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Abstract—Multidimensional Scaling is commonly used to solve
multi-sensor location problems. In this paper, we show that
such technique provides poor results in the case of indoor
location problems based on 802.11 Fine Timing Measurements,
especially when the number of anchors is small. We then propose
an iterative approach based on geometric resolution of angle
inaccuracies. We show that this geometric approach provides
better location accuracy results than other Euclidean Distance
Matrix techniques based on Least Square Error logic. We also
show that the proposed technique, with the input of one or more
known points, can allow a set of fixed sensors to auto-determine
their position on a floor plan.

Index Terms—FTM, Fine Timing Measurement, 802.11,
mMDS, Euclidean Distance Metric, Multidimensional Scaling

I. INTRODUCTION AND RELATED WORK

While outdoor location is often possible with GPS and other
techniques, indoor location stays challenging, as GPS signal is
often not available inside. Among several proposed techniques,
based on grid fingerprinting [12], signal, angles evaluations or
time of flight (ToF) [17], 802.11-2016 Fine Timing Measure-
ment (FTM) defines a new ranging procedure based on 802.11
and ToF. An initiating station (ISTA) exchanges frames with
a responding station (RSTA) and uses timestamps (frames Tx
time, Rx time on both sides) to deduce its distance to the
RSTA (travel time divided by speed of light). After ranging
to multiple RSTAs, the ISTA knows its distance to a set of
anchors, but does not know its location. FTM allows each
RSTA to send its Location Configuration Information (LCI)
to the ISTA, a geo-position and height element which content
follows a format defined in RFC 6225 [15].

However, this procedure introduces the very problem that
it aims to solve. Indoor, GPS is difficult to use and there
is no easy alternative solution for a device to determine
its geo-position. Yet FTM supposes that indoor anchors are
somehow configured with an accurate geo-position. Many
implementers are left with manual and time consuming tech-
niques to determine each RSTA location, using tedious floor
plan measurements coupled with area maps displaying geo-
position references.

Outdoor location based on GPS can commonly provide
accuracy down to a meter or less [5]. When nearing a
building, the accuracy gets diluted when the building hides
some GPS satellites. Different augmentation techniques, such
as Pan et al. [14], were proposed to limit this issue. Indoor,
GPS accuracy heavily depends on the building structure (e.g.,
windows, floor size and plan). In some scenarios, location can
still be obtained indoor [13], but in most, the signal is lost.

The idea of seeding GPS measurements from outdoor to
indoor systems has for example been studied by Dattorro et
al. [2]. With an external seed, RSTAs could range to one
another and determine their relative position. Such a task falls
into the general domain of sensor ranging and location. With
wireless technologies, most distance evaluation techniques
are noisy, resulting in an imperfect, or incomplete, distance
matrix. Resolving such a matrix is a complex problem, which
challenges are summarized by Kjaegaard et al. [10]. Liberti
[11] provides an overview of the main resolution techniques. In
the particular case of sensor location, Eren et al. [6] show that
the problem can be convex if the dimension space is known,
which is often the case for RSTAs in FTM (but not when
using FTM alone, as we will show). An approach close to
ours, to reduce the problem with sub-matrix spaces, is detailed
by Liu et al. [13], although the proposed method is strictly
algebraic (while we propose a geometric component). As
the distances are organized in a matrix, algebraic approaches
are natural. Some authors, like Doherty and al. [3], explore
geometric resolutions in scenarios where link directionality
matters. We will show that the addition of learning machine
can considerably enhance the resulting accuracy.

This paper shows that, using FTM, this deployment process
can be simplified dramatically. Static sensors can use FTM
to learn their relative position. Then, with the seed of a
GPS-enabled client ranging from outdoor, an RSTA can learn
its own location, thus allowing all other RSTAs to use that
information to deduce their own location.

The rest of this paper is organized as follows: Section II
exposes the general problem space of noisy Euclidian matrix
completion. Section III explains our approach, with an asym-
metry reduction phase and an algebro-geometric approach.
Section IV presents numerical validation through experimental
measurements, and compares the accuracy of our proposed
method to other classical Euclidean Distance Matrix (EDM)
resolution methods. Section V concludes this paper.

