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Abstract

Cough is a symptom in over a hundred respiratory diseases. The audio features in
cough signals contain erudition about the predicament of the respiratory system.
Using deep learning or signal processing, these features can be used to build an effec-
tive disease prediction system. However, cough analysis remains an area that has
received scant attention from machine learning researchers. This can be attributed
to several factors such as inefficient ancillary systems, high expenses in obtaining
datasets, or difficulty in building classifiers. This paper categorized and reviewed
the current progress on cough audio analysis for the classification of pulmonary dis-
eases. It also explored potential future issues in research. Additionally, it proposed
a model for the classification of ten serious pulmonary ailments commonly seen in
Indian adolescents. The proposed model is evaluated against four existing state of
the art techniques in the literature.
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1 INTRODUCTION

Diseases that affect respiratory pathways of the human body create secretions in the airways. Consequentially as a protective
measure exhaling such secretion leads to coughing episodes in patients1,2,3. Several pulmonary maladies such as TB or Chronic
Obstructive Pulmonary Disease (COPD) can lead to exacerbations or hospitalizations and even death if not treated promptly4.
Clinical investigations consider cough severity as an important indicator to understand the progression and presence of such
respiratory diseases5,6,7,8. Hence, there is a need for research on disease prediction using cough analysis, which shall lead to
preventive healthcare applications and provide timely care to patients. However, limited progress has been made on this front9.
The reasons being inefficient automated cough detection systems, lack of datasets on cough sounds, and limited research on
developing disease prediction models using cough analysis10.
Automatic cough detection systems surveyed in the literature need a labeled audio dataset for training a machine learning

classifier that discriminates cough from non-cough sounds. Such a dataset is obtained by monitoring volunteers during their
daily schedules or monitoring them in a clinical setting and recording their audio. After the audio is recorded, it is labeled
manually into cough and non-cough events10. This makes data collection a laborious and cost-intensive exercise. Due to the
high cost in building datasets, the majority of the studies conclude using data from 12− 22 patients. A drawback of this process
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is that the data can only be collected from a limited number of volunteers to save costs. This may affect machine learning results
as the probabilistic model may not be suitable for a generalized application. To save time and cost in data collection, subjective
techniques such as questionnaires and self-reported scales are widely used for understanding cough severity1. However, these
fail to provide an accurate description of cough features as the patient could have forgotten or misremembered9.
Data collection and labeling costs can be saved by asking patients to produce cough samples voluntarily in a clinical setting

by placing audio recording equipment in suitable positions. Commonly used devices are microphones11, electrocardiography
sensors, chest belts12,13, accelerometers14,15,16, smartwatches17, wearable patches18, breath analysis19,20 and thermistors placed
near the nose. T Drugman et al. concluded that non-contact microphones were most effective16 amongst these for recording
cough sounds.
Once cough and non-cough effects are labeled to produce a dataset either through manual labeling or automated systems,

the focus shifts towards building a suitable machine learning model for the prognostication of diseases. In this domain, the
direction of research is more inclined towards signal processing centered approaches, as was observed from the literature
review21,6,1,5,22,23,24,25,26,27,28,29,30,31. Even in signal processing literature, two categories were present: cough analysis through
feature extraction21,6,1,5,22,23,25,26,27,28,29 and data-driven cough analysis6,24,32. The former category used feature engineering on
cough signals to train classifiers, whereas the latter used classifiers that learn discriminating features directly from cough signals
eliminating extensive feature engineering.
Machine learning and deep learning have brought paradigm shifts in healthcare analytics fields such as X-ray diagnosis,

EEG/ECG diagnosis, etc.33. However, limited availability of datasets due to difficulty in data collection and labeling have
hampered the achievement of the state of the art results in cough diagnosis1,30. Unlike X-ray and EEG/ECG diagnosis that can be
obtained at any time, cough episodes are occasional occurrences. Hence, a cough identifier should be with minimal type I error
while havingmaximal recall21. The second difficulty in cough analysis is that there is high variability in cough sounds of different
people and low variability in cough sounds of the same person26, making the learning of discriminative features difficult. While
there exist preliminary studies on disease prediction using cough audio analysis (pertussis34, childhood pneumonia35), there is
a need for extending this. It is known that there is a variation in sound signals of coughs (timber and tone) generated by patients
suffering from different diseases36,10,37. These variations can inform about the state of the respiratory system29,38.

