apply a pre-defined model of the application and its
input that allows them to deterministically take the best shedding decision [25].
In any case, all the existing solutions assume that incoming tuples all impose
the same computational load. However, such assumption does not hold for many
practical use cases; tuple execution duration, in fact, may depend on the tuple
content itself. This is often the case whenever the receiving operator implements
a logic with branches where only a subset of the incoming tuples travels through
every single branch. If the computation associated with each branch generates
different loads, then the execution duration will change from tuple to tuple. A
tuple with a large execution duration may delay the execution of subsequent
tuples in the same stream, thus increasing queuing latencies. If further tuples
are enqueued with large execution durations, this may bring to the emergence
of a bottleneck.

As an example, consider the reach of a tweet, i.e., the number of users that
may receive the re-tweets of a given tweet. This computation entails counting
the number of users that have a direct and un-direct follower relationship (until
a given depth) with the tweet author. Then, depending on the size of the sub-
graph rooted in the author node, the execution times vary. For instance, in our
experiments the execution time belongs to the interval [0.01, 70] ms, the most
frequent execution time was 65 ms, while the average per execution time was 20
ms. In the experimental evaluation, we provide a second use-case exhibiting the
same phenomena.
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Based on this simple observation, we introduce Load-Aware Shedding (LAS),
a novel solution for load shedding in DSPS (or CEP engines) engines. LAS gets
rid of the aforementioned assumptions and provides efficient shedding aimed at
matching given queuing latency targets while dropping as few tuples as possible.
To reach this goal LAS leverages a smart combination of sketch data structures to
efficiently collect at runtime information on the time needed to compute tuples.
This information is used to build and maintain, at runtime, a cost model that is
then exploited to take decisions on when input tuples must be shed. LAS has been
designed as a flexible solution that can be applied on a per-operator basis, thus
allowing developers to target specific critical stream paths in their applications.
The proposed solution provides predictable per operator queuing latencies, an
extremely important feature in several application scenarios where the stream
processing system is expected to deliver results to users in a quasi-real-time
fashion. Furthermore, LAS implements an efficient load shedding solution that
perfectly fits the characteristics of settings where scarce resources are available
(e.g. fog-computing). Finally, LAS can be complemented by an output quality
model that allows blocking it from dropping tuples that may significantly degrade
the final output quality.

The contributions provided by this paper are:

– the introduction of LAS, the first solution for load shedding in DSPS (or CEP
engines) that proactively drops tuples to avoid bottlenecks without requiring
a predefined cost model and without any assumption on the distribution of
tuples;

– a theoretical analysis of LAS that points out how it is an (ε, δ)-approximation
of the optimal online shedding algorithm;

– an experimental evaluation that illustrates how LAS can provide predictable
queuing latencies that approximate a given threshold while dropping a small
fraction of the incoming tuples.

Below, the next section states the system model we consider. Afterward,
Section 3 details LAS whose behavior is then theoretically analyzed in Section
4. Section 5 reports on our experimental evaluation and Section 6 analyzes the
related works. Finally, Section 7 concludes the paper.

2 System Model and Problem Definition

We consider a distributed stream processing system (DSPS) or Complex Event
Processing (CEP) engine deployed on a cluster where several computing nodes
exchange data through messages sent over a network. The stream processing
application (or query) executed by the DSPS (or CEP engine) can be represented
by a topology : a directed acyclic graph interconnecting operators, represented by
vertices, with data streams (DS), represented by edges. Each topology contains
at least a source, i.e., an operator connected only through outbound DSs, and
a sink, i.e., an operator connected only to inbound DSs.
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Symbol Description

t Tuple
σ Stream of tuples
[n] Universe of possible tuples
ft Number of occurrences of t in σ
w(t) Execution duration of tuple t on operator O
q(i) Queuing latency of the i-th tuple of the stream
D(j) Set of dropped tuples
d(j) Number of dropped tuples

Q(j) Average queuing latency
τ Average queuing latency threshold

Ĉ Estimation of the total operator execution duration
F Count Min sketch that tracks tuple frequencies
W Count Min sketch that tracks tuple cumulated execution durations
N Window size parameter
S Snapshot
η Relative error between consecutive snapshots
µ Error threshold

Table 1. Symbols used in the text.

Data injected by the source is encapsulated in units called tuples (or events)
and each data stream is an unbounded sequence of tuples. Without loss of gener-
ality, here we assume that each tuple t is a finite set of key/value pairs that can
be customized to represent complex data structures. To simplify the discussion,
in the rest of this work, we deal with streams of unary tuples each representing
a single non-negative integer value.

For the sake of clarity, and without loss of generality, here we restrict our
model to a topology with an operator LS (load shedder) that decides which
tuples of its outbound DS σ consumed by a downstream operator O shall be
dropped. The actual positioning of LS within a real topology may be tuned,
depending on where bottlenecks are expected to appear within the topology
itself. Nevertheless, we assume that LS is never deployed as a source or sink
in any topology. Tuples in σ are drawn from a large universe [n] = {1, . . . , n}
and are ordered, i.e., σ = 〈t1, . . . , tm〉. Therefore [m] = 1, . . . ,m is the index
sequence associated with the m tuples contained in the stream σ. Both m and
n are unknown. We denote with ft the unknown frequency of tuple t, i.e., the
number of occurrences4 of t in σ.

We assume that the execution duration of tuple t on operator O, denoted
as w(t), depends on the content of the tuple t. We simplify the model assuming
that w depends on a single, fixed and known attribute value of tuple t. Cases in
which this assumption does not hold, e.g. w depends on multiple attributes can
be simply treated by concatenating their values and considering them as a sin-

4 In the data streaming literature, the frequency is the number of occurrences not
divided by time, which differs from the classical (physics) definition [17].
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gle multiplexed attribute [7,5,15]. The probability distribution of such attribute
values, as well as the function w are unknown, may differ from operator to op-
erator and may change over time. However, we assume that subsequent changes
are interleaved by a large enough time frame such that an algorithm may have a
reasonable amount of time to adapt. On the other hand, the input throughput
of the stream may vary, even with a large magnitude, at any time.

Let q(i) be the queuing latency of the i-th tuple of the stream, i.e., the
time spent by the i-th tuple in the inbound buffer of operator O before being
processed. Let us denote as D(j) ⊆ [j], j ≤ m, the set of dropped tuples in a
stream of length m, i.e., dropped tuples are thus represented in D(j) by their
indices in [j] ⊆ [m]. Moreover, let d(j) ≤ j ≤ m be the number of dropped
tuples in a stream prefix of length j, i.e., d(j) = |D(j)|. Then we can define the
average queuing latency as: Q(j) =

∑
i∈[j]\D(j) q(i)/(j − d(j)) for all j ∈ [m].

The goal of the load shedder is to maintain at any point in the stream the
average queuing latency smaller than a given threshold τ by dropping as few
tuples as possible. The quality of the shedder can be evaluated both by comparing
the resultingQ(j) against τ and by measuring the number of dropped tuples d(j).
More formally, the load shedding problem can be defined as follows5.

Problem 1 (Load Shedding). Given a data stream σ = 〈t1, . . . , tm〉, find the
smallest set D(j) such that

∀j ∈ [m] \ D(j), Q(j) ≤ τ.

