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Abstract Since its inception in 2009, Bitcoin is mired in controversies for providing a
haven for illegal activities. Several types of illicit users hide behind the blanket of anonymity.
Uncovering these entities is key for forensic investigations. Current methods utilize machine
learning for identifying these illicit entities. However, the existing approaches only focus
on a limited category of illicit users. The current paper proposes to address the issue by
implementing an ensemble of decision trees for supervised learning. More parameters allow
the ensemble model to learn discriminating features that can categorize multiple groups
of illicit users from licit users. To evaluate the model, a dataset of 1216 real-life entities on
Bitcoin was extracted from the Blockchain. Nine Features were engineered to train the model
for segregating 16 different licit-illicit categories of users. The proposed model provided a
reliable tool for forensic study. Empirical evaluation of the proposed model vis-a-vis three
existing benchmark models was performed to highlight its efficacy. Experiments showed that
the specificity and sensitivity of the proposed model were comparable to other models. Due
to higher parameters of the ensemble tree model, the classification accuracy was 0.91, with
95% CI - 0.8727, 0.9477. This was better than SVM and Logistic Regression, the two popular
models in the literature and comparable to the Random Forest and XGBOOST model. CPU
and RAM utilization were also monitored to demonstrate the usefulness of the proposed work
for real-world deployment. RAM utilization for the proposed model was higher by 30-45%
compared to the other three models. Hence, the proposed model is resource-intensive as it
has higher parameters than the other three models. Higher parameters also result in higher
accuracy of predictions.
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1 Introduction

Bitcoin 1 platform has attracted both social and anti-social elements [41, 11,
7, 18, 45]. On the one hand, it is social as it ensures the exchange of value,
maintaining trust in a cooperative, community-driven manner without the
need for a commissioned third party. At the same time, it is anti-social as
it creates hurdles for law enforcement to trace suspicious transactions due to
the anonymity and privacy [39, 31, 34]. Since Bitcoin’s inception in 2009, the
initial two years saw slow adoption with hardly 1000 unique addresses and less
than 10000 transactions per day [34]. However, as Bitcoin became financially
significant, there was an exponential growth in transactions from 2012-2016,
which also saw the entry of serious users viz. mixing services [9], gambling sites,
trading exchanges, investors, speculators, and independent mining industries
[17]. The change in the profile of Bitcoin’s user base was also evident from
the increase in the transaction values, fluctuations in BTC price, and BTC’s
volume. The 2012-onwards phase saw the emergence of Ponzi schemes, money
laundering, frauds [8], embezzlements, extortion [40, 33] and tax evasion [44]
practices that used the blanket of secrecy afforded by Bitcoin to mislead the
audit trail. It was speculated that in 2017, BTCs worth $770 million were
traded for illicit activities [22], a quarter of Bitcoin users were malicious and
46% of all Bitcoin activity was illegal [13].

Due to voluminous data about Bitcoin transactions on the blockchain,
machine learning became a popular technique for tracking and scrutinizing
illicit users or transactions. Existing literature surveyed on detecting illegal
activities using Machine Learning (ML) had focused on deanonymizing entities
[24, 55, 42, 20], detecting botnets [52], illegal transactions [22], identifying
suspicious Bitcoin users [48, 49, 47, 43, 50, 54, 18, 45] (extortionists [36],
ponzi scams [4], darknet markets [21], ransomwares [2], human traffickers [38],
frauds [29, 30]), detecting money laundering [17, 51, 15], identifying mixing
services [32], identifying Bitcoin exchanges [23], identifying illegal transactions
[35, 6], identifying Bitcoin wallets [1] and Bitcoin miners [53]. The standard
pipeline followed by these studies is given in Figure 1.

Fig. 1: Pipeline of ML on Bitcoin system

Scope for feature engineering and extraction is immense due to the vast
categories of metadata associated with Blockchain (see Figure 2). Machine
learning or deep learning has brought about paradigm shifts in modeling
entities in domains such as image recognition, object localization, or audio or

1 In this paper, Bitcoin refers to the system, and bitcoin or BTC refers to the digital
currency
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speech processing. However, as cryptocurrencies are still in their nascent
stages, machine learning has made limited progress. The issues faced in the
application of machine learning in identifying illegal activities are lack of
benchmark, public datasets (see Table 3) [42], full information of Blockchain,
and lack of ground truth information on the identities of Bitcoin users. Apart
from these issues, cryptocurrencies offer their users pseudo-anonymity by
allowing users to transact with each other through hash address. These
addresses can be created and discarded countless times, complicating the
task of linking a transaction to a user. Existing studies used deanonymizing
techniques (see Section 2.3) to link multiple hash addresses to a single entity.
To reduce the computational complexity of machine learning models, the
target of interest was restricted to limited categories of illicit users.
Additionally, the time interval for which data was collected from the
Blockchain for feature engineering was restricted to shorter spans. Due to
these, the models obtained after training were not generalized.

1.1 Motivation

The current paper aimed to build upon and extend work in detecting illegal
entities in Bitcoin. Features of Bitcoin users were derived by scrutinizing the
Blockchain from 03 Jan 2009 12:45:05 GMT to 08 May 2020 at 13:21:33 GMT.
This was to provide the model with features suitable for generalized learning
of entity behavior. Additionally, this avoided a model trained for recognizing
a limited category of entities.