1.1 Contributions
Despite an extensive literature review, a review of the existing state of the art in cough audio analysis for pulmonary disease
classification was not traceable. Hence, to highlight the direction of research in this field and identify research gaps, the current
survey is drawn. The progress of research on the analysis of cough audio signals in the last two decades is provided. State of the
art is tabulated in Table 1 to make available a useful starting point for beginners.
Additionally, the current paper aims to build a probabilistic model that classifies diseases using cough sounds. Targeted

diseases are the common cold, tonsilitis, adenoids, laryngotracheal bronchitis, croup, asthma, pneumonia, pleural effusion, TB,
COPD, and whooping cough. To train such a model, voluminous data is needed, and cough audio datasets collected for all the
diseases mentioned above were unavailable in the literature. Section 3 details the procedure for data collection followed in this
study to overcome this drawback. In the literature, a model that targets such a broad spectrum of pulmonary diseases was not
found. Section 4 describes the mathematical model of the proposed cough classification approach that aims to detect the diseases
mentioned above using cough audio analysis. Since tropical countries, especially in Asia, are known as hot-beds for respiratory
ailments, the current paper restricts the scope to the Indian population for study. Datasets collected from Indian population is
also a contribution of this study. An experimental study with results and discussions are highlighted in Section 5. The paper
concludes in Section 6, and future works suggest that a majority of patients continue their treatment in their homes, it is essential
to produce a low cost, simple to utilize the accurate device for diagnosis of cough22.

1.2 Outline of the paper
The remaining paper is organized into Section 2 that traces the related works in the past two decades. Section 1 is additionally
segregated into Subsections 2.1 and 2.2 that review two types of proposed techniques viz. Machine learning on audio signals
and Deep learning on audio signals, respectively. Finally, the conclusion and future works are presented in Section 6.



A Kumar ET AL 3

2 REVIEW OF LITERATURE

Cough classification systems aim to map cough sounds to different diseases, and cough detection systems map audio signals
as cough and non-cough events. Although the outcomes are different, cough detection systems require analysis of cough audio
signals, which is also the backbone of cough classification systems. Consequentially, a review of cough detection systems was
imminent. Cough detection systems surveyed in the literature could be broadly categorized in this segment into two categories.
Their differences are illustrated in Figure 1 .

FIGURE 1 Categories of cough detection systems

2.1 Type - I: Machine learning on audio signals
The raw audio is preprocessed using signal processing techniques to obtain the structured dataset. These datasets are used to train
learning models for a classification task (discriminating cough and non-cough events). Signal processing techniques prevalent
in the literature are Mel Frequency Cepstral Coefficients and Short Time Fourier Transform. Learning models used are neural
networks, Support vector machines, decision trees, among others.
J Liu et al. suggested a pretrained deep learning model for cough detection. The authors collected 3873 cough audio signal

samples from 22 patients using a collar fitted digital audio recorder. Features from the audio signals were extracted using 39D
Mel Frequency Cepstral Coefficients (MFCC), and a structured dataset was created1. The proposed model achieved 90% on
specificity and 85% on specificity. J Amoh et al. proposed a two-layer CNN architecture for the detection of cough events in
acoustic data21. The authors used a wearable chest fitted sensor to collect lung sounds of 14 adults (7 of either sex) and created
a dataset of 627 samples. Each sample (cough and non-cough) is of 64 ms window on which a 128-bin Short Time Fourier
Transform (STFT) is applied to obtain a 64ÃŮ16 spectral segments which are provided as inputs to the two-layered CNN for
binary classification, i.e., cough or non-cough.
In contrast with the line of previous work, M Solinski et al. focused on feature extraction from the airflow signal of raw

spirometry curve data. The authors speculated that the huge NHANES database collected from patients during spirometry
tests19,39,40 could be useful for developing a generic model of cough detection. The authors proposed a two-layered ANN trained
using six features from airflow signals (Sensitivity - 0.852, Specificity - 0.961, Accuracy - 0.904). R Xaviero et al. chose a
logistic regression classifier trained on a feature set comprising of three spectral features extracted from cough signals5. The
authors achieved a sensitivity of 90.31%, specificity of 98.14%, and F-score of 88.70% on a dataset of sound signals 1980 (cough:
980, non-cough: 1000). A Windmon et al. focused on COPD detection using cough audio signal analysis. The authors built a
dataset of 13 spectral features extracted from cough audios of 39 patients (COPD: 23, Non-COPD:16) and trained a random
forest model on it (Recall - 85.5%, Precision - 85.6%, F-score - 85.4% and Accuracy - 85.4%)22.
L Perna et al. preferred to collect cough audios from remote and unobtrusive patient monitoring instead of collecting voluntar-

ily produced cough samples taken from a controlled setting41. 12 MFCC of cough and non-cough audio were collected to build
a dataset for training SVM, KNN, and XGBOOST (AUC - 0.916 ± 0.027) models of which XGBOOST gave most promising
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results. H Hee et al. experimented with the use of cough audio analysis for building a classifier for asthmatic and normal cough
sounds23. Signal processing techniques such as MFCC and Constant-Q Cepstral Coefficients (CQCC) were applied on asth-
matic cough and non-asthmatic cough samples of 89 children to extract features. The training set (asthmatic cough-1192, healthy
cough-1140) built from this procedure was used to train a Gaussian Mixture ModelâĂŞUniversal Background Model (GMM-
UBM) that achieved specificity - 82.81% and sensitivity - 84.76%. P Kadambi et al. calculated 13 MFCCs, 13 MFCC delta
features, 13 MFCC delta-delta features, log energy within the 13 MFCCs, 13 MFCC delta features, and 13 MFCC delta-delta
features of a cough and non-cough audio signal25. The features are used to train a three-layered ANN for binary classification.
P Klco et al. used Octonionic Neural Network architecture (ONN) for the segregation of cough and non-cough samples.