II. PROBLEM SPACE FRAMEWORK

A. Multidimensional Scaling (MDS) background

With FTM, Wi-Fi access points and other static devices can
be configured as ISTAs and RSTAs, and range to one another
over time. The outcome, similar to any other noisy Euclidean
Distance Matrix (EDM), is a network of n > 0 nodes, among
which 0 ≤ m ≤ n nodes have a measured pairwise distance,
which can be organized in a matrix that we will note D̃. The
main task of the experimenter is then to find the dimension



N where the set was measured, then construct a matrix of
distances that on the one hand best resolves the noise (which
causes inconsistencies measured distances), and on the other
hand is the closest to the real physical distances, called ground
truth, and which matrix is noted D. Such a task is one main
object of metric Multidimensional Scaling (mMDS).

Two main principles lie at the heart of mMDS: the idea that
distances can be converted to coordinates, and the idea that
during such a process dimensions can be evaluated. mMDS
usually starts from the ground truth distance matrix D and
attempts to find the position matrix X. Making such a trans-
formation relates to eigendecomposition, by which formally a
square matrix, that we call B, of size n×n can be decomposed
as B = QΛQ′, where the matrix Q is orthonormal (i.e. Q is
invertible and we have Q−1 = Qt) and Λ is a diagonal matrix
such that ∀(i, j) ∈ J1;nK, λi,j = 0 if i 6= j and λii 6= 0.
Values (λii)i∈J1;nK of Λ are the eigenvalues of B.

Applied to mMDS, eigendecomposition is useful because
the number of positive, non-null eigenvalues is equal to the
rank of the matrix, i.e. the dimension of the object that
mMDS attempts to resolve. In noisy matrices, where distances
are approximated, it is common that all eigenvalues will be
non-null. However, the decomposition should expose large
eigenvalues (i.e. values that have a large effect on an input
to the matrix) and comparatively small eigenvalues (i.e. values
that tend to reduce input to the null vector). Small eigenvalues
are usually arbitrarily identified by the experimenter, then
ignored and considered to be null values that appear as non-
zero because of the matrix noise. Noisy matrices may also
surface some negative eigenvalues. The common practice is
also to consider them as undesirable but unavoidable result of
noise and ignore them for rank estimation.

Thus, classical mMDS starts by computing, from all mea-
sured distances, the squared distance matrix D̃(2) =

[
d̃ij

2
]
,

also commonly called proximity matrix or similarity matrix.
Next, a centering matrix J is computed, that is in the form
J = In − 1

ncc
′, where c is an n column vector of all ones.

This matrix is called centering because it creates a matrix
of weights centered around twice the mean of the number of
entries n. This matrix has useful properties described in [9].
In particular, applied to D̃, it allows the determination of the
centered matrix B = − 1

2JD̃
(2)J , which is a transformation

of D̃ around the mean positions of d̃ij ∈ RN .
At this point, the distance matrix is centered. mMDS then

computes the eigendecomposition of B = QΛQ′. Next, the
experimenter has the possibility to decide of the dimensions of
the projection space (R2 or R3 in our case, but the dimension
can be any m ∈ N in mMDS). This can be done by choosing
the m largest eigenvalues λ1, λ2, . . . , λm either arbitrarily or
by deciding that the dimension space Rm matches all m
large positive eigenvalues in B, ignoring the null, negative
and (comparatively) small positive eigenvalues.

Then, if we write Λm the matrix of these m largest
eigenvalues, and Qm the first m columns in Q, the coordinate
matrix is determined to be U = QmΛ

1/2
m .

B. mMDS Limitations in FTM Measurements
mMDS is a family of techniques, with multiple possible

variations, but all of them abide by general core principles
expressed above. These principles present properties of great
value for multiple distance applications, but also three major
limitations for indoor measurements like FTM.

1) Pairwise Asymmetry: With FTM, measurements be-
tween station pairs can be bidirectional, each side alternating
between the RSTA and ISTA roles. In a noisy environment,
these measurements suffer from the effects of multipath.
Locally, strong persistent reflections can differently affect
each receiver. As a consequence, the initial measured distance
matrix is asymmetric, i.e. d̃ij 6= d̃ji for many pairs. This
issue can be mitigated by only considering the smallest value
for each reported pair distance, thus allowing d̃ij = d̃ji =
min(i,j){d̃ij , d̃ji}.