3 Load Aware Shedding

This section introduces the Load-Aware Shedding algorithm by first providing
an overview, then detailing some background knowledge, and finally describing
the details of its functioning.

3.1 Overview

Load-Aware Shedding (LAS) is based on a simple, yet effective, idea: if we assume
to know the execution duration w(t) of each tuple t on the operator, then we can
foresee the queuing time for each tuple of the operator input stream and then
drop all tuples that will cause the queuing latency threshold τ to be violated.
However, the value of w(t) is generally unknown. A possible solution to this
problem is to build a static cost model for tuple execution duration and then
use it to proactively shed load. However, building an accurate cost model usually
requires a large amount of a priori knowledge on the system. Furthermore, once
a model has been built, it can be hard to handle changes in the system or input
stream characteristics at runtime.

5 This is not the only possible definition of the load shedding problem. Other variants
are briefly discussed in section 6.
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LAS overcomes these issues by building and maintaining at run-time a cost
model for tuple execution durations. It takes shedding decision based on the esti-
mation Ĉ of the total execution duration of the operator: C =

∑
i∈[m]\D(m) w(ti).

To do so, LAS computes an estimation ŵ(t) of the execution duration w(t) of
each tuple t. Then, it computes the sum of the estimated execution durations of
the tuples assigned to the operator, i.e., Ĉ =

∑
i∈[m]\D(m) ŵ(t). At the arrival of

the i-th tuple, subtracting from Ĉ the (physical) time elapsed from the emission
of the first tuple provides us with an estimation q̂(i) of the queuing latency q(i)
for the current tuple.

To enable this approach, LAS builds a sketch on the operator (i.e., a memory
efficient data structure) that will track the execution duration of the tuples it
processes. Using a sketch allows LAS to efficiently track this data independently
from the amount of possibly different tuples handled by the operator. When
a change in the stream or operator characteristics affects the tuples execution
durations w(t), i.e., the sketch content changes, the operator will forward an
updated version to the load shedder, which will then be able to (again) correctly
estimate the tuples execution durations. This solution does not require any a
priori knowledge on the stream or system and is designed to continuously adapt
to changes in the input stream or on the operator characteristics.

Shedding tuples from an incoming stream has in general a negative impact on
the stream processing output quality. LAS approach is focussed on discarding
tuples whose contribution to operator overload is larger, independently from
their content. This approach is meaningful only under the assumption that the
contribution to the stream output is the same for each input tuple. Applications,
where this assumption does not hold, can be managed in LAS by building up
a model for output degradation caused by shedding and then using this model
to check for any candidate tuple if its contribution to the output quality is
compatible with a given constraint.

3.2 Background

2-Universal Hash Functions — Our algorithm uses hash functions randomly
picked from a 2-universal hash functions family. A collection H of hash functions
h : {1, . . . , n} → {0, . . . , c} is said to be 2-universal if for every two different items
x, y ∈ [n], for any h ∈ H, P{h(x) = h(y)} ≤ 1

c , which is the probability of colli-
sion obtained if the hash function assigned truly random values to any x ∈ [n].
Carter and Wegman [4] provide an efficient method to build large families of
hash functions approximating the 2-universality property.

Count Min sketch algorithm — Cormode and Muthukrishnan have introduced
in [6] the Count Min sketch that provides, for each item t in the input stream

an (ε, δ)-additive-approximation f̂t of the frequency ft. The Count Min sketch
consists of a two-dimensional matrix F of size r × c, where r =

⌈
log 1

δ

⌉
and

c =
⌈
e
ε

⌉
. Each row is associated with a different 2-universal hash function hi :

[n]→ [c]. When the Count Min algorithm reads sample t from the input stream,
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Fig. 1. Load-Aware Shedding design with r = 2 (δ = 0.25), c = 4 (ε = 0.70).

it updates each row: ∀i ∈ [r],F [i, hi(t)]← F [i, hi(t)] + 1. Thus, the cell value is
the sum of the frequencies of all the items mapped to that cell. Upon request
of ft estimation, the algorithm returns the smallest cell value among the cells
associated with t: f̂t = mini∈[r]{F [i, hi(t)]}.

Fed with a stream of m items, the space complexity of this algorithm is
O( 1

ε log 1
δ (logm + log n)) bits, while update and query time complexities are

O(log 1/δ). The Count Min algorithm guarantees that the following bound holds

on the estimation accuracy for each item read from the input stream: P{|f̂t −
ft| ≥ ε(m− ft)} ≤ δ, while ft ≤ f̂t is always true.

This algorithm can be easily generalized to provide (ε, δ)-additive-appro-
ximation of point queries on a stream of updates, i.e., a stream where each
item t carries a positive integer update value vt. When the Count Min algorithm
reads the pair 〈t, v〉 from the input stream, the update routine changes as fol-
lows: ∀i ∈ [r],F [i, hi(t)]← F [i, hi(t)] + v.

3.3 LAS design

The operator stores two Count Min sketch matrices (Figure 1.A): the first one,
denoted as F , tracks the tuple frequencies ft; the second one, denoted as W,
tracks the tuple cumulated execution durations Wt = w(t) × ft. Both Count

Min matrices share the same sizes, controlled by parameters ε and δ, and hash
functions. The latter is the generalized version of the Count Min (Section 3.2)
where the update value is the tuple execution duration when processed by the
instance (i.e., v = w(t)). The operator updates (Listing 3.1 lines 24-27) both
matrices after each tuple execution.

The operator is modeled as a finite state machine (Figure 2) with two states:
START and STABILIZING. The START state lasts as long as the operator
has executed N tuples, where N is a user defined window size parameter. The
transition to the STABILIZING state (Figure 2.A) triggers the creation of a
new snapshot S. A snapshot is a matrix of size r × c where ∀i ∈ [r], j ∈ [c] :
S[i, j] = W[i, j]/F [i, j] (Listing 3.1 lines 15-16). We say that the F and W
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Listing 3.1: Operator

1: init do
2: F ← 0r,c . zero matrices of size r × c
3: W ← 0r,c

4: S ← 0r,c

5: r hash functions h1, . . . , hr : [n]→ [c] from a 2-universal family.
6: m← 0
7: state← Start
8: end init
9: function update(tuple: t, execut. time: l, request: Ĉ)

10: m← m+ 1
11: if Ĉ not null then
12: ∆← C − Ĉ
13: send 〈∆〉 to LS

14: if state = Start ∧m mod N = 0 then
15: . Figure 2.A
16: update S
17: state← Stabilizing
18: else if state = Stabilizing ∧m mod N = 0 then
19: if η ≤ µ (Eq. 1) then . Figure 2.C
20: send 〈F ,W〉 to LS
21: state← Start
22: reset F and W to 0r,c

23: else . Figure 2.B
24: update S
25: for i = 1 to r do
26: F [i, hi(t)]← F [i, hi(t)] + 1
27: W[i, hi(t)]←W[i, hi(t)] + l
28: end for
29: end function

matrices are stable when the relative error η between the previous snapshot and
the current one is smaller than a parameter µ, i.e.,

η =

∑
∀i,j |S[i, j]− W[i,j]

F [i,j]) |∑
∀i,j S[i, j]

≤ µ (1)

is satisfied. Then, each time the operator has executed N tuples (Listing 3.1 lines
17-23), it checks whether Equation 1 is satisfied. (i) In the negative case S is
updated (Figure 2.B). (ii) In the positive case, the operator sends the F and W
matrices to the load shedder (Figure 1.B), resets their content, and moves back
to the START state (Figure 2.C). This approach allows to limit the amount of
data sent from the operator to LS, and resembles what was proposed in [12].