The authors argued that sensitivity 96.8% and specificity 98.4% was obtained by ONN on the dataset of 95200 audio samples.
Training of ONN was done using Fast Fourier Transformation (FFT) and MFCC spectral characteristics26. E Larson et al. used
the PCA on an audio spectrogram (generated through FFT) of cough and non-cough samples to train a random forest model
for classification. The authors found ten principal components sufficient for optimal classification (true positive rate of 92%
and false positive rate of 0.5%)27. In28, 12th order MFCC and the Oth order energy, along with their first and second temporal
derivatives of cough and non-cough sounds, are used as features to train an ANN for cough classification.

2.2 Deep learning on audio signals
J Amoh et al. experimented with 2D Convolutional neural networks (2dCNN) and recurrent neural networks (RNN) for cough
detection6. The authors avoided handcrafted features from cough audio signals for distinguishing them from non-cough audio
signals and preferred to learn discriminative features from data. The models proposed by the authors yielded a specificity of
92.7% (2dCNN) and sensitivity of 87.7% (RNN). H Wang et al. investigated optimal methods for encoding audio signals into
images for training CNNs24. The authors used five techniques viz. original spectrum, RASTA-PLP power spectrum, RASTA-
PLP cepstrum, 12th order PLP power spectrum without RASTA, and 12th order PLP cepstrum without RASTA. The authors
found RASTA-PLP cepstrum as most suitable encoding method (accuracy- 0.9965, F-score- 0.9768 ). In32 aimed to empirically
determine the efficacy of STFT, MFB, and MFCCs for feature engineering and deep neural networks, CNN and LSTM for
classification. The authors concluded that allowing the data-driven feature learning would give a better performance than hand
engineering features.

2.3 Discussions
Tracing the direction followed by the scientific literature, it was observed that sparse attention had been received by this field
compared to other areas of machine learning-based diagnosis such as detection of breast cancer, EEG, ECGs, etc. However, the
existing techniques can be grouped into feature engineering-based methods or deep learning-based methods. In the early days of
machine learning research, as datasets were limited and computation power or storage was expensive, feature engineering was
possible and also gave good results.
However, as large datasets emerged coupled with a decrease in the cost of computation power and storage, the trend emerged

towards the use of deep learning models33. An advantage of deep learning techniques was that they eliminated the need for
extensive feature engineering. Due to deep learning, the attention brought into focus use of sensors and wearable gadgets that
could ease the load of doctors and technicians in recording body vitals and storing data. Sensor technology aligned with cloud
storage had already brought paradigm shifts in diagnosing ailments such as tumors or cardiac-related. The samewas not observed
in pulmonary disease diagnosis45,46.
From the literature review in Section 2, it is concluded that the signal processing of cough audio signals was used reliably to

classify cough sounds from non-cough events. Comparatively, the domain of cough classification was relatively unexplored. In
this respect, in Section 3, a cough classification model was implemented.

3 MATERIALS AND METHODS

3.1 Subjects
The data for the research is a corpus of audio samples that are voluntarily generated cough samples by patients aged 3-73 visiting
a paediatric clinic in Mumbai city of India. Additionally, physical indicators are given in Table 3 were also collected from the
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TABLE 1 Summary of State of the Art techniques in literature

Authors Cough data
collection

Feature
extraction

Models
used

Total
samples

J Liu et al.1 Collar fitted
mic MFCC

Neural network
pretrained using
Deep belief networks

3873

J Amoh et al.21 Wearable acoustic sensor
Spectrogram obtained
from Short Time Fourier
Transform (STFT)

Two layered CNN
model 627

M SoliÅĎski et al.19 NHANES database of spirometry curves Feature extraction
from signal processing

Two layered ANN
model 10874

R Xaviero et al.34 Multiple repositories5 Feature extraction
from STFT

Logistic regression
model 1980

A Windmon et al.22 Smart phone mic 13 features extracted
using STFT, MFCC

Random Forest
model 165

J Amoh et al.6 Wearable acoustic sensor
Cough audio (RNN),
Spectr-temporal image of cough
audio using STFT