2) Dimension Determination: With multipath locality, each
pair measured distance d̃ij presents a dilation factor kij
(compared to the ground truth dij , thus d̃ij = kijdij), different
than the dilation for another pair. Determining if the stations
are at the same height (in R2) or in 3 dimensions (multi-floor
scenario) becomes difficult. For example, in a deployment
where APs or sensors are positioned every 20 to 25 meters
and floors are 4 meters apart (including slabs and isolation),
a measurement of d̃ = 25 prevents the experimenter from
determining if d = 25 between 2 stations on the same plane,
or if 20 ≤ d ≤ 24.68 between sensors on different floors,
separated vertically by a distance 4 ≤ w ≤ 15.

In the case of Wi-Fi ranging, this issue is easily solved
with RSSI evaluations and LoS path loss equations. But we
postulate that time of flight techniques alone cannot solve this
issue unless the distance dilation k between pairs is consistent
across all dij and estimated precisely.

3) Error Averaging: Many mMDS techniques proceed with
the logic that distances may be noisy, but the noise being
unknown, it can be considered as Gaussian, i.e. symmetric in
most directions. But in the case of FTM (and probably multiple
other time-of-flight-based distance estimation techniques), the
noise is not Gaussian throughout the matrix. This last point
causes the third additional difficulty. mMDS only considers the
positive, large eigenvalues. This is a necessary requirement of
the distance-to-coordinate resolution process, where (Λ1/2)2

needs to have a solution in R (i.e. no complex part), but
its effect is to ignore some components of pairwise dilation.
As noted in [16], the matrix transformation used for mMDS
resolution makes that the components of a pairwise dilation
are projected as weights for the computation of the centered
matrix B, affecting all other entries of B in the process. The
large error of a single pair thus affects the computed position
of all points in U , thus distributing the error to all positions. In
a scenario like FTM where the noise is not Gaussian, mMDS
used alone can provide an acceptable result, but that will often
be disappointing, as precise measurements get degraded by the
contribution of dilated pairs.

Therefore, there is a need for a method that can identify
and compensate for the highly dilated segments, to attempt
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Fig. 1. Sensor geometric relationship.

to reduce their dilation before they are injected in a method,
such as mMDS, where all segment contributions are treated
equally.

III. GEOMETRIC EDM RESOLUTION FOR FTM

A. Wall Remover - Minimization of Asymmetric Errors

One first contribution of this paper is a method to reduce
dilation asymmetry. Space dimension is resolved using other
techniques (e.g. RSSI-based). A strong obstacle between two
stations, say x3 and x4, can cause their distance to appear
stretched. This stretch may not appear between x3 or x4
and other stations (e.g. x3x2 or x4x2). A good resolution
is therefore ‘not’ to average the error, but locate it, then
attenuate it locally if possible. Geometry provides great tools
to this mean, that can reduce the distance error only when it
is directional, thus outputting a matrix D̃ which k factor is
closer to uniformity. It should be noted that the purpose of
such method should not be to fully solve the MDS problem,
as some pair distances are usually not known, and the method
has a limited scope .

In many cases, we can select 4 stations such that one of them
is within the triangle formed by the three others, as represented
in the left part of Figure 1. The triangle is scalene, but the same
principle applies to any triangle. A fourth sensor x4 is found
within the (x1, x2, x3) triangle. Sides can be expressed from
other sides and angles. For example, d24 can be expressed
as d224 = d212 + d214 − 2d12d14cos(α1). We could also use
a similar equation to express α1. Thus, angles and missing
distances can be found from known distances. However, in a
noisy measurement scenario, inconsistencies are found.

For example, an evaluation of the triangle (x1, x2, x4)
may be consistent with the left side of Figure 1, but an
evaluation of triangle (x1, x3, x4) may position x4 in the
hashed representation x′4 of the right part of Figure 1. The
most probable reason for the inconsistency is noise, an obstacle
or a reflection source between x3 and x4. Other possibilities
can be found, for example a larger dilation for d12 than for
d24 and d14. But as more comparisons are performed, the
inconsistency re-appears when the pair is tested against other
points, thus making the obstacle a likely cause. Thus, we
propose a method where a learning machine, that we call
a geometric wall remover engine, is fed with all possible
distances in the matrix and compares all possible iterations of

sensors forming a triangle and also containing another stations.
Each time a scenario matching the right side of Figure 1 is
found, the algorithm learns the asymmetry and increases the
weight w of the probability p that the matching segment (x3x4
in this example) has an overly stretched kij factor.