There is a delay between any change in w(t) and when LS receives the up-
dated F and W matrices. This introduces a skew in the cumulated execution
duration estimated by LS. To compensate this skew, we introduce a synchroniza-
tion mechanism that kicks in whenever the LS receives a new pair of matrices
from the operator.
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start stabilizing

execute N tuples
create snapshot S

execute N tuples ∧ relative error η ≤ µ
send F and W to scheduler and reset them

execute N tuples ∧
relative error η > µ
update snapshot SA
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C

Fig. 2. Operator finite state machine.

Send RUN

NOP
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update local F and W A
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C

D

Fig. 3. Load shedder LS finite state machine.

The LS (Figure 1.C) maintains the estimated cumulated execution duration

of the operator Ĉ and a pair of initially empty matrices 〈F ,W〉. LS is modeled
as a finite state machine (Figure 3) with three states: NOP, SEND, and RUN.
The LS executes the code reported in Listing 3.2. In particular, every time a
new tuple t arrives at the LS, the function shed is executed. The LS starts in
the NOP state where no action is performed (Listing 3.2 lines 15-17). Here we
assume that in this initial phase, i.e., when the topology has just been deployed,
no load shedding is required. When LS receives the first pair 〈F ,W〉 of matrices
(Figure 3.A), it moves into the SEND state and updates its local pair of matrices
(Listing 3.2 lines 7-9). While being in the SEND states, LS sends to O the

current cumulated execution duration estimation Ĉ (Figure 1.D) piggybacking
it with the first tuple t that is not dropped (Listing 3.2 lines 22-24) and moves
in the RUN state (Figure 3.B). This information is used to synchronize the
LS with O and remove the skew between O’s cumulated execution duration
C and the estimation Ĉ at LS. O replies to this request (Figure 1.E) with the

difference ∆ = C−Ĉ (Listing 3.1 lines 11-13). When the load shedder receives the

synchronization reply (Figure 3.C) it updates its estimation Ĉ + ∆ (Listing 3.2
lines 11-13).

In the RUN state, the load shedder computes, for each tuple t, the esti-
mated queuing latency q̂(i) as the difference between the operator estimated

execution duration Ĉ and the time elapsed from the emission of the first tuple
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Listing 3.2: Load shedder

1: init do
2: Ĉ ← 0
3: 〈F ,W〉 ← 〈0r,c, 0r,c〉 . zero matrices pair of size r × c
4: Same hash functions h1 . . . hr of the operator
5: state← NOP
6: end init
7: upon 〈F ′,W ′〉 do . Figure 3.A and 3.D
8: state← Send
9: 〈F ,W〉 ← 〈F ′,W ′〉

10: end upon
11: upon 〈∆〉 do . Figure 3.C

12: Ĉ ← Ĉ +∆
13: end upon
14: function shed(tuple: t)
15: if state = NOP then
16: return false

17: q̂ ← Ĉ− elapsed time from first tuple
18: if CheckLatency(q̂) ∧ CheckUtility(t) then
19: return true
20: i← arg mini∈[r]{F [i, hi(t)]}
21: Ĉ ← Ĉ + (W[i, hi(t)]/F [i, hi(t)])× (1 + ε)
22: if state = Send then . Figure 3.B
23: piggyback Ĉ to operator on t
24: state← Run
25: return false
26: end function
27: function CheckLatency(q)
28: if (Q+ q)/` > τ then
29: return true
30: Q← Q+ q
31: `← `+ 1
32: return false
33: end function

(Listing 3.2 line 17). It then checks if the estimated queuing latency for t satisfies
the CheckLatency method (Listing 3.2 line 18).

This method encapsulates the logic for checking if a desired condition on
queuing latencies is violated or not. In this paper, as stated in Section 2, we aim
at maintaining the average queuing latency below a threshold τ . Then, Check-
Latency tries to add q̂ to the current average queuing latency (Listing 3.2
lines 28). If the result is larger than τ (i), it simply returns true; otherwise (ii),
it updates its local value for the average queuing latency and returns false (List-
ing 3.2 lines 30-32). Note that different goals, based on the queuing latency, can
be defined and encapsulated within CheckLatency, e.g., maintain the abso-
lute per-tuple queuing latency below τ , or maintain the average queuing latency
calculated on a sliding window below τ [21].
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Function CheckUtility evaluates the impact the output quality would in-
cur by dropping t. This function encapsulates optional requirements on the max-
imum acceptable quality drop as defined by the semantics of the application.
Considering that the quality definition is application dependent, we don’t pro-
vide here a specific implementation. However, we assume that, independently of
the implementation, it will return true if the t can be dropped with an acceptable
quality loss.

If both CheckLatency(q̂) and CheckUtility(t) return true (i) the load
shedder returns true as well, i.e., tuple t must be dropped. Otherwise (ii), the

operator estimated execution duration Ĉ is updated with the estimated tuple
execution duration ŵ(t), increased by a factor 1 + ε to mitigate potential under-
estimations6, and the load shedder returns false (Listing 3.2 line 25), i.e., the
tuple must not be dropped. Finally, if the load shedder receives a new pair
〈F ,W〉 of matrices (Figure 3.D), it will update its local pair of matrices and
move to the SEND state (Listing 3.2 lines 7-9).

Now we will discuss the complexity of LAS.7

Theorem 1 (Time complexity of LAS).
For each tuple read from the input stream, the time complexity of LAS for the
operator and the load shedder is O(log 1/δ).

Theorem 2 (Space Complexity of LAS).
The space complexity of LAS for the operator and load shedder is

O
(

1

ε
log

1

δ
(logm+ log n)

)
bits.

Theorem 3 (Communication complexity of LAS).
The communication complexity of LAS is of O

(
m
N

)
messages and

O
(
m

N

(
1

ε
log

1

δ
(logm+ log n) + logm

))
bits.

Note that the communication cost is low with respect to the stream size since
the window size N should be chosen such that N � 1 (e.g., in our tests we have
N = 1024).

4 Theoretical Analysis

This section provides an analysis of the quality of the shedding performed by
LAS in two steps. First, we study the correctness and optimality of the shedding
algorithm, under full knowledge assumption (i.e., the shedding strategy is aware
of the exact execution duration wt for each tuple t). Then, in Section 4.2, we

6 This correction factor derives from the fact that ŵ(t) is a (ε, δ)-approximation of
w(t) as shown in Section 4.

7 For readability reasons, proofs of these theorems are available in A.
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provide a probabilistic analysis of the mechanism that LAS uses to estimate the
tuple execution durations. For the sake of simplicity, in both sections, we assume
CheckUtility always returns true. The proofs of the theorem are available in
Appendix A.