RNN and 2dCNN
model 627

L Perna et al.41 Microphone 12 MFCC SVM, KNN, XGBOOST
model 31754

H Hee et al.23 Microphone CQCC and MFCC GMM-UBM
model 2332

P Kadambi et al.25 Microphone 13 MFCC ANN
model 5670

E Larson et al.31 Smart phone mic FFT, PCA RF
model *

J Alvarez et al.42 Smart phone mic Spectral features SVM
model *

K Nguyen et al.15 Smart phone mic,
accelerometer

MFCC, Chroma feature analysis,
zero crossing rate SVM, ANN, RF 800

R Sharan et al.7 Smart phone mic MFCC SVM 3262

S Matos et al.43,44 Microphone MFCC, linear predictive coding,
filter banks output HMM 4268

patients. Experts fromDefence ArmyHospital Research and Referral experts working at a private nursing home inMumbai were
involved. Voluntarily produced cough samples were preferred in the study as they avoid the need for manual labeling and have
been found efficacious in previous literature16,47 for testing cough monitors and clinical settings. Consistent with the clinical
environment in16,47, subjects were kept in a quiet room with a recording device. Clinical studies revealed the age groups that are
affected by pulmonary diseases that manifest cough symptoms10 (Table 2 ).

3.2 Data collection
Data of vitals signs of the subjects was collected through examination by an experienced doctor using handheld sensors and
questionnaires. While diagnosing the subjects, the doctor would dictate the vitals of the subject to an assistant. The assistant
used a web-based application to enter the readings. This data was then stored into a SQL database (Table 3 ).
The diagnosis of the doctor was added to the dataset as a categorical attribute named Disease (no disease=0, common cold=1,

tonsillitis=2, adenoids=3, foreign body in throat=4, laryngothreacheo bronchitis=5, croup=6, asthma=7, Pneumonia=8, Plural
effusion=9, COPD=10, tuberculosis=11, whooping cough=12). Cough signals were recorded using the microphone of Xiaomi
ME17S with recording quality configured at 44.1 kHz frame rate, wav format, two audio channels, and no compression.
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TABLE 2 Common pulmonary diseases and age groups affected

Disease
Age group

in years
Common cold 0+
Tonsillitis 2-15
Adenoids 6-16
Foreign body in throat 0+
Laryngothreacheo bronchitis 0.5-3
Croup 0.5-3
Asthma 5-16
Pneumonia 0+
Pleural effusion 21-30
COPD 30+
Tuberculosis 0+
Whooping cough 0-18

FIGURE 2 Data collection

3.3 Data preprocessing
Preprocessing included converting text data to categorical values. The attributes that needed conversion are indicated in Table
3 . This data conversion was done to obtain body vitals in the format required for the application of machine learning techniques.

4 MATHEMATICAL MODEL: PULMONARY DISEASES DETECTION

4.1 Proposed approach
Each training sample (x(i), y(i)) of dataset is withm features and total n samples are present in the dataset. Hence, = {(xi, yi)}
(|| = n, xi ∈ ℝm, yi ∈ ℝ). The proposed tree ensemble model uses K additive functions to predict the output.

ŷi = �(xi) =
K
∑

k=1
fk(xi), fk ∈  , (1)

where

•  = {f (x) = wq(x)}(q ∶ ℝm → T ,w ∈ ℝT ): set of regression trees

• q: tree structure mapping an x(i) to its leaf index

• T : leaves count in the tree
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TABLE 3 Description of the dataset

Physical
indicator

Collection
mechanism Attributes

Days since
cough symptoms
started

Questionnaire Numeric

Onset of cough Questionnaire Categorical
(none=0, sudden=1, gradual=2)

Exacerbating factors
for cough Questionnaire

Categorical
(none=0, food=1, dust=2,
smoke=3, exercise=4, sleep=5)

Relieving factors
for cough Questionnaire Categorical

(none=0, vomiting=1,sputum=2)

Type of cough Questionnaire
Categorical
(none=0, wet=1, barking=2,
dry=3, whoop=4)

Type of cold associated
with cough Questionnaire

Categorical
(none=0,running nose=1,
water discharge=2, mucupurulent=3,
sneezing=4, watery eyes=5)

Irritation or pain in
throat Questionnaire Categorical

(yes=0, no=1)

Weightloss Questionnaire Categorical
(yes=0, no=1)

Difficulty in swallowing Questionnaire Categorical
(yes=0, no=1)

Loose motions Questionnaire Categorical
(yes=0, no=1)

Weight in kg Strain gauge Numeric
Height in cm Scale Numeric
Respiratory rate
per minute Stethoscope Numeric

Blood pressure (mmHg) Sphygmomanometer Numeric
Pulse rate per minute Pulse oximeter Numeric
Body temperature (◦C) Thermometers Numeric
Peripheral capillary
oxygen saturation Pulse oximeter Numeric

Color Observation
Categorical
(none=0, pink=1,
pale=2, cynosis=3)

Respiratory distress Questionnaire

Categorical
(none=0, flaring=1, subcostal=3,
retraction=4, intercostal retraction=5,
supraclavialar retraction=6, grunting=7)

Air entry in lungs Stethoscope Categorical
(good=0, bad=1)