1.2 Contributions

The following contributions are proposed in the paper:

– General comprehension of machine learning techniques for recognizing
malicious users in the Bitcoin network;

– A public dataset of addresses and features of illicit Bitcoin entities 2

– A public repository of scripts for extraction of features of entities from
Bitcoin blockchain, and associating hash addresses with entities 3

– Empirical analysis of different learning strategies for classifying illicit
Bitcoin entities;

– Implementing a supervised learning approach that estimated the most
discriminating features for detecting categories of illicit Bitcoin users.

1.3 Novelty

An extensive literature survey could find studies focusing on only a subset
of illicit activities viz. botnets, extortionists, ponzi scams, darknet markets,

2 https://drive.google.com/open?id=1YdPj8whgbCKORuW3E0rhgfQIHkcFj9S5
3 https://www.kaggle.com/pranavn91/blockchain
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ransomware, human traffickers, frauds, money laundering, and mixing services.
At the time of writing (June 2020), there has not been any research focusing
on a broad spectrum of illegal activities.

1.4 Outline

The rest of the paper is organized into four sections. Section 2 provides the
preliminaries needed for the paper, along with a critique of the current
literature. Materials and methods detail the data collection and preparation
strategy in Section 3. The proposed work is described in Section 4 followed
by Experimental study in Section 5 and Conclusion and future works in
Section 6.

2 Related work

Anatomy of Bitcoin and fundamental concepts such as blocks, Blockchain,
transactions, inputs, outputs, current services on Bitcoin, deanonymization
are described in Sections 2.1, 2.2, and 2.3. Followed by critical analysis of
published studies on detecting illegal users (see Section 2.4), issues in available
datasets (see Section 2.5) and popular ML models used in published studies
(see Section 2.6).

2.1 Description of Bitcoin system

Bitcoin transactions are added to “Blocks” and recorded into a distributed
public ledger “Blockchain”. Each transaction has several inputs (senders)
and outputs (receivers). The metadata 4 associated with blocks, transactions,
inputs and outputs provides scope for analysis (see Figure 2). A single
Bitcoin user can generate multiple addresses for sending and receiving BTCs,
which creates a disadvantage in scrutinizing Bitcoin users. Deanonymizing
techniques provide a solution to overcome this problem.

2.2 Common types of services on Bitcoin

The following types of services operate on the Bitcoin network:

– Exchanges (E): Allow trading of BTC to fiat currencies
– Pools (P): Individual users combine their processing power for mining

blocks
– Gambling (G): Allow placing of bets using BTCs
– Wallets (W): Store BTC private keys and balance
– Payment gateways (PG): Allow accepting payment for services in BTCs

4 https://github.com/blockchain-etl
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Fig. 2: Anatomy of Bitcoin system

– Miner (M): Organizations competing to mine blocks
– Darknet markets (DM): Selling and buying goods using BTCs
– Mixers (MX): Remove traceability of BTCs from source
– Trading sites (T): Purchase equities using BTCs
– P2Plenders (P2P): Crowdsourcing BTCs for loans
– Faucets (F): Reward in BTCs to subscribers
– Explorer (EX): Educational websites provide API to explore Bitcoin
– P2PMarket (P2PM): Marketplace for second-hand goods where buyers can

contact sellers, payments in BTCs
– Bond markets (B): Buying bonds or debt instruments in BTC
– Affiliate marketers (AM): Pay per click in BTC
– Video sharing (VM): Payment in BTCs for viewing videos
– Money launderers (ML): Convert fiat currencies to BTC
– Cyber-security providers (CSP): Provide cybersecurity products for BTC
– Cyber-criminals (CC): Blacklisted by governments
– Ponzi (PZ): High yield investment scams
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2.3 Bitcoin and Deanonymization

Block is a set of transactions T = {t1, t2, ..., tn}. For every ti ⊂ T there is a
3-tuple (ts, I

ti , Oti) where ts denotes UNIX timestamp of ti and I,O denotes
the addresses of inputs (senders) and outputs (receivers) in ti respectively
[52]. Each ti can have several inputs and outputs i.e., Iti = {i1, i2, ..., in} and
Oti = {o1, o2, ..., on}. Each Bitcoin user ui ⊂ U where U = {u1, u2, u3, ..., un}
can have multiple addresses and perform multiple transactions. For sending
bitcoins (BTCs), ui can generate a new address for each transaction ti.

The task of a deanonymizing function f(.) is combining all addresses
generated by ui i.e., Aui = {it1ui , it2

ui , ..., itn
ui , ot1

ui , ot2
ui , ..., otn

ui}, across
all transactions. Here it1

ui is address generated by ui to send BTCs in t1 and
otn

ui is address generated by ui to receive BTCs in tn.

Deanonymizing is a non-trivial task due to the complexity and diversity
of the Bitcoin network [16, 14]. Functions proposed in the literature can be
categorized as heuristic-based [44, 37, 31, 52, 5], distributed network-based
[12] and machine learning-based [24]. Heuristic-based functions are the most
popular and widely used in Bitcoin studies.