4.1 Correctness of LAS

We suppose that tuples cannot be preempted, that is they must be processed
uninterruptedly on the available operator instance. As mentioned before, in this
analysis we assume that the execution duration w(t) is known for each tuple t.
Finally, given our system model, we consider the problem of minimizing d, the
number of dropped tuples, while guaranteeing that the average queuing latency
Q(t) will be upper-bounded by τ , ∀t ∈ σ. The solution must work online, thus
the decision of enqueueing or dropping a tuple has to be made only resorting to
knowledge about tuples received so far in the stream.

Let OPT be the online algorithm that provides the optimal solution to Prob-
lem 1. We denote with DσOPT (resp. dσOPT ) the set of dropped tuple indices
(resp. the number of dropped tuples) produced by the OPT algorithm fed by
stream σ (cf., Section 2). We also denote with dσLAS the number of dropped
tuples produced by LAS introduced in Section 3.3 fed with the same stream σ.

Theorem 4 (Correctness and Optimality of LAS). For any σ, we have
dσLAS = dσOPT and ∀t ∈ σ,QσLAS(t) ≤ τ .

This theorem establishes that LAS is optimal, given that its execution time
is the same as that of the optimal OPT algorithm. Moreover, it is correct in the
sense of the Definition 1 proposed in Section 2, namely that its average queuing
latency will not exceed the predetermined threshold τ .

4.2 Execution Time Estimation

In this section, we analyze the approximation made on execution duration w(t)
for each tuple t when the assumption of full knowledge is removed. LAS uses two
matrices, F and W, to estimate the execution time w(t) of each tuple submit-
ted to the operator. By the Count Min sketch algorithm (cf., Section 3.2) and
Listing 3.1, we have that for any t ∈ [n] and each row i ∈ [r],

F [i][hi(t)](m) = ft +

n∑

u=1,u 6=t

fu1{hi(u)=hi(t)},

and

W[i][hi(t)](m) = ftwt +

n∑

u=1,u 6=t

fuwu1{hi(u)=hi(t)}.
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Let us denote respectively by wmin and wmax the minimum and the maximum
execution time of the items. For sake of clarity in the following equations, we
denote the ratio

Vi,t =W[i][hi(t)]/F [i][hi(t)].

We have trivially

wmin ≤ Vi,t ≤ wmax.

We define S =
∑n
`=1 w`. We then have

Theorem 5.

E{Vi,t} =
S − wt
n− 1

− k(S − nwt)
n(n− 1)

(
1−

(
1− 1

k

)n)
.

The proof of this theorem is available in appendix. First, it important to note
that this result does not depend on m. Moreover, we easily understand that the
formula proposed in this last theorem may seem rather uninformative. Thus,
we propose to present a numeric application of it to take the measure of the
potential use of it for an end-user.

We take for instance k = 55, n = 4096 and the distinct values of wu equal
to 1, 2, 3, . . . , 64, each item being present 64 times in the input stream, we get
for t = 1, . . . , 64, E{Vi,t} ∈ [32.08, 32.92]. Note also from above that we have
1 ≤ Vi,t =W[i][hi(t)]/F [i][hi(t)] ≤ 64.

From the Markov inequality, we have, for every x > 0,

P{Vi,t ≥ x} ≤
E{Vi,t}

x
.

By taking x = 64a, with a ∈ [0.6, 1), we obtain

P{Vi,t ≥ 64a} ≤ E{Vi,t}
64a

≤ 33

64a
.

Recall that r denotes the number of rows of the system; we then have by the
independence of the h functions,

P{ min
i=1,...,r

(Vi,t) ≥ 64a}

= (P{Vi,t ≥ 64a})r ≤
(

33

64a

)r
.

By taking for instance a = 3/4 and r = 10, we get

P{ min
i=1,...,r

(Vi,t)) ≥ 48} ≤
(

11

16

)10

≤ 0.024.
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5 Experimental Evaluation

In this section, we evaluate the performance obtained by using LAS to perform
load shedding. We first describe the general setting used to run the tests and
then discuss the results obtained through simulations (Section 5.2) and with a
prototype of LAS integrated within Apache Storm (Section 5.3).

5.1 Setup

Datasets — In our tests we consider both synthetic and real datasets. Syn-
thetic datasets are built as streams of integer values (items) representing the
values of the tuple attribute driving the execution duration when processed on
the operator. We consider streams of m = 32, 768 tuples, each containing a value
chosen among n = 4, 096 distinct items. Streams have been generated using the
Uniform and Zipfian distributions with different values of α ∈ {0.5, 1.0, 1.5, 2.0,
2.5, 3.0}, denoted respectively as Zipf-0.5, Zipf-1.0, Zipf-1.5, Zipf-2.0, Zipf-2.5,
and Zipf-3.0. We define wn as the number of distinct execution duration values
that the tuples can have. These wn values are selected at a constant distance
in the interval [wmin, wmax]. We ran experiments with wn{1, 2, · · · , 64}, how-
ever, due to space constraints, we only report results for wn = 64, and with
wmax ∈ {0.1, 0.2 · · · , 51.2} milliseconds. Tests performed with different values
for wn did not show unexpected deviations from what is reported in this section.
Unless otherwise specified, the frequency distribution is Zipf-1.0 and the stream
parameters are set to wn = 64, wmin = 0.1 ms and wmax = 6.4 ms; this means
that the wn = 64 execution durations are picked in the set {0.1, 0.2, · · · , 6.4}
ms.

Let W be the average execution duration of the stream tuples, then the
stream maximum theoretical input throughput sustainable by the setup is equal
to 1/W . When fed with an input throughput smaller than 1/W the system will
be over-provisioned (i.e., possible underutilization of computing resources). Con-
versely, an input throughput larger than 1/W will result in an underprovisioned
system. We refer to the ratio between the maximum theoretical input throughput
and the actual input throughput as the percentage of underprovisioning that,
unless otherwise stated, was set to 25%.

To generate 100 different streams, we randomize the association between the
wn execution duration valuees and the n distinct items: for each of the wn ex-
ecution duration values, we pick uniformly at random n/wn different values in
[n] that will be associated to that execution duration value. This means that the
100 different streams we use in our tests do not share the same association be-
tween execution duration and item as well as the association between frequency
and execution duration (thus each stream has also a different average execution
duration W ). Each of these permutations has been run with 50 different seeds
to randomize the stream ordering and the generation of the hash functions used
by LAS. This means that each single experiment reports the mean outcome of
5, 000 independent runs.

We considered two types of constraints defined on the queuing latency:
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ABS(τ): requires that the queuing latency per tuple does not exceed τ millisec-
onds: ∀i ∈ [m] \D, q(i) ≤ τ .

AVG(τ): requires that the total average queuing latency does not exceed τ mil-
liseconds: ∀i ∈ [m] \D,Q(i) ≤ τ .

While not being a realistic requirement, the straightforwardness of the ABS(τ)
constraint allowed us to grasp a better insight of the mechanisms of the algo-
rithm. However, in this section, we only show results for the AVG(6.4) constraint
as is it a much more sensible requirement with respect to a real setting.