Foreign sounds in chest Stethoscope
Categorical
(crepitation=0, ronchii=1, clear=2,
conducted sounds=3)

Percussions Stethoscope Categorical
(dull=0, normal=1)

Heart sounds Stethoscope Categorical
(normal=0, murmurs=1)

Liver Stethoscope Categorical
(palpable=0, nonpalpable=1)

Spleen Stethoscope Categorical
(palpable=0, nonpalpable=1)

Ascitis Stethoscope Categorical
(present=0, absent=1)

Central Nervous System Stethoscope Categorical
(drowsy=0, normal=1)

Cough audio Microphone Numeric timeseries

• fk: q having leaf weights w

• wi: score on itℎ leaf

For each x(i) the decision rules of q classify it into the leaf nodes and calculate the final prediction by
∑

w i.e. summing up
the score in the corresponding leaves. The obtain the optimal model �, the loss (�) is minimized by following regularized
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objective.

(�) =
∑

i
l(ŷi, yi) +

∑

k
Ω(fk)

where Ω(f ) = T + 1
2
�‖w‖2

(2)

where,

• l: loss function

• ŷi: prediction

• yi: target

• Ω: regularization term

4.2 Optimization
As the loss function given in Eq. 2 cannot be optimized using standard optimization techniques, the model is trained in an
additive manner specified in48. Eq. 2 is modified as Eq 3.

(t) =
n
∑

i=1
l(yi, ŷi

(t−1) + ft(xi)) + Ω(ft) (3)

where,

• ŷ(t)i : prediction of the i-th instance at the t-th iteration

• ft: q having leaf weights w

Using second-order approximation for optimizing Eq 3,

(t) ≃
n
∑

i=1
[l(yi, ŷ(t−1)) + gift(xi) +

1
2
ℎif

2
t (xi)] + Ω(ft)

where gi = )ŷ(t−1) l(yi, ŷ(t−1)) and ℎi = )2ŷ(t−1) l(yi, ŷ
(t−1)) are first and second order derivatives on the loss function.

Removing the constant terms in Eq 4.2.

̃(t) =
n
∑

i=1
[gift(xi) +

1
2
ℎif

2
t (xi)] + Ω(ft) (4)

By defining Ij = {i|q(xi) = j} to be instance set of leaf j and expanding Ω, rewriting Eq 4 as Eq 5

̃(t) =
n
∑

i=1
[gift(xi) +

1
2
ℎif

2
t (xi)] + T +

1
2
�

T
∑

j=1
w2
j

=
T
∑

j=1
[(
∑

i∈Ij

gi)wj +
1
2
(
∑

i∈Ij

ℎi + �)w2
j ] + T

(5)

After obtaining q(x) computation of optimal weights w∗
j of leaf j by Eq 6

w∗
j = −

∑

i∈Ij
gi

∑

i∈Ij
ℎi + �

, (6)

leads to optimal value as Eq 7

̃(t)(q) = −1
2

T
∑

j=1

(
∑

i∈Ij
gi)2

∑

i∈Ij
ℎi + �

+ T . (7)



A Kumar ET AL 9

The proposed model uses Eq 7 to measure quality (impurity score) of q. A greedy algorithm to estimate the optimal q, initiates
the tree from a single leaf node by iteratively adding branches to it. Given the leaves in left and right nodes, loss reduction after
the split is given by Eq 8,

split =
1
2

[

(
∑

i∈IL
gi)2

∑

i∈IL
ℎi + �

+
(
∑

i∈IR
gi)2

∑

i∈IR
ℎi + �

−
(
∑

i∈I gi)2
∑

i∈I ℎi + �

]

−  (8)

where,

• IL and IR: instance sets of left and right nodes after the split

• split: loss reduction after the split

4.3 Algorithm
1. Initialization of weights � and bias b

2. Configure model to minimize Loss

3. Add activation function: rectified linear unit to model

4. Set epochs, batch size

5. Optimize the loss function L using gradient descent

5 EXPERIMENTAL STUDY

5.1 Experimental setting
Proposed model in Section 4 is compared with models proposed by R Xaviero et al.5, AWindmon et al.22 and J Alvarez et al.42.
Execution environment was IPython notebook hosted on Google colaboratory connected to Google compute engine Python 3
(GPU) with 12.72GB RAM.

5.2 Metrics
Given the true positives tp, true negatives tn, false positives fp and false negatives fn obtained from observing (ŷi, yi), following
metrics were used.