At the end of the first training iteration, the system outputs
a sorted list of segments with the largest stretch probabilities,
then attempts to reduce the largest stretch by applying to
the affected segment distance a contraction factor ζij (this
can be a step increment, similar to other machine learning
algorithms learning rate logic, or be proportional to the stretch
probability). The system then runs subsequent iterations on the
same principles, until the stretch of each segment falls within
acceptable range of the others.

This method has the merit of surfacing points internal to the
constellation that display large k factors, but is also limited in
scope and intent. In particular, it cannot determine large k
factors for outer segments, as the matching points cannot be
inserted within triangles formed by other points. However, its
purpose is to limit the effect of asymmetries, not to solve the
entire matrix.

B. Iterative algebro-geometric EDM Resolution

The Wall Remover method can be used on its own to reduce
asymmetry before using classical EDM techniques. It can also
be used in combination with the iterative method proposed in
this section, although the iterative method has the advantage
of also surfacing dilation asymmetries, and thus could be used
directly (without prior dilation reduction). Combined together,
these two techniques provide better result than standard EDM
techniques.

EDM resolution addresses two contiguous but discrete prob-
lems: matrix completion and matrix resolution. In most cases,
the measured distance matrix D̃ has missing entries (stations
out of range of each other) and a first task is to complete
the matrix by estimating these missing distances. Once the
matrix contains non-zero numerical values, the next task is
to resolve inconsistencies and find the best possible distance
combination.

Several methods solve both problems with the same algo-
rithm. Dokmanic et al. [4] provide a description of the most
popular implementations. We propose a geometric method,
which first uses partial matrix resolution as a way to project
station positions geometrically onto a R2 plane, then a mean
cluster error method to identify individual points in individual
sets that display large asymmetric distortions (and should
therefore be voted out from the matrix reconstruction). By
iteratively attempting to determine and graph the position of
all possible matrices for which point distances are available,
then by discarding the poor (point pairs, matrices) performers
and recomputing positions without them, then by finding the
position of the resulting position clusters, the system reduces
asymmetries and computes the most likely position for each
station.

The details of each step, along with the mathematical
proofs, can be found in the research report by the same
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authors [8]. The principles are as follows. The measured
distance matrix D̃ of n station distances is separated in all
possible sub-matrices D̃m of size 2 ≤ m ≤ n. A pivot xi
is chosen iteratively in D̃m. For each iteration, xi is set as
the origin, and xi = (0, 0). The next point xj is iteratively
set along the x-axis, and xj = (d̃xixj

, 0). If m > 2, then
the position (uxl

, vxl
) of each other point xl of the set

{xi, xj , xl} is found using standard triangular formulas and
where:

uxl
=

xlx
2
j−xix

2
l−xix

2
j

−2xixj
and vxl

=
√
xix2l − u2xl

The calculated (uxl
, vxl

) are always positive, but their
sign can be corrected where needed based on the distance
comparison between points on the graph. Later iterations use
other points (xi = (0, 0)) as reference, coordinate translation
then rotation is used to align the next graph to the previous
one, using common points successively as the reference (to
align the graphs and yet avoid centering all graphs on xi).

As measured distances are noisy, at the end of the iterative
process, all points associated with a stations are not perfectly
overlapping, but form a cluster, which center can be deter-
mined by a simple coordinate mean calculation. Projections
that are congruent will display points that are close to one
another for a given cluster. The graph will also display
some representations that display large asymmetric deviations,
caused by a dilation factor k different for a station pair than for
the others. The geometric Wall Remover method is intended
to reduce such effect. As it acts on the angles of adjacent
triangles, it is more precise than this section of our proposed
method. However, it may happen that the dilation occurs
among pairs than the geometric Wall Remover cannot identify
(for example because the pair is formed with stations at the
edge of the constellation) and this method complements it.

The deviation also surfaces matrices coherence. A coherent
matrix contains a set of distances displaying a similar dilation
factor k. An incoherent matrix contains one or more distance
displaying a k factor largely above or below the others. For
example, several stations may be separated from each other by
walls, but be in LoS of a common station, which will display
a k factor smaller than the others. Stations that display good
coherence in multiple matrices are efficient anchors (while
those positioned in a challenging location are poor anchors
for any iteration).