2.4 Studies on detecting illegal activities in Bitcoin

An advantage in the study of crypto-currencies is that transaction records are
maintained on a distributed ledger “Blockchain”, which is openly available for
examination. The volume of the Blockchain presents problems in scrutinizing
it, limiting the timespan of study, or restricting the objectives were used by
studies in the literature to overcome this issue.

Literature surveyed on detecting illegal activities has focused on
deanonymizing entities [24, 55, 42, 20], detecting botnets [52], illegal
transactions [22], identifying suspicious Bitcoin users
[48, 49, 47, 43, 50, 54, 18, 45] (extortionists [36], ponzi scams [4], darknet
markets [21], ransomwares [2], human traffickers [38], frauds [29, 30]), detect
money laundering [17, 51, 15], identifying mixing services [32], identify
Bitcoin exchanges [23], identify illegal transactions [35, 6], identifying Bitcoin
wallets [1] and Bitcoin miners [53]. Table 1 summarizes the strategies used in
these studies.

Feature engineering is the most critical aspect of Bitcoin-based studies
focusing on illicit activity or illicit user detection. Various approaches used by
the authors for feature engineering can be grouped into five types (see Table
2).
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Table 1: Summary of published Bitcoin studies

Authors Description Features extracted

B Zarpelao et al. [52]
Detection of botnets
using Bitcoin protocols
to launch DDoS attacks

Transaction features

T Liu et al. [24] Deanonymize Bitcoin address Network based features

C Lee et al. [22]
Detecting Illegal
Transactions on Bitcoin

Transaction features

Y Wu et al. [48, 49] Tracing suspicious Bitcoin entities Transaction features
M Weber et al. [47] Identifying illicit Bitcoin users Transaction features
Y Hu et al. [17, 51, 15] Detecting Money Laundering Activities Graph embeddings
H Yin et al. [43] Identifying illicit Bitcoin users Transaction features
L Nan et al. [32] Mixing service detection Graph embeddings
L Yang et al. [50] Identifying illicit Bitcoin users Transaction features
J Liang et al. [23] Bitcoin Exchange Identification Graph embeddings
Z Zhang et al. [54] Identifying illicit Bitcoin users Transaction features

T Pham et al. [35] Detecting Illegal Transactions on Bitcoin
Clustering nodes based on
transaction features

A Bogner [6] Detecting Illegal Transactions on Bitcoin
Clustering nodes based on
transaction features

F Zola et al. [55] Deanonymize Bitcoin address Transaction features
F Aiolli et al. [1] Identifying Bitcoin wallets Transaction features
W Shao et al. [42] Deanonymize Bitcoin address Transaction features

M Vasek et al. [46] Identifying Bitcoin scams
Transaction and
network features

M Bartoletti et al. [4] Identifying Bitcoin ponzi schemes
Transaction and
network features

P Monamo et al. [29, 30] Identifying Bitcoin fraud schemes
Clustering nodes based on
transaction features

J Munoz [53] Identifying Bitcoin miners Network traffic features
A Irwin et al. [18, 45] Identifying illicit Bitcoin users Transaction features
R Portnoff et al. [38] Identifying human traffickers in Bitcoin Transaction features
C Ackora et al. [2] Identifying ransomware in Bitcoin Transaction features
K Kanemura et al. [21] Identifying darknet markets in Bitcoin Transaction features
M Jordan et al. [20] Deanonymize Bitcoin address Transaction features

S Phetsouvanh, et al. [36] Identifying extortionists in Bitcoin
Transaction and
network features

Table 2: Types of features used in published Bitcoin studies

Types of features Description

Transaction

Total inputs, Total outputs, Total amount sent/received,
Average amount sent/received,
Standard deviation of amount sent/received,
Time interval between successive transactions,
Wallets transacted with, Number of addresses of an entity,
BTCs sent, BTCs received, USD value of transactions,
Timestamp,
Wallet balance, wallet creation date, wallet active duration,
Difference in wallet balance between successive days, IP address

Network

In-degree, out-degree, unique in-degree,
unique out-degree, clustering coefficient,
Gini coefficient, Number of triangles formed,
measures of betweenness centrality, closeness centrality,
degree centrality,
in-degree centrality, out-degree centrality,
PageRank, and load centrality.

Graph embeddings
RandomWalk, Node2Vec, DeepWalk, GCN,
EvolveGCN, Structural deep network embedding (SDNE),
Deepneural networks for learning graph representations (DNGR)

Clustering KMeans, DBSCAN, AGNES, DIANA

Network traffic

Packets set/received per second, Average bits per packet,
Amount of packets per second sent and
received each second for each coin,
average number of bits each packets holds
in each flow, sent and received for each coin
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2.5 Datasets used in published Bitcoin studies

The availability of standard datasets is a critical issue in examining Bitcoin.
The entire Blockchain from inception to 08 May 2020 at 13:21:33 GMT was
298GB. Due to storage, computational, and time complexity, majority
researchers (excluding surveys [28, 27, 26, 25, 3, 11]) have focused on limited
categories of illicit users and shorter periods.