Sensitivity =
tp

tp + fn
(9)

Specif icity =
tn

tn + fp
(10)

Accuracy =
tp + tn

tp + tn + fp + fn
(11)

Prevalence =
tp + fn

tp + tn + fp + fn
(12)

PositiveP redictionV alue(PPV ) =
sensitivity ∗ prevalence

((sensitivity ∗ prevalence) + ((1 − specif icity) ∗ (1 − prevalence))
(13)

NegativeP redictionV alue(NPV ) =
sensitivity ∗ (1 − prevalence)

((1 − sensitivity) ∗ prevalence) + ((specif icity) ∗ (1 − prevalence))
(14)

Detectionrate =
tp

tp + tn + fp + fn
(15)

Detectionprevalence =
tp + fp

tp + tn + fp + fn
(16)

BalancedAccuracy =
sensitivity + specif icity

2
(17)
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5.3 Dataset
Table 4 gives the division of the attributes across the various categories. The total samples taken were from 108 subjects.

TABLE 4 Bifurcation of the different attributes across categories

Physical indicator Categories
Gender Male = 50 Female = 58
Onset of cough None=2 Sudden=2 Gradual=104
Exacerbating factors for cough None=35 Food=2 Dust=1 Smoke=0 Exercise=2 Sleep=68
Relieving factors for cough None=63 Vomiting=23 Sputum=22
Type of cough None=5 Wet=65 Barking=3 Dry=35 Whooping=0
Type of cold associated with cough None=0 Running nose=30 Watery discharge=24 Mucupurulent=45 Sneezing=20 Watery eyes=15
Irritation or pain in throat Yes=35 No=73
Weightloss Yes=0 No=108
Difficulty in swallowing Yes=5 No=103
Loose motions Yes=1 No=107
Color None=3 Pink=105 Pale=0 Cynosis=0
Respiratory distress None=95 Flaring=7 Subcostal=0 Retraction=0 Intercostal retraction=6 Supraclavialar retraction=0 Grunting=0
Air entry in lungs Good=99 Bad=9
Foreign sounds in chest Crepitation=7 Ronchii=20 Clear=67 Conducted sounds=14
Percussions Dull=11 Normal=97
Heart sounds Normal=104 Murmur=4
Liver Palpable=3 Nonpalpable=105
Spleen Palpable=1 Nonpalpable=107
Ascitis Present=0 Absent=108
Central Nervous System Drowsy=97 Normal=11

A negative correlation exists in Figure 3 between Peripheral capillary oxygen saturation (SPO2) and weight, height, respi-
ration rate (RR), blood pressure (BP), pulse per minute, and body temperature. Body temperature in Figure 3 shows a positive
correlation with weight, height, respiration rate (RR), blood pressure (BP), and pulse per minute. There does not exist a strong
correlation (>80%) between independent variables except weight and height.

FIGURE 3 Correlation between numeric variables in the dataset

5.4 Model training
The dataset was divided into training and test set with a 4:1 ratio. For hyper-parameter tuning, k-fold cross-validation method
was selected (k = 10) with upsampling to reduce the class imbalance. The final list of hyper-parameters was obtained as given,

• J Alvarez et al.42 - degree (Polynomial Degree) = 2, scale = 0.0003422559 and C (cost) = 58.51966
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• Proposed model - nrounds (Boosting Iterations)= 308, max_depth (Max Tree Depth)= 4, eta (shrinkage)= 0.3512824,
gamma (Minimum Loss Reduction)= 3.603526, colsample_bytree (Subsample Ratio of Columns)= 0.4717281,
min_child_weight (Minimum Sum of Instance Weight)= 4 and subsample (Subsample Percentage)= 0.2650358

• R Xaviero et al.5 - cost = 0.01109916, loss function = L1 and epsilon (tolerance) = 1

• A Windmon et al.22 - mtry (Randomly Selected Predictors) = 31

The Caret package of R was used for implementation. A notebook can be found at https://www.kaggle.com/pranavn91/cough-
notsound.

5.5 Results and discussion
5.5.1 Overall statistics on test set
Table 5 gives a comparison of the proposed model with three baseline models. The models were evaluated on the multi-class
classification problem. The dependent variable in the dataset is output or disease identified by the doctor. The disease belonged
to one of the thirteen categories viz. no disease=0, common cold=1, tonsillitis=2, adenoids=3, foreign body in throat=4,
laryngothreacheo bronchitis=5, croup=6, asthma=7, Pneumonia=8, Plural effusion=9, COPD=10, tuberculosis=11, whooping
cough=12. However, during the period of data collection, i.e., from 1st February 2020 to 14th March 2020, no occurrence of
pleural effusion, tuberculosis, and foreign body in the throat were found among the subjects. These categories were removed
from the dependent variable. The average precision, accuracy, recall, and F-score of the models across thirteen disease categories
is given in Table 5.

TABLE 5 Overall statistics of performance of models on Test set

Model Accuracy 95% CI No information rate P-value Kappa
J Alvarez et al.42 0.41 0.18, 0.67 0.41 0.59 0.19
Proposed Model 0.41 0.18, 0.67 0.41 0.59 0.29
R Xaviero et al.5 0.41 0.18, 0.67 0.41 0.59 0
A Windmon et al.22 0.59 0.33, 0.82 0.41 0.11 0.45

The proposed model achieves accuracy comparable with J Alvarez et al.42 and R Xaviero et al.5 but less than A Windmon et
al.22 as shown in Table 5 .