The LAS operator window size parameter N , the tolerance parameter µ
and the number of rows of the F and W matrices δ were set to N = 1024,
µ = 0.05 and δ = 0.1 (i.e., r = 4 rows) respectively. By default, the LAS precision
parameter (i.e., the number of columns of the F and W matrices) was set to
ε = 0.05 (i.e., c = 54 columns), however in one of the test we evaluated LAS
performance using several values: ε ∈ [0.001, 1.0]. To evaluate LAS performance
without other external factors, in all our experiments we set CheckUtility to
always return true.

For the real data, we used a dataset containing a stream of preprocessed
tweets related to the 2014 European elections. Among other information, the
tweets are enriched with a field mention containing the entities mentioned in
the tweet. These entities can be easily classified into politicians, media, and
others. We consider the first 500, 000 tweets, mentioning roughly n = 35, 000
distinct entities and where the most frequent entity has an empirical probability
of occurrence equal to 0.065.

Tested Algorithms —We compare LAS performance against three other algo-
rithms:

Base Line The Base Line algorithm takes as input the percentage of under-
provisioning and drops at random an equivalent fraction of the tuples.

Straw-Man The Straw-Man algorithm uses the same shedding strategy of LAS,
however, it uses the average execution durationW as the estimated execution
duration ŵ(t) for each tuple t.

Full Knowledge The Full Knowledge algorithm uses the same shedding strat-
egy of LAS, however, it feeds it with the exact execution duration wt for
each tuple t as they were provided by an omniscient oracle.

Evaluation Metrics —The evaluation metrics we used are:

– the dropped ratio: α = d/m.
– the ratio of tuples dropped by algorithm alg with respect to Base Line:
λ = (dalg − dBase Line)/dBase Line. In the following, we refer to this metric as
shedding ratio.

– the average queuing latency: Q =
∑
i∈[m]\D q(i)/(m− d).

– the average completion latency, i.e., the average time it takes for a tuple
from the moment it is injected by the source in the topology, till the moment
operator O concludes its processing.
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Whenever applicable we provide the maximum, mean, and minimum figures over
the 5, 000 runs.

5.2 Simulation Results

In this section, we analyze, through a simulator built ad-hoc for this study, the
sensitivity of LAS while varying several characteristics of the input load. The
simulator faithfully simulates the execution of LAS and the other algorithms
and simulates the execution of each tuple t on O doing busy waiting for w(t)
milliseconds.
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Fig. 4. LAS performance varying the amount of underprovisioning.

Input Throughput — Figure 4 shows the average queuing latency Q (top) and
dropped ratio α (bottom) as a function of the percentage of under-provisioning
ranging from 90% to -10% (i.e., the system is 10% overprovisioned with respect
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Fig. 5. LAS performance varying the threshold τ .

to the average input throughput). As expected, in this latter case all algorithms
perform at the same level as load shedding is superfluous. In all the other cases
both Base Line and Straw-Man do not shed enough load and induce a huge
amount of exceeding queuing latency. On the other hand, LAS average queuing
latency is quite close to the required value of τ = 6.4 milliseconds, even if this
threshold is violated in some of the tests. Finally, Full Knowledge always abide
by the constraint and is even able to produce a much lower average queuing
latency while dropping no more tuples that the competing solutions. Comparing
the two plots we can see that the resulting average queuing latency is strongly
linked to which tuples are dropped. In particular, Base Line and Straw-Man
shed the same amount of tuples, LAS slightly more and Full Knowledge is in
the middle. This result corroborates our initial claim that dropping tuples based
on the load they impose allows designing more effective load shedding strategies.
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Fig. 6. LAS performance varying the maximum execution duration value wmax.

Threshold τ — Figure 5 shows the average queuing latency Q (top) and shed-
ding ratio λ (bottom) as a function of the τ threshold. Notice that with τ = 0 we
do not allow any queuing, while with τ = 6.4 we allow at least a queuing latency
equal to the maximum execution duration wmax. In other words, we believe that
with τ < 6.4 the constraint is strongly conservative, thus representing a difficult
scenario for any load shedding solution. Since Base Line does not take into ac-
count the latency constraint τ it always drops the same amount of tuples and
achieves a constant average queueing latency. For this reason, Figure 5b reports
the shedding ratio λ achieved by Full Knowledge, LAS, and Straw-Man against
Base Line. The horizontal segments in Figure 5a represent the distinct values for
τ . As the graph shows Full Knowledge always perfectly approaches the latency
threshold, but for τ ≥ 12.8 where it is slightly smaller. Straw-Man performs rea-
sonably well when the threshold is very small, but this is a consequence of the
fact that it drops a large number of tuples when compared with Base Line as can
be seen by Figure 5b. However, as τ becomes larger (i.e., τ ≥ 0.8) Straw-Man
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Fig. 7. LAS performance varying the frequency probability distributions.

average queuing latency quickly grows and approaches the one from Base Line as
it starts to drop the same amount of tuples. LAS, in the same setting, performs
largely better, with the average queuing latency that for large values of τ ap-
proaches the one provided by Full Knowledge. While delivering this performance
LAS drops a slightly larger amount of tuples compared to Full Knowledge, to
account for the approximation in calculating tuple execution durations.

Maximum execution duration value wmax — Figure 6 shows the average
queuing latency Q (top) and dropped ratio λ (bottom) as a function of the maxi-
mum execution duration value wmax. Notice that in this test we varied the value
for τ setting it equal to wmax. Accordingly, Figure 6a shows horizontal lines that
mark the different thresholds τ . As the two graphs show, the behavior for LAS
is rather consistent while varying wmax; this means that LAS can be employed
in widely different settings where the load imposed by tuples in the operator is
not easily predictable. The price paid for this flexibility is in the shedding ratio
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that, as shown in Figure 6b, is always positive.

Frequency Probability Distributions — Figure 7 shows the average queu-
ing latency Q (top) and dropped ratio λ (bottom) as a function of the input
frequency distribution. As Figure 7a shows Straw-Man and Base Line perform
invariably bad with any distribution. The span between the best and worst per-
formance per run increases as we move from a uniform distribution to more
skewed distributions as the latter may present extreme cases where tuple laten-
cies match their frequencies in a way that is particularly favorable or unfavor-
able for these two solutions. Conversely, LAS performance improves the more
the frequency distribution is skewed. This result stems from the fact that the
sketch data structures tracing tuple execution durations perform at their best
on strongly skewed distribution, rather than on uniform ones. This result is con-
firmed by the shedding ratio (Figure 7b) that decreases, on average, as α for the
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Fig. 9. Simulator time-series.

distribution increases.

Precision parameter ε — Figure 8 shows the average queuing latency Q (top)
and dropped ratio α (bottom) as a function of the precision parameter ε. This
parameter controls the trade-off between the precision and the space complex-
ity of the sketches maintained by LAS. As a consequence, it has an impact on
LAS performance. In particular, for large values of ε (left side of the graph),
the sketch data structures are extremely small, thus the estimation ŵ(t) is ex-
tremely unreliable. The corrective factor 1 + ε (see Listing 3.2 line 21) in this
case is so large that it pushes LAS to largely overestimate the execution dura-
tion of each tuple. As a consequence LAS drops a large number of tuples while
delivering average queuing latencies that are close to 0. By decreasing the value
of ε (i.e., ε ≤ 0.1), sketches become larger and their estimation more reliable. In
this configuration LAS performs at its best delivering average queuing latencies
that are always below or equal to the threshold τ = 6.4 while dropping a smaller
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number of tuples. The dotted lines in both graphs represent the performance of
Full Knowledge and are provided as a reference.