Table 3: Datasets used in published Bitcoin studies

Dataset Accessibility Features Categories Size

Chainanalysis [15, 43, 51] Private 9

exchange,
gambling,
hosted wallet,
merchant services,
miningpool,
mixing,
ransomware,
scam,
tor market or
other

198,097,356

Univ. Illinois
Urbana-Champaign

[35, 29, 30] Public 0 0 37,450,461

BitcoinPonzi [4] Public 11 Ponzi, Non-ponzi 6432
R Portnoff et al. [38] Private 2 Sex offender, Ordinary 753,929

D Ermilov et al. [12] Private 238
Service, gambling, mixer,
exchange, pool, darknet

244,030,115

Ellipse [47] Public 6 licit, illicit 203,769
C Lee et al. [22] Private 2 licit, illicit 2 million

M Vasek et al. [46] Private 2

Ponzi schemes,
mining scams,
scam wallets and
fraudulent exchange

192

Wei Shao et al. [42] Private 173 NA 10000

2.6 Role of ML models in published Bitcoin studies

Table 4 gives the popular ML models for Bitcoin studies.

Table 4: ML classifier used in published Bitcoin studies

ML models Research Paper
k-Nearest Neighbours [15, 43, 51]
Random Forests (RF) [15, 43, 51, 4, 55, 1, 23]
Extra Trees [15, 43, 51]
Decision Trees [15, 43, 51, 23]
Bagging Classifier [15, 43, 51, 53]
Gradient Boosting [15, 43, 51, 55, 2]
AdaBoost [15, 43, 51, 55]
Support Vector Machine (SVM) [51, 35, 1, 23]
MultiLayer Perceptron [51, 4, 22, 42, 23]
K-Means [35, 30, 29]
Graph convolutional network [47]
Logistic regression (LogReg) [23]
DeepWalk, Node2vec, SDNE [17, 32]
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From Table 1 in literature, it is clearly observed that the implementation
of a reliable and secure illegal user detection system is a primary concern
for privacy and security in Bitcoin. Existing works have not focused on a
broad spectrum of illegal activities that are conducted on Bitcoin. Additionally,
existing datasets are unsuitable for machine learning, as their focus is narrow
or are proprietary. In this respect, in Section 3, describes the data collection
methodology to overcome the issue of data availability in public datasets.
Section 4 discusses the proposed methodology for a classifier that could identify
a broad spectrum of illicit users on Bitcoin.

3 Materials and Methods

As available datasets in literature (see Table 3) have shortcomings, procedure
described in Section 3.1 was used to extract features mentioned in Section
3.2 of Bitcoin entities. Hardware and software configuration used for data
collection is given in Section 3.3.

3.1 Data collection and preprocessing

Bitcoin blockchain dataset in raw form was obtained from full node at VJTI
Blockchain lab 5. The dataset was of size 298GB and consisted of Blockchain
in the form of blk.data files. All blocks and transactions from 03 Jan 2009
12:45:05 GMT to 08 May 2020 13:21:33 GMT were present in the dataset.
This raw data was then converted to CSV files using the blockchain parser
built by the VJTI Blockchain lab 6. The processed dataset, is made available
for download 7. Table 5 shows the three “.csv” files of the processed dataset.

Table 5: Description of processed dataset

Relation Attributes
Output tx hash:ID receiver address amount
Inputs sender address tx hash:ID amount
Transactions tx hash:ID timestamp

From the Transactions dataset, it is possible to obtain the count of
transactions occurring in that year. Each transaction (tx) was identified in
Blockchain by a unique hash (tx hash:ID) and had a timestamp, the UNIX
time of the transaction. For the year 2009, transactions start from 03 Jan
2009 12:45:05 GMT, and for the year 2020, transactions up to 08 May 2020
at 13:21:33 GMT were considered. Table 6 and 7 describe the growth
observed on various measures in Bitcoin dataset during 2009-2020.

5 https://www.vjti-bct.in/
6 https://github.com/pranavn91/blockchain
7 https://drive.google.com/open?id=1pEpBAUXKgQX0BP8ircQgd9yXiucLY14h
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Table 6: Distribution of transactions in Bitcoin blockchain network (2009-2015)

2009 2010 2011 2012 2013 2014 2015
Transactions 32741 185410 1902443 8459093 19645798 25265702 45689861
Inputs 2810 108965 1902443 5716084 15407017 33300547 54564769
Outputs 32643 143863 2595309 5981241 16278420 34586691 57150816
Max BTC’s in a tx 22500 96999 550000 158336.30 194993.50 217517.63 172841.81
Max inputs in a tx 320 901 529 673 1757 674 1519
Max outputs in a tx 2 98 2002 2792 3075 5352 13107
Input sending highest amount COINBASE COINBASE CoinJoin Mess DeepBit.net DeepBit.net Unknown Unknown
Output receiving highest amount Unknown Unknown CoinJoin Mess DeepBit.net DeepBit.net Unknown Unknown
Total BTCs sent 1978736 22667790 297984085 925215501 429732306 264107039 548006072

Table 7: Distribution of transactions in Bitcoin blockchain network (2016-2020)

2016 2017 2018 2019 2020
Transactions 82634637 104081930 81393458 119729415 39978670
Inputs 90773554 128642149 77568478 128768057 52805351
Outputs 95783964 144361281 104780607 133558733 54179450
Max BTCs in a tx 99489.99 87082.81 109735.6 157457.612 182501
Max inputs in a tx 677 1089 1061 1347 1442
Max outputs in a tx 11515 6626 5027 7266 6990
Input sending highest amount Unknown Unknown Unknown Unknown Unknown
Output receiving highest amount Unknown Unknown Unknown Unknown Unknown
Total BTCs sent 1068404725 896026050.66 290858051.91 515972850.159 128637285.824

3.2 Feature extraction

Based on the structure of Bitcoin (see Figure 2), features to train the
classifier were extracted from Blockchain data to build a dataset for training
the classifier. Feature list is given in Table 8.