An additional step is therefore to identify good, medium and
poor anchors and discard distances that were computed using
poor anchors. This is done by computing the Euclidean dis-
tance between each point position from a given matrix to the
cluster center for that point. Points that are far from the cluster
center are deemed poor anchors. Matrices using this station
as an anchor are removed from the batch and clusters are
recomputed without these stations’ contribution as anchors. As
the computation completes, each cluster center is used as the
best estimate of the associated station position. By reducing
the variance of the dilation factor k, by removing sub-matrices
and station pairs that bring poor accuracy contribution, this

Fig. 2. Experimental setup.

method outperforms standard EDM completion methods when
R

N is known, because it incorporate asymmetries evaluation
and reduction as it computes the most likely anchor positions.

IV. EXPERIMENTAL VALIDATION

A. Experiment Methodology

We tested this method in a representative building that is
a three-storey office building with cubicle areas alternating
with blocks of small offices. Our testbed is installed on the
second floor. The wall structure is irregular, causing different
reflection and absorption patterns for each AP pair. The floor
already has Wi-Fi coverage. One FTM device equipped with
Intel 8260 cards is positioned near (one foot away) each of the
13 existing APs, near ceiling level, as represented in Figure 2.

Ground truth distances are known from floor plan blueprint
and onsite laser ranging. The FTM stations are configured to
successively act as ISTAs and RSTAs. The system is left active
for two days. Every hour, the system wakes up, each ISTA
ranges against the detected RSTAs on various channels for
10 minutes and logs the result. At the end of the collection
phase, the logs of all stations are collected and injected into
the learning machine. Mobile stations are also walked around
the building. GPS accuracy utilities are installed on different
phones, that surface outside an error of less than half a meter
on average. Inside the building, accuracy collapses.

Observing the distance matrices immediately makes appar-
ent the challenges in mMDS. The ground truth 13∗13 distance
matrix surfaces 9 positive eigenvalues, but only 2 of these
are large, indicating a 2-dimensional geometrical object. The
measured FTM matrix surfaces ‘only’ 7 positive eigenvalues,
but all of them are large.

As such, it is clear that the distance matrix alone is not
sufficient to assert the dimensionality of the space. However,
complementing with RSSI evaluation easily solves the issue.
Two APs (AP15 and AP16) are positioned on the upper floor
above AP05 and AP06 respectively. A simple comparison of
the observed signal and measured distance shows that AP15
signal to any AP on the lower floor systematically appears
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Fig. 3. Measured distances to ground truth ratios, and pairs identified by the
geometric wall remover method as ‘abnormal’.

12 to 28 dB below the pairwise signal between these APs at
equivalent distance. By contrast, AP16 to AP15 signal appears
10 to 25 dB above the signal to any other AP at comparable
distance. This result immediately indicates that AP15 and
AP16 are on a different floor from the others (and that both
AP15 and AP16 are on the same floor), allowing us to easily
group APs on floors.

B. Geometric Wall Remover Phase

Some stations are positioned in open spaces, but others are
placed in challenging locations, conference rooms or corridors,
from where no clear LoS can be established to other stations.
In some cases, the nLoS condition has no effect on the range
mean (as all neighbors can only be reached through walls),
but in some others, ‘canyon conditions’ appear, where strong
reflections against walls cause the dilation factor to vary from
with directionality.

Figure 3 displays the ratio between the mean of the mea-
sured distance and the ground truth. The distances that the
geometric wall remover engine identifies as deviating from the
others are highlighted. Some stations are out of range from one
another (e.g. station 1 against station 13) and are not addressed
in this phase.

As can be observed, the geometric wall remover engine cor-
rectly identifies most incorrect distances, except those affect-
ing stations positioned at the edge of the floor. A contraction
factor ζ is applied to the segment with worst stretch (the step
value of ζ was chosen to be static and small, set to 0.98).
As more iterations were run, each with a ζ factor applied to
the worst offender, the number of reported abnormal distances
decreases, until, on the last iteration, the engine does not
surface any more anomaly. At this point, the largest deviation
from the ground truth (for the flagged pairs) was brought
down to 1.13. This validation indicates that the geometric wall
remover can correctly identify inner outliers and reduce the
associated error, without distorting the graph (over or under
reduction).