Time Series — Figure 9 shows the average queuing latency Q (top) and
dropped ratio α (bottom) as the stream unfolds (x-axis). Both metrics are com-
puted on a jumping window of 4.000 tuples, i.e., each dot represents the mean
queuing latency Q or the dropped ratio α computed on the previous 4.000 tu-
ples. Notice that the points for Straw-Man, LAS and Full Knowledge related to
the same value of the x-axis are artificially shifted to improve readability. In this
test, we set τ = 64 milliseconds. The input stream is made of 140, 000 tuples
and is divided into phases, from a A through G, each lasting 20, 000 tuples. At
the beginning of each phase we inject an abrupt change in the input stream
throughput and distribution, as well as in w(t) as follows:

phase A : the input throughput is set according to the provisioning (i.e., 0%
underprovisioning);

phase B : the input throughput is increased to induce 50% of underprovision-
ing;

phase C : same as phase A;
phase D : we swap the most frequent tuple t with a less frequent tuple t′ such

that w(t′) = wmax, inducing an abrupt change in the tuple values frequency
distribution and in the average execution duration W ;

phase E : the input throughput is reduced to induce 50% of overprovisioning;
phase F : the input throughput is increased back to 0% underprovisioning and

we also double the execution duration w(t) for each tuple, simulating a
change in the operator resource availability;

phase G : same as phase A.

As the graphs show, during phase A the queuing latencies of LAS and Straw-
Man diverge: while LAS quickly approaches the performance provided by Full
Knowledge, Straw-Man average queuing latencies quickly grow. In the same
timespan, both Full Knowledge and LAS drop slightly more tuples than Straw-
Man. All the three solutions correctly manage phase B: their average queuing
latencies see slight changes, while, correctly, they start to drop larger amounts
of tuples to compensate for the increased input throughput. The transition to
phase C brings the system back in the initial configuration, while in phase D the
change in the tuple frequency distribution is managed very differently by each
solution: both Full Knowledge and LAS compensate this change by starting to
drop more tuples, but still maintaining the average queuing latency close to the
desired threshold τ . Conversely, Straw-Man cannot handle such change, and its
performance incurs a strong deterioration as it drops still the same amount of
tuples. In phase E the system is strongly overprovisioned, and, as it was expected,
all three solutions perform equally well as no tuple needs to be dropped. The
transition to phase F is extremely abrupt as the input throughput is brought back
to the equivalent of 0% of underprovisioning, but the cost to handle each tuple
on the operator is doubled. At the beginning of this phase, both Straw-Man and
LAS perform badly, with queuing latencies that are largely above τ . However,
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Fig. 10. Prototype time-series

while the phase unfolds LAS quickly updates its data structures and converges
toward the given threshold, while Straw-Man diverges as tuples continue to be
enqueued on the operator worsening the bottleneck effect. Bringing back the
tuple execution durations to the initial values in phase G has little effect on LAS,
while the bottleneck created by Straw-Man cannot be recovered as it continues
to drop an insufficient number of tuples.

5.3 Prototype

To evaluate the impact of LAS on real applications we implemented it as a
bolt within the Apache Storm [27] framework. We have deployed our cluster on
Microsoft Azure cloud service, using a Standard Tier A4 VM (4 cores and 7 GB
of RAM) for each worker node, each with a single available slot.

The test topology is made of a source (spout) and two operators (bolts) LS
and O. The source generates (reads) the synthetic (real) input stream and emits
the tuples consumed by bolt LS. Bolt LS uses either Straw-Man, LAS or Full
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Knowledge to perform the load shedding on its outbound data stream consumed
by bolt O. Finally operator O implements the logic.

Time Series — In this test we ran the simulator using the same synthetic
load used for the time series discussed in the previous section. The goal of this
test is to show how our simulated tests capture the main characteristic of a
real run. Notice, however, that plots in Figure 10 report the average completion
latency per tuple instead of the queuing latency. This is due to the difficulties
in correctly measuring queuing latencies in Storm. Furthermore, the completion
latency is, from a practical point of view, a more significant metric as it can be
directly perceived on the output. From this standpoint, the results, depicted in
Figure 10, report the same qualitative behavior already discussed with Figure 9.
Two main differences are worth to be discussed: firstly, the behaviors exposed
by the shedding solution in response to phase transitions in the input load are in
general shifted in time (with respect to the same effects reported in Figure 9) as
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a consequence of the general overhead induced by the software stack. Secondly,
several data points for Straw-Man are missing in phases E and G. This is a con-
sequence of failed tuples that start to appear as soon as the number of enqueued
tuples is too large to be managed by Storm. While this may appear as a sort
of “implicit” load shedding imposed by Storm, we decided not to consider these
tuples in the metric calculation as they have not been dropped as a consequence
of a decision taken by the Straw-Man load shedder.

Simple Application with Real Dataset — In this test we pretended to
run a simple application on a real dataset: for each tweet of the twitter dataset
mentioned in Section 5.1 we want to gather some statistics and decorate the
outgoing tuples with some additional information. However, the statistics and
additional information differ depending on which class the entities mentioned
in each tweet belong. We assumed that this leads to a long execution duration
for media (e.g., possibly caused by access to an external DB to gather historical
data), an average execution duration for politicians and a fast execution duration
for others (e.g., possibly because these tweets are not decorated). We modeled
execution durations with 25 milliseconds, 5 milliseconds, and 1 millisecond of
busy waiting respectively. Each of the 500, 000 tweets may contain more than one
mention, leading to wn = 110 different execution duration values from wmin = 1
millisecond to wmax = 152 milliseconds, among which the most frequent (36%
of the stream) execution duration is 1 millisecond. The average execution time
W is equal to 9.7 millisecond, the threshold τ is set to 32 milliseconds and the
under-provisioning is set to 0%.

Figure 11 reports the average completion latency (top) and dropped ratio
λ (bottom) as the stream unfolds. As the plots show, LAS provides completion
latencies that are extremely close to Full Knowledge, dropping a similar amount
of tuples. Conversely, Straw-Man completion latencies are at least one order of
magnitude larger. This is a consequence of the fact that in the given setting
Straw-Man does not drop tuples, while Full Knowledge and LAS drop on av-
erage a steady amount of tuples ranging from 5% to 10% of the stream. These
results confirm the effectiveness of LAS in keeping close control on queuing la-
tencies (and thus provide more predictable performance) at the cost of dropping
a fraction of the input load.

6 Related Work

Aurora [1] is the first stream processing system where shedding has been pro-
posed as a technique to deal with bursty input traffic. Aurora employs two differ-
ent kinds of shedding, the first and better detailed being random tuple dropping
at strategic places in the application topology to satisfy QoS constraints.