Table 8: List of Features

Feature symbol Feature description
Tx Total transactions in which wallet has participated
B Current BTC present in the wallet

Tx
in Total incoming transactions to the wallet

Tx
out Total outgoing transactions from the wallet

L Total active life of the wallet
Aw Total addresses of the wallet

Av
Average number of incoming transactions received
by an address of a wallet

T Total number of addresses sending BTC to the wallet

R
Ratio of Transaction count and address count.
Gives the average number of times
an address of the wallet was reused for a transaction.

Multiple hash addresses belonging to a single entity were clustered using
multi-input heuristic clustering [28, 27, 26, 25]. Features extracted for each
entity would allow a classifier to learn the categorization of each wallet into
one of the nineteen categories (see Section 2.2). Bitcoin entities were
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identified using an API 8 [19]. The API helped in building a labeled dataset
for supervised learning (see Table 9) with 1216 observations. Figure 3
illustrates the flowchart for the proposed work.

Table 9: Types of Bitcoin entities in dataset

affiliatemarketing criminals cybersec darkmarket
2 1 2 15
exchange faucet gambling miner
78 2 24 2
mixer p2plender paymentgateway ponzi
62 5 6 19
pools trading Unclassified wallets
20 2 968 8

Fig. 3: Flowchart of proposed work

3.3 Experimental setup

The preprocessing code was in Python 3.6, and the experiments were
performed on a single core 1 TB Intel(R) Xeon(R) Silver 4114
CPU@2.20GHz. API calls were made through the Curl package of R using
Jupyter notebooks hosted on Google Colab (n1-highmem-2 instance, 2vCPU
@2.20GHz, 13GB RAM) and Kaggle (Intel(R) Xeon(R) CPU @2.20GHz,
13GB RAM).

4 Classification of Illicit entities in Bitcoin

The mathematical model of the proposed classifier is given in Section 4.1
with steps used for training it listed in Section 4.2. For the implementation
of gradient boosting, the R Caret package was used. It is different from
XGBOOST package [10] as it does not use column sub-sampling, cache-aware

8 https://github.com/pranavn91/blockchain/blob/master/walletexplorer-api
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access, sparsity split finding and parallel computation. Features of
XGBOOST make computation slower with limited improvement in accuracy.

4.1 Mathematical model

Each training sample (x(i), y(i)) of dataset D is with m features and total
n samples are present in the dataset. Hence, D = {(xi, yi)} (|D| = n, xi ∈
Rm, yi ∈ R). The proposed tree ensemble model uses K additive functions to
predict the output.

ŷi = φ(xi) =

K∑
k=1

fk(xi), fk ∈ F , (1)

where

– F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ): set of regression trees

– q: tree structure mapping an x(i) to its leaf index
– T : leaves count in the tree
– fk: q having leaf weights w
– wi: score on ith leaf

For each x(i) the decision rules of q classify it into the leaf nodes and
calculate the final prediction by

∑
w i.e. summing up the score in the

corresponding leaves. The obtain the optimal model φ, the loss L(φ) is
minimized by following regularized objective.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(f) = γT +
1

2
λ‖w‖2

(2)

where,

– l: loss function
– ŷi: prediction
– yi: target
– Ω: regularization term

4.1.1 Optimization

As the loss function given in Eq. 2 cannot be optimized using standard
optimization techniques, the model is trained in an additive manner specified
in [10]. Eq. 2 is modified as Eq 3.

L(t) =

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) +Ω(ft) (3)

where,
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– ŷ
(t)
i : prediction of the i-th instance at the t-th iteration

– ft: q having leaf weights w

Using second-order approximation for optimizing Eq 3,

L(t) '
n∑

i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] +Ω(ft)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)) are first and

second order derivatives on the loss function.
Removing the constant terms in Eq 4.1.1.

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] +Ω(ft) (4)

By defining Ij = {i|q(xi) = j} to be instance set of leaf j and expanding
Ω, rewriting Eq 4 as Eq 5

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j

=

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT

(5)

After obtaining q(x) computation of optimal weights w∗j of leaf j by Eq 6

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

, (6)

leads to optimal value as Eq 7

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (7)

The proposed model uses Eq 7 to measure quality (impurity score) of q. A
greedy algorithm to estimate the optimal q, initiates the tree from a single leaf
node by iteratively adding branches to it. Given the leaves in left and right
nodes, loss reduction after the split is given by Eq 8,

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (8)

where,

– IL and IR: instance sets of left and right nodes after the split
– Lsplit: loss reduction after the split
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4.2 Steps for training proposed model