5.5.2 Confusion matrix on test set
For a fine grained analysis the confusion matrix is given in Tables 6 , 7 , 8 and 9 . In these tables, tp, tn, fp, fn is given across
nine disease categories for each model. Table 6 shows the SVM based model proposed by J Alvarez et al.42 misclassified no
disease, croup and asthma samples but correctly classified common cold samples.
Table 7 shows that the ensemble tree-based proposed model misclassified no disease, common cold, tonsillitis, and

laryngothreacheo bronchitis and classified croup and asthma samples correctly.
Table 8 shows that the Logistic regression-based model proposed by R Xaviero et al.5 misclassifies no disease, tonsillitis,

laryngothreacheo bronchitis, croup, and asthma samples but classifies all samples of common cold accurately.
Table 9 shows that the random forest-based model proposed by AWindmon et al.22 misclassifies no disease, common cold,

tonsilitis, laryngothreacheo bronchitis and accurately classifies croup and asthma samples.
From the confusion matrix is given in Tables 6 , 7 , 8 and 9 , it is observed that the samples of diseases in the test set

are limited (no disease=2, common cold=7, tonsillitis=2, adenoids=0, laryngothreacheo bronchitis=2, croup=1, asthma=3,
pneumonia=0 and COPD=0). Limited samples make the dataset challenging. The proposed model could accurately classify
croup, asthma and common cold in the test set.
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TABLE 6 Confusion matrix of J Alvarez et al.42 on Test set

Reference

Predictions no disease common cold tonsilitis adenoids laryngothreacheo
bronchitis croup asthma pneumonia COPD

no disease 0 1 0 0 1 0 1 0 0
common cold 1 6 1 0 0 2 0 0 0
tonsilitis 0 0 1 0 0 0 0 0 0
adenoids 0 0 0 0 1 0 0 0 0
laryngothreacheo
bronchitis 0 0 0 0 0 0 0 0 0

croup 0 0 0 0 0 0 0 0 0
asthma 0 0 0 0 0 0 0 0 0
pneumonia 1 0 0 0 0 1 0 0 0
COPD 0 0 0 0 0 0 0 0 0

TABLE 7 Confusion matrix of Proposed model on Test set

Reference

Predictions no disease common cold tonsilitis adenoids laryngothreacheo
bronchitis croup asthma pneumonia COPD

no disease 0 1 0 0 0 0 0 0 0
common cold 0 3 0 0 1 0 0 0 0
tonsilitis 0 0 0 0 0 0 0 0 0
adenoids 0 1 1 0 0 0 0 0 0
laryngothreacheo
bronchitis 0 1 0 0 0 0 0 0 0

croup 2 0 1 0 1 1 0 0 0
asthma 0 1 0 0 0 0 3 0 0
pneumonia 0 0 0 0 0 0 0 0 0
COPD 0 0 0 0 0 0 0 0 0

TABLE 8 Confusion matrix of R Xaviero et al.5 on Test set

Reference

Predictions no disease common cold tonsilitis adenoids laryngothreacheo
bronchitis croup asthma pneumonia COPD

no disease 0 0 0 0 0 0 0 0 0
common cold 2 7 2 0 2 1 3 0 0
tonsilitis 0 0 0 0 0 0 0 0 0
adenoids 0 0 0 0 0 0 0 0 0
laryngothreacheo
bronchitis 0 0 0 0 0 0 0 0 0

croup 0 0 0 0 0 0 0 0 0
asthma 0 0 0 0 0 0 0 0 0
pneumonia 0 0 0 0 0 0 0 0 0
COPD 0 0 0 0 0 0 0 0 0

5.6 Summary of Results: Class-wise performance statistics
Table 10 , Table 11 , Table 12 and Table 13 give the performance of the J Alvarez et al.42, the proposed model, R Xaviero
et al.5 and A Windmon et al.22 models respectively, across various disease types.
None of the models could identify no disease samples in the dataset, but for croup and asthma, the proposed model achieved

comparable results with the state of the art as it accurately classified all samples. However, for tonsillitis, laryngothreacheo
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TABLE 9 Confusion matrix of A Windmon et al.22 on Test set

Reference

Predictions no disease common cold tonsilitis adenoids laryngothreacheo
bronchitis croup asthma pneumonia COPD

no disease 0 0 0 0 0 0 0 0 0
common cold 0 0 1 0 1 0 0 0 0
tonsilitis 0 0 0 0 0 0 0 0 0
adenoids 0 0 0 0 0 0 0 0 0
laryngothreacheo
bronchitis 1 0 0 0 0 0 0 0 0

croup 1 0 1 0 1 1 0 0 0
asthma 0 1 0 0 0 0 3 0 0
pneumonia 0 0 0 0 0 0 0 0 0
COPD 0 0 0 0 0 0 0 0 0