A large number of works proposed solutions aimed at reducing the impact of
load shedding on the quality of the system output. These solutions fall under the
name of semantic load shedding, as drop policies are linked to the significance of
each tuple with respect to the computation results. Tatbul et al. first introduced
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in [26] the idea of semantic load shedding. Babcock et al. in [2] provided an
approach tailored to aggregation queries. Tatbul et al. in [25] ported the concept
of semantic load shedding in the realm of DSPS. GrubJoin [8] is a solution
tailored for shedding load in multiway windowed stream joins while minimizing
output degradation. Finally, Kalyvianaki et al. in [14] contextualized the problem
to the realm of federated DSPS, and provided a solution for shedding fairness.
Several solutions assume that the utility of an event depends on the event type
and its frequency in the input event stream [26], i.e. they assume a static model
for quality degradation; other works propose solutions to build and maintain at
runtime a model for event utility [18,16]. All the previous works are based on
the same goal, i.e., to reduce the impact of load shedding on the semantics of
the queries deployed in the stream processing system, while avoiding overloads.
We believe that avoiding excessive degradation in the performance of the DSPS
and in the semantics of the deployed query output are two orthogonal facets
of the load shedding problem. In our work, we did not consider the latter and
focused on the former while including in our solution the possibility to limit
output quality degradation.

A different approach has been proposed in [20], with a system that builds
summaries of dropped tuples to later produce approximate evaluations of queries.
The idea is that such approximate results may provide users with useful infor-
mation about the contribution of dropped tuples. A similar approach is adopted
in StreamApprox [19] where the authors designed an online stratified reservoir
sampling algorithm to produce approximate output with rigorous error bounds.
A similar approach was also adopted in [28].

A classical control theory approach based on a closed control loop with feed-
back has been considered in [13,29,30]. In all these works the focus is on the
design of the loop controller, while data is shed using a simple random selection
strategy. In all these cases the goal is to reactively feed the stream processing
engine system with a bounded tuple rate, without proactively considering how
much load these tuples will generate.

Finally, a few works have recently appeared that address the problem of
shedding load in Complex Event Processing (CEP) applications [9,10,23,22,31].
While these solution leverage techniques similar to those discussed in the pre-
vious paragraphs, they provide specific adaptations to the CEP context where
intput load can be shed both in the form of events and partial pattern matches.

7 Conclusions

In this paper, we introduced Load-Aware Shedding (LAS), a novel solution for
load shedding in DSPS. LAS exploits a characteristic of many stream-based
applications, i.e., the fact that load on operators depends both on the input rate
and on the content of tuples, to smartly drop tuples and avoid the appearance
of performance bottlenecks. In particular, LAS leverages sketch data structures
to efficiently collect at runtime information on the operator load characteristics
and then use this information to implement a load shedding policy aimed at
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maintaining the average queuing latencies close to a given threshold. Through
a theoretical analysis, we proved that LAS is an (ε, δ)-approximation of the
optimal algorithm. Furthermore, we extensively tested LAS both in a simulated
setting, studying its sensitivity to changes of several characteristics of the input
load, and with a prototype implementation integrated within the Apache Storm
DSPS. Our tests confirm that by taking into account the specific load imposed
by each tuple, LAS can provide performance that closely approaches a given
target, while dropping a limited number of tuples.
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V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari, editors, Advances
in Database Technology - EDBT 2004, pages 551–568, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

8. B. Gedik, K. Wu, P. S. Yu, and L. Liu. Grubjoin: An adaptive, multi-way, windowed
stream join with time correlation-aware cpu load shedding. IEEE Transactions on
Knowledge and Data Engineering, 19(10):1363–1380, 2007.

9. Y. He, S. Barman, and J. F. Naughton. On load shedding in complex event pro-
cessing. arXiv preprint arXiv:1312.4283, 2013.

10. Y. He, S. Barman, and J. F. Naughton. On load shedding in complex event pro-
cessing. In Proceedings of the 17th International Conference on Database Theory
(ICDT ’14), pages 213–224. OpenProceedings.org, 2014.

11. T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak. Cloud-based data stream pro-
cessing. In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems (DEBS ’14), pages 238–245. ACM, 2014.

12. S. Ilarri, O. Wolfson, E. Mena, A. Illarramendi, and P. Sistla. A query processor
for prediction-based monitoring of data streams. In Proceedings of the 12th In-
ternational Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’09, pages 415–426, New York, NY, USA, 2009. Association for
Computing Machinery.



28 N. Rivetti, Y. Busnel, L. Querzoni

13. E. Kalyvianaki, T. Charalambous, M. Fiscato, and P. Pietzuch. Overload man-
agement in data stream processing systems with latency guarantees. In 7th IEEE
International Workshop on Feedback Computing (Feedback Computing’12), 2012.

14. E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch. Themis: Fairness in fed-
erated stream processing under overload. In Proceedings of the 2016 International
Conference on Management of Data, pages 541–553. ACM, 2016.

15. A. Kammoun. Enhancing Stream Processing and Complex Event Processing Sys-
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A Theoretical Analysis

Data streaming algorithms strongly rely on pseudo-random functions that map
elements of the stream to uniformly distributed image values to keep the essential
information of the input stream, regardless of the stream elements frequency
distribution.

This appendix extends with the proofs the theoretical analysis of the quality
of the shedding performed by LAS in two steps provided in Section 4 as well as
the complexities presented in Section 3.

First we study the correctness and optimality of the shedding algorithm, un-
der full knowledge assumption (i.e., the shedding strategy is aware of the exact
execution duration wt for each tuple t). Then, in A.3, we provide a probabilis-
tic analysis of the mechanism that LAS uses to estimate the tuple execution
durations.

A.1 Time, Space and Communication Complexities

In this section we provide the proofs of the time, space and communication
complexities presented in Section 3.

Theorem 1 [Time complexity of LAS] For each tuple read from the input
stream, the time complexity of LAS for the operator and the load shedder is
O(log 1/δ).

Proof. By Listing 3.1, for each tuple read from the input stream, the algo-
rithm increments an entry per row of both the F andW matrices. Since each has
log 1/δ rows, the resulting update time complexity is O(log 1/δ). By Listing 3.2,
for each submitted tuple, the scheduler has to retrieve the estimated execution
duration for the submitted tuple. This operation requires to read entry per row
of both the F and W matrices. Since each has log 1/δ rows, the resulting query
time complexity is O(log 1/δ). ut

Theorem 2 [Space Complexity of LAS] The space complexity of LAS for the
operator and load shedder is O

(
1
ε log 1

δ (logm+ log n)
)

bits.

Proof. The operator stores two matrices of size log( 1
δ ) × e

ε of counters of
size logm. In addition, it also stores a hash function with a domain of size n.
Then the space complexity of LAS on the operator is O

(
1
ε log 1

δ (logm+ log n)
)

bits. The load shedder stores the same matrices, as well as a scalar. Then the
space complexity of LAS on the load shedder is also O

(
1
ε log 1

δ (logm+ log n)
)

bits. ut

Theorem 3 [Communication complexity of LAS] The communication com-
plexity of LAS is of O

(
m
N

)
messages and O

(
m
N

(
1
ε log 1

δ (logm+ log n) + logm
))

bits.
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Proof. After executing N tuples, the operator may send the F and W ma-
trices to the load shedder.