Algorithm 1 Classifier training, parameter tuning, refinement and evaluation

1: Set initial seed for random numbers
2: Set the training control values
3: Set the tuning grid for parameter search
4: for each parameter set do
5: for each resampling iteration set do
6: Hold out specific samples
7: Pre process the data (Center and Scale)
8: Fit the model on the remaining samples
9: Predict the held out samples

10: end for
11: Calculate the average performance across held out predictions
12: end for
13: Determine the optimal parameter set
14: Fit the final model to all the training data using the optimal parameter set

4.3 Time complexity

The proposed model calculates the quality function (Eq. 7) based on each
split of the Bitcoin data which has m features and total n samples, and it
does this for each feature in every node that is not a leaf node. The best case
of a balanced tree, the depth would be in O(logn); however, the decision tree
performs locally optimal splits. Thus the worst case of depth being in O(n) is
possible - if each split results in 1 and f − 1 examples, where f is the number
of examples of the current node. Hence, the time complexity for decision trees
is within O(nmlogn) and O(n2m). The uncertainty in depth is due to the
non-deterministic way in which decision trees are built.

5 Experimental study

The proposed model in Section 4 was evaluated on dataset described in Table
9 for the experimental study with metrics (Section 5.2).

5.1 Description of experiment

Comparative study was performed of popular non-parametric ML models in
literature - SVM, LogReg, XGBOOST, RF (see Section 4) with proposed
model for evaluating classification accuracy on dataset (Table 9). The
hyper-parameters for the baseline models are given.

– SVM: degree = 1, scale = 0.1274557 and C (cost) = 150.1363
– LogReg: cost = 154.3669, loss = L1 and epsilon (tolerance) = 1.
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– XGBOOST: base score=1, booster=1, colsample bylevel=1,
colsample bynode=1, colsample bytree=1, gamma=0.1, gpu id=1,
importance type=’gain’, interaction constraints=2, learning rate=0.001,
max delta step=0.1, max depth=3, min child weight=2, missing=nan,
monotone constraints=1, n estimators=100, n jobs=-1,
num parallel tree=1, objective=’binary:logistic’, random state=7,
reg alpha=0.001, reg lambda=0.01, scale pos weight=0.5,
subsample=True, tree method=’ada’, validate parameters=True,
verbosity=0

– RF: Randomly Selected Predictors = 1
– Proposed model: Boosting Iterations = 694, Max Tree Depth = 10,

Shrinkage = 0.349461, Minimum Loss Reduction = 3.100079, Subsample
Ratio of Columns = 0.3621352, Minimum Sum of Instance Weight = 1
and Subsample Percentage = 0.7216631

5.2 Metrics

Given the true positives tp, true negatives tn, type I error fp and type II error
fn obtained from observing (ŷi, yi), following metrics were used.

Sensitivity(S) =
tp

tp + fn
(9)

Specificity(Sp) =
tn

tn + fp
(10)

Accuracy(A) =
tp + tn

tp + tn + fp + fn
(11)

Prevalence(P ) =
tp + fn

tp + tn + fp + fn
(12)

PositivePredictionV alue(PPV ) =
S ∗ P

((S ∗ P ) + ((1− Sp) ∗ (1− P ))
(13)

NegativePredictionV alue(NPV ) =
S ∗ (1− P )

((1− S) ∗ P ) + ((Sp) ∗ (1− P ))
(14)

Detectionrate =
tp

tp + tn + fp + fn
(15)

Detectionprevalence =
tp + fp

tp + tn + fp + fn
(16)

BalancedAccuracy =
S + Sp

2
(17)
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5.3 Experimental results and discussion

Dataset was split in ratio 4:1 for training and evaluation. Optimal classifier
parameters were identified using random grid search (caret package in R) [k-
fold cross-validation, up sampling]. Table 10, and 11 give performance of the
classifiers on the train set and Table 12 gives performance of the classifier on
the Test set.

Table 10: Evaluating classifier performance on train set

Model Train
logloss AUC prAUC Accuracy
Mean SD Mean SD Mean SD Mean SD

SVM 2.84 0.01 0.6 0.02 0.18 0.01 0.03 0.005
Logistic Regression 3.03 0.06 0.52 0.04 0.07 0.02 0.09 0.01
XGBOOST 1.68 0.23 0.86 0.01 0.13 0.01 0.86 0.004
Random Forest 1.17 0.13 0.88 0.01 0.15 0.01 0.88 0.002
Proposed Model 0.42 0.02 0.95 0.15 0.26 0.01 0.88 0.01

Table 11: Evaluating classifier performance on train set

Model Train
Detection rate Mean Specificity Kappa
Mean SD Mean SD Mean SD

SVM 0.0019 0.0002 0.93 0.0007 0.02 0.001
Logistic Regression 0.006 0.0004 0.94 0.01 0.035 0.001
XGBOOST 0.04 0.006 0.92 0.004 0.65 0.03
Random Forest 0.05 0.004 0.99 0.001 0.68 0.01
Proposed Model 0.05 0.003 0.99 0.01 0.68 0.01