TABLE 10 Statistics by class of J Alvarez et al.42 on Test set

No disease Common cold Tonsilitis Adenoids Laryngothreacheo
bronchitis Croup Asthma Pneumonia COPD

Sensitivity 0 0.86 0.5 NA 0 0 0 NA NA
Specificity 0.8 0.6 1 0.94 1 1 1 0.88 1
PPV 0 0.6 1 NA NaN NaN NaN NA NA
NPV 0.86 0.86 0.94 NA 0.88 0.94 0.82 NA NA
Prevalence 0.12 0.41 0.12 0 0.12 0.06 0.18 0 0
Detection rate 0 0.35 0.06 0 0 0 0 0 0
Detection prevalence 0.18 0.59 0.06 0.06 0 0 0 0.12 0
Balanced accuracy 0.4 0.73 0.75 NA 0.5 0.5 0.5 NA NA

TABLE 11 Statistics by class of Proposed model on Test set

No disease Common cold Tonsilitis Adenoids Laryngothreacheo
bronchitis Croup Asthma Pneumonia COPD

Sensitivity 0 0.43 0 NA 0 1 1 NA NA
Specificity 0.93 0.9 1 0.88 0.93 0.75 0.93 1 1
PPV 0 0.75 NaN NA 0 0.2 0.75 NA NA
NPV 0.88 0.69 0.88 NA 0.86 1 1 NA NA
Prevalence 0.12 0.41 0.12 0 0.12 0.06 0.18 0 0
Detection rate 0 0.18 0 0 0 0.06 0.18 0 0
Detection prevalence 0.06 0.24 0 0.12 0.06 0.29 0.24 0 0
Balanced accuracy 0.47 0.66 0.5 NA 0.47 0.88 0.96 NA NA

bronchitis, and the common cold, it misclassified all samples. Additional training data would be suitable for improving the
performance of the proposed model.

6 CONCLUSION AND FUTUREWORKS

Cough audio sounds and acoustics have underlying pulmonary health knowledge. Despite this, guidelines issued by medical
organizations at national and international levels fail to consider them in diagnosing pulmonary diseases. It has been speculated
that by feature engineering or addition of markers within cough signals through novel applications of signal processing and
deep learning, the diagnosis of pulmonary ailments can be improved, especially in developing countries. The current survey
was drawn to highlight the progress made in cough audio analysis. From the literature review, it is concluded that the signal
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TABLE 12 Statistics by class of R Xaviero et al.5 on Test set

No disease Common cold Tonsilitis Adenoids Laryngothreacheo
bronchitis Croup Asthma Pneumonia COPD

Sensitivity 0 1 0 NA 0 0 0 NA NA
Specificity 1 0 1 1 1 1 1 1 1
PPV NaN 0.41 NaN NA NaN NaN NaN NA NA
NPV 0.88 NaN 0.88 NA 0.88 0.94 0.82 NA NA
Prevalence 0.12 0.41 0.12 0 0.12 0.06 0.18 0 0
Detection rate 0 0.41 0 0 0 0 0 0 0
Detection prevalence 0 1 0 0 0 0 0 0 0
Balanced accuracy 0.5 0.5 0.5 NA 0.5 0.5 0.5 NA NA

TABLE 13 Statistics by class of A Windmon et al.22 on Test set

No disease Common cold Tonsilitis Adenoids Laryngothreacheo
bronchitis Croup Asthma Pneumonia COPD

Sensitivity 0 0.86 0 NA 0 1 1 NA NA
Specificity 1 0.8 1 1 0.93 0.81 0.93 1 1
PPV NaN 0.75 NaN NA 0 0.25 0.75 NA NA
NPV 0.88 0.89 0.88 NA 0.88 1 1 NA NA
Prevalence 0.12 0.41 0.12 0 0.12 0.06 0.18 0 0
Detection rate 0 0.35 0 0 0 0.06 0.18 0 0
Detection prevalence 0 0.47 0 0 0.06 0.24 0.24 0 0
Balanced accuracy 0.5 0.83 0.5 NA 0.47 0.91 0.96 NA NA

processing of cough audio signals can be used reliably to classify cough sounds from non-cough events. Comparatively, the
domain of cough classification was relatively unexplored.
An end to end machine learning model was proposed. For evaluation of the model, a dataset collected from a pediatric facility

in Mumbai, India, was used. The dataset had samples from nine mild to severe pulmonary maladies affecting adolescents in
India. During the evaluation, from the results, it was observed that the proposed model could accurately identify disease samples
such as croup and asthma. The dataset and model were put into the public domain for further evaluation and research.
An attempt to showcase the intuitions behind the state of the art techniques in this domain was made to provide a useful

starting point for beginners. It was not an objective of the current paper to exhaustively describe the signal processing or machine
learning techniques available for audio analysis. However, considering the relatively less attention received on that subject, it
may be a new line of research.
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