This generates a communication cost of O
(
m
N

1
ε log 1

δ (logm+ log n)
)

bits via

O
(
m
N

)
messages. When the load shedder receives these matrices, the synchro-

nization mechanism kicks in and triggers a round trip communication (half of
which is piggybacked by the tuples) with the operator. The communication cost
of the synchronization mechanism is O

(
m
N

)
messages and O

(
m
N logm

)
bits. ut

Note that the communication cost is low with respect to the stream size since
the window size N should be chosen such that N � 1 (e.g., in our tests we have
N = 1024).

A.2 Correctness of LAS

We suppose that tuples cannot be preempted, that is they must be processed
uninterruptedly on the available operator instance. As mentioned before, in this
analysis we assume that the execution duration w(t) is known for each tuple t.
Finally, given our system model, we consider the problem of minimizing d, the
number of dropped tuples, while guaranteeing that the average queuing latency
Q(t) will be upper-bounded by τ , ∀t ∈ σ. The solution must work online, thus
the decision of enqueueing or dropping a tuple has to be made only resorting to
knowledge about tuples received so far in the stream.

Let OPT be the online algorithm that provides the optimal solution to Prob-
lem 1. We denote with DσOPT (resp. dσOPT ) the set of dropped tuple indices
(resp. the number of dropped tuples) produced by the OPT algorithm fed by
stream σ (cf., Section 2). We also denote with dσLAS the number of dropped
tuples produced by LAS introduced in Section 3.3 fed with the same stream σ.

Theorem 4 [Correctness and Optimality of LAS] For any σ, we have dσLAS =

dσOPT and ∀t ∈ σ,QσLAS(t) ≤ τ .

Proof. Given a stream σ, consider the sets of indices of tuples dropped
by respectively OPT and LAS, namely DσOPT and DσLAS. Below, we prove by
contradiction that dσLAS = dσOPT .

Assume that dσLAS > dσOPT . Without loss of generality, we denote i1, . . . , idσLAS

the ordered indices in DσLAS, and j1, . . . , jdσOPT the ordered indices in DσOPT .
Let us define a as the largest natural integer such that ∀` ≤ a, i` = j` (i.e.,
i1 = j1, . . . , ia = ja). Thus, we have ia+1 6= ja+1.

– Assume that ia+1 < ja+1. Then, according to Section 3.3, the ia+1-th tuple
of σ has been dropped by LAS as the method Check returned true. Thus, as
ia+1 /∈ DσOPT , the OPT run has enqueued this tuple violating the constraint
τ . But this is in contradiction with the definition of OPT.

– Assume now that ia+1 > ja+1. The fact that LAS does not drop the ja+1

tuple means that Check returns false, thus that tuple does not violate the
constraint on τ . However, as OPT is optimal, it may drop some tuples for
which Check is false, just because this allows it to drop an overall lower
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number of tuples. Therefore, if it drops this ja+1 tuple, it means that OPT
knows the future evolution of the stream and takes a decision on this knowl-
edge. But, by assumption, OPT is an online algorithm, and the contradiction
follows.

Then, we have that ia+1 = ja+1. By induction, we iterate this reasoning for
all the remaining indices from a+1 to dσOPT . We then obtain that DσOPT ⊆ DσLAS.

As by assumption dσOPT < dσLAS, we have that ∃` ∈ DσLAS \ DσOPT such that
` has been dropped by LAS. This means that, with the same tuple index prefix
shared by OPT and LAS, the method Check returned true when evaluated on
`, and OPT would violate the condition on τ by enqueuing it. That leads to a
contradiction. Then, DσLAS \ DσOPT = ∅, and dσOPT = dσLAS.

Furthermore, by construction, LAS never enqueues a tuple that violates the
condition on τ because Check would return true.

Consequently, ∀t ∈ σ,QσLAS(t) ≤ τ , which concludes the proof. ut

A.3 Execution Time Estimation

In this section, we analyze the approximation made on execution duration w(t)
for each tuple t when the assumption of full knowledge is removed. LAS uses two
matrices, F and W, to estimate the execution time w(t) of each tuple submit-
ted to the operator. By the Count Min sketch algorithm (cf., Section 3.2) and
Listing 3.1, we have that for any t ∈ [n] and for each row i ∈ [r],

F [i][hi(t)](m) =

n∑

u=1

fu1{hi(u)=hi(t)}

=ft +

n∑

u=1,u6=t

fu1{hi(u)=hi(t)}.

and

W[i][hi(t)](m) = ftwt +

n∑

u=1,u 6=t

fuwu1{hi(u)=hi(t)},

Let us denote respectively by wmin and wmax the minimum and the maximum
execution time of the items. We have trivially

wmin ≤
W[i][hi(t)]

F [i][hi(t)]
≤ wmax.

We define S =
∑n
`=1 w`. We then have

Theorem 5

E{W[i][hi(t)]/F [i][hi(t)]}

=
S − wt
n− 1

− k(S − nwt)
n(n− 1)

(
1−

(
1− 1

k

)n)
.
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It important to note that this result does not depend on m.

Proof.

For any t = 1, . . . , n, ` = 0, . . . , n− 1 and A ∈ U`(t), we introduce the event
B(t, `, A) defined by

B(t, `,A) = {hi(u) = hi(t), ∀u ∈ A and

hi(u) 6= hi(t), ∀u ∈ {1, . . . , n} \ (A ∪ {t})}.

From the independence of the hash function hi, we have

P{B(t, `, A)} =

(
1

k

)`(
1− 1

k

)n−1−`
.

Let us consider the ratio

Vi,t =W[i][hi(t)]/F [i][hi(t)].

For any i = 0, . . . , n, we define

R`(t) =

{
ftwt +

∑
u∈A fuwu

ft +
∑
u∈A fu

, A ∈ U`(t)
}
.

We have R0(t) = {wt}. We introduce the set R(t) defined by

R(t) =

n−1⋃

`=0

R`(t).

Thus with probability 1,

W[i][hi(t)]/F [i][hi(t)] ∈ R(t).

Let x ∈ R(t). We have

P{Vi,t = x}

=

n−1∑

`=0

∑

A∈U`(t)

P{Vi,t = x | B(t, `, A)}P{B(t, `, A)}

=

n−1∑

`=0

(
1

k

)`(
1− 1

k

)n−1−` ∑

A∈U`(t)

1{x=X(t,A)}.

where X(t, A) is the fraction:

X(t, A) =
ftwt +

∑
u∈A fuwu

ft +
∑
u∈A fu
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Thus

E{Vi,t}

=

n−1∑

`=0

(
1

k

)`(
1− 1

k

)n−1−` ∑

A∈U`(t)

∑

x∈R(t)

x1{x=X(t,A)}

=

n−1∑

`=0

(
1

k

)`(
1− 1

k

)n−1−` ∑

A∈U`(t)

X(t, A).

Let us assume that all the fu are equal, that is for each u, we have fu = m/n.
The experimental evaluation tends to show that the worst case scenario of input
streams is exhibited when all the items show the same number of occurrences in
the input stream. We get

P{Vi,t = x}

=

n−1∑

`=0

(
1

k

)`(
1− 1

k

)n−1−` ∑

A∈U`(t)

1
{x=wt+

∑
u∈A wu
`+1 }

that concludes the proof. ut
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