Table 12: Evaluating classifier performance on test set

Model Test
Accuracy 95% CI No Information rate P-value Kappa

SVM 0.0422 0.0204, 0.0762 0.8143 1 0.0245
Logistic Regression 0.0169 0.0046, 0.0426 0.8143 1 0.0026
XGBOOST 0.8916 0.8834, 0.9124 0.7914 0.998e-04 0.7423
Random Forest 0.9241 0.8826, 0.9544 0.8143 1.384e-06 0.7699
Proposed Model 0.91 0.8727, 0.9477 0.8143 9.649e-06 0.7411

The proposed method achieves comparable accuracy to the Random forest
with a lower standard deviation. Accuracy achieved on individual classes can
be observed from the confusion matrices (see Table 13, 14, 16, 15 and 17). For
the confusion matrices, x-axis of the table gives the actual class, and y-axis
gives the predicted class of the observation.
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Table 13: Confusion matrix of SVM classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
AM 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
DM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 6 0 1 0 0 0 0 0 0 0 0 0
F 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 7 0 2 0 11 1 0 1 0 0 193 0
M 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
MX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
P2P 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
PG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 1 0 0 2 2 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UNC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 14: Confusion matrix of Logistic Regression classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
AM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DM 0 0 0 0 0 0 1 0 3 0 0 0 0 0 138 0
E 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
F 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 2 9 0 2 0 1 1 0 2 1 0 41 1
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
PZ 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
P 0 0 0 0 2 0 0 0 8 0 0 0 1 0 14 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UNC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15: Confusion matrix of XGBOOST classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DM 0 0 0 3 2 0 1 0 0 0 0 1 0 0 0 0
E 1 0 0 0 7 0 1 0 1 0 0 0 1 0 0 1
F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MX 0 0 0 0 0 0 0 0 10 0 0 0 2 0 0 0
P2P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
PZ 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
P 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 3 0 0 2 0 0 0 0 0 0 0 187 0
UNC 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
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Table 16: Confusion matrix of Random Forest classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DM 0 0 0 3 3 0 1 0 0 0 0 0 0 0 0 0
E 0 0 0 0 9 0 1 0 0 0 0 0 1 0 0 1
F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MX 0 0 0 0 0 0 0 0 10 0 0 0 2 0 0 0
P2P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
PZ 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
P 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 193 0
UNC 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 17: Confusion matrix of Proposed classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DM 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0
E 0 0 0 1 11 0 0 0 3 1 0 0 0 0 0 1
F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MX 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
P2P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0
PZ 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
P 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
W 0 0 0 0 0 0 1 0 0 0 0 0 0 0 193 0
UNC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion matrix illustrates that proposed model classified accurately with
specificity 0.25−0.73. Other models with exception of XGBOOST (0.38−0.94)
and RF (0.33− 0.83) achieved sensitivity 0− 0.5. Table 18, 19, 21, 20 and 22
gives the summary of results for each class obtained by the models.

Table 18: Statistics by Class of SVM classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
Sensitivity NA NA NA 0 0.4 NA 0.5 NA 0 0 0 0 0.5 NA 0 0
Specificity 0.99 0.99 0.99 0.99 0.99 1 0.07 1 0.99 0.99 1 1 0.98 1 1 1
Pos Pred Value NA NA NA 0 0.86 NA 0.009 NA 0 0 NaN NaN 0.4 NA NaN NaN
Neg Pred Value NA NA NA 0.99 0.96 NA 0.9 NA 0.94 0.99 0.99 0.98 0.99 NA 0.18 0.99
Prevalence 0 0 0 0.01 0.06 0 0.016 0 0.05 0.004 0.004 0.012 0.016 0 0.81 0.004
Detection Rate 0 0 0 0 0.02 0 0.008 0 0 0 0 0 0.008 0 0 0
Detection Prevalence 0.004 0.008 0.004 0.004 0.029 0 0.91 0 0.008 0.004 0 0 0.021 0 0 0
Balanced Accuracy NA NA NA 0.49 0.69 NA 0.28 NA 0.49 0.49 0.5 0.5 0.743 NA 0.5 0.5
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Table 19: Statistics by Class of Logistic Regression classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
Sensitivity NA NA NA 0 0 NA 0.5 NA 0 0 1 0 0.25 NA 0 0
Specificity 0.99 0.99 1 0.39 0.98 0.98 0.75 1 1 1 1 0.99 0.89 1 1 1
Pos Pred Value NA NA NA 0 0 NA 0.03 NA NaN NaN 1 0 0.04 NA NaN NaN
Neg Pred Value NA NA NA 0.96 0.93 NA 0.98 NA 0.94 0.99 1 0.98 0.98 NA 0.18 0.99
Prevalence 0 0 0 0.012 0.06 0 0.016 0 0.05 0.004 0.004 0.012 0.016 0 0.81 0.004
Detection Rate 0 0 0 0 0 0 0.008 0 0 0 0.004 0 0.004 0 0 0
Detection Prevalence 0.004 0.004 0 0.59 0.008 0.012 0.253 0 0 0 0.004 0.008 0.105 0 0 0
Balanced Accuracy NA NA NA 0.19 0.49 NA 0.62 NA 0.51 0.5 1 0.495 0.573 NA 0.5 0.5