C. Iterative algebro-geometric phase

In this phase, we start with the largest possible matrix. A
matrix of size 13 is of course of low interest, as there is a
single possible ranging outcome. Iteratively, the engine finds
that a matrix of size 12 also offers a single solution, because
the table contains several stations that are not of range of each
other, thus causing some pairs to show NaN distance. A matrix
of size 9 starts allowing for more than one pivot. As the matrix
size decreases, more combinations appear and noise increases.

Fig. 4. Position graph of matrix size 5 (left), sensor 4 highlight in red (right).

Fig. 5. Clusters for sensors 2, 3, 5 and 6, before (left) and after (right) outlier
suppression.

The process repeats iteratively. With smaller matrices and
more combinations, clusters start to appear for each station,
with various densities (mean distance from cluster center) as
can be seen in Figure 4 (left). Each point to sensor identifier
is known, and thus individual sensor clusters can be graphed
as seen in Figure 4 (right), then treated separately if needed.

Clusters display different density. For each cumulative
graph, cluster centers are computed and the mean cluster
radius ri compared between clusters. Then, outliers (points
more than 2σ away from the cluster center) are removed from
each cluster as displayed in Figure 5 (for better legibility, only
4 stations from the building are plotted).

After removing the outliers, each station cluster center is re-
computed. The final cluster centers are displayed in Figure 6.
Ground truth positions are green circles, the computed cluster
position for each station is represented as a red star. The
maximum error is observed at 1.1143 meter.

At this stage, the relative station positions are estimated,
but their orientation is not known. However, using the ranging
information from one or more mobile phones, walking outside
the building, to two or more stations, and sending to the AP
the GPS location of the mobile phone as seed, the graph can
be rotated to its correct orientation and the phone GPS location
can be used to populate the LCI values of all stations on the
graph.

D. Comparison with other methods

Noisy EDM completion is a complex problem. Proposed
solutions are many, and tend to be tailored to specific problem
spaces. We will limit our comparison to the main methods
listed in [4]. Naturally, using classic MDS boils down to
performing an eigenvalue decomposition and geometric cen-
tering. As the matrix is noisy, the error is large. Additionally,
the algorithm interprets missing distances as 0 values, which
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Fig. 6. Cluster center position computation (red star) vs ground truth position
(green circles).

Fig. 7. Classical MDS projection with raw data (left) and after NaN distances
resolution (right) in Building 1.

introduces irreconcilable inconsistencies in the matrix in all
dimensions. The effect is worsened when the projection is
constrained into R2, as can be seen in Figure 7 (left). This
effect can be attenuated by constructing and overlapping
partial matrices for which distances are known [1]. Even in
this case, the effect of asymmetry is visible, resulting in a
large error space (Figure 7, right).

Many optimizations methods aim at finding missing ele-
ments from a matrix that is assumed to be noiseless. This
assumption is necessary to maintain convexity, but with the
consequence of being unusable in our scenario. For incomplete
and noisy matrices, a classical solution is to use semi-definite
relaxation. This technique has multiple variants to adapt to
different matrix sizes or sparsity scenarios, and both [1] and
[7] are typical illustrations of the associated reasoning. In all
cases, the goal is to bound the rank of the Gram matrix to
the target dimension space, thus constraining the number of
positive and non-null eigenvalues. The process is efficient,
especially for large matrices. As it proceeds iteratively, it also
has the virtue of minimizing the error. However, the error is
still affected by asymmetries and therefore sub-optimal for
asymmetric scenarios like FTM.

V. CONCLUSION

We presented a method to solve noisy Euclidian distance
matrices (EDM). We showed that in the case of station time-

of-flight measurements, measured distances are dilations of
ground truth distance, but that the dilations are asymmetric,
thus rendering classical EDM methods generally inaccurate,
as they tend to assume noisy symmetry and therefore tend to
center the error. We propose a machine learning method for
identifying and reducing noise asymmetry based on evalua-
tion of angles within overlapping triangles. We then propose
a second machine learning method, aimed at graphing the
positions of stations derived from distance sub-matrices, and at
identifying and removing combinations that surface excessive
distances, thus progressively removing edge asymmetries and
reducing the distance errors. We show that this method outper-
forms standard EDM resolution methods. In future works, we
will examine how this method can be extended to 802.11az,
where some stations can stay entirely passive, building their
location from the observation of FTM exchanges between
other stations.
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