Table 20: Statistics by Class of XGBOOST classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
Sensitivity NA NA NA 0.89 0.54 NA 0.48 NA 0.76 0 0.89 0.38 0 NA 0.94 0
Specificity 0.91 1 1 0.92 0.88 0.92 0.93 0.94 0.96 1 1 0.99 0.98 1 0.94 0.99
Pos Pred Value NA NA NA 0.46 0.69 NA 0.5 NA 0.93 NaN 1 0.43 0 NA 1 0
Neg Pred Value NA NA NA 0.81 0.89 NA 0.91 NA 0.91 0.94 1 0.94 0.94 NA 1 0.91
Prevalence 0 0 0 0.012 0.08 0 0.018 0 0.06 0.004 0.004 0.012 0.016 0 0.73 0.004
Detection Rate 0 0 0 0.012 0.034 0 0.007 0 0.04 0 0.004 0.004 0 0 0.84 0
Detection Prevalence 0 0 0 0.01 0.05 0.03 0.016 0 0.05 0 0.004 0.012 0.012 0 0.76 0.004
Balanced Accuracy NA NA NA 0.92 0.83 NA 0.78 NA 0.92 0.46 0.95 0.67 0.53 NA 0.86 0.49

Table 21: Statistics by Class of Random Forest classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
Sensitivity NA NA NA 1 0.6 NA 0.5 NA 0.83 0 1 0.33 0 NA 1 0
Specificity 1 1 1 0.99 0.98 0.99 0.99 1 0.99 1 1 0.99 0.98 1 1 0.99
Pos Pred Value NA NA NA 0.42 0.75 NA 0.5 NA 0.83 NaN 1 0.33 0 NA 1 0
Neg Pred Value NA NA NA 1 0.97 NA 0.99 NA 0.99 0.99 1 0.98 0.99 NA 1 0.99
Prevalence 0 0 0 0.012 0.06 0 0.016 0 0.05 0.004 0.004 0.012 0.016 0 0.81 0.004
Detection Rate 0 0 0 0.012 0.037 0 0.008 0 0.04 0 0.004 0.004 0 0 0.81 0
Detection Prevalence 0 0 0 0.02 0.05 0.04 0.016 0 0.05 0 0.004 0.012 0.012 0 0.81 0.004
Balanced Accuracy NA NA NA 0.99 0.79 NA 0.75 NA 0.91 0.5 1 0.66 0.49 NA 1 0.49

Table 22: Statistics by Class of Proposed classifier on Test set

AM CC CSP DM E F G M MX P2P PG PZ P T W UNC
Sensitivity NA NA NA 0.66 0.73 NA 0.25 NA 0.66 0 1 0.33 0 NA 1 0
Specificity 1 0.99 1 0.99 0.97 0.99 1 1 0.99 1 0.99 0.98 0.98 1 0.97 1
Pos Pred Value NA NA NA 0.5 0.64 NA 1 NA 0.8 NaN 0.5 0.25 0 NA 0.99 NaN
Neg Pred Value NA NA NA 0.99 0.98 NA 0.98 NA 0.98 0.99 1 0.99 0.98 NA 1 0.99
Prevalence 0 0 0 0.01 0.06 0 0.016 0 0.05 0.004 0.004 0.012 0.016 0 0.81 0.004
Detection Rate 0 0 0 0.008 0.04 0 0.004 0 0.03 0 0.004 0.004 0 0 0.81 0
Detection Prevalence 0 0.004 0 0.016 0.07 0.004 0.004 0 0.04 0 0.008 0.016 0.012 0 0.81 0
Balanced Accuracy NA NA NA 0.83 0.85 NA 0.625 NA 0.83 0.5 0.99 0.66 0.49 NA 0.96 0.5

Resource intensiveness of the proposed model vis-a-vis other ML models
was performed (see Figure 4). Four versions of the models (SVM, LogReg,
RF, Proposed) using a different number of cores between one and four were
built. The utilization of CPU (see Figure 4a) and RAM (see Figure 4b) was
monitored.
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(a) CPU cores and their utilization (b) RAM utilization

Fig. 4: Efficient utilization of hardware configuration

Figure 4a shows the CPU core utilization 0 − 400 for unutilized to max
utilization of the four CPU cores. SVM and proposed models have high CPU
utilization compared to LogReg, XGBOOST and RF. Similarly, RAM
utilization for the proposed model is higher compared to the other four
models. Hence, the proposed model is resource-intensive as it has higher
parameters than the other three models. Higher parameters also result in
higher accuracy of predictions. Figure 5 illustrates the precision, recall and
f-score (macro) of SVM, LogReg, XGBOOST, RF and the proposed model
on the test set. The proposed model achieves results comparable to RF and
XGBOOST. The three metrics of the proposed models are 0.9 − 0.94 due to
high classification accuracy for Mixers, exchanges, Ponzi and pools. These
four classes dominate the dataset, whereas, classes that were misclassified
were affiliatemarketing, criminals, cybersec, trading and miner. These classes
represent < 5% of the dataset, and hence misclassification is not affecting the
overall performance of the model.

Fig. 5: Precision, Recall and F-score (Macro) on Test set
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Fig. 6: Training and Cross-validation learning curve, the training samples vs
fit times curve, the fit times vs score curve

Figure 6 illustrates the learning curve, scalability and performance of
SVM, LogReg, XGBOOST, RF and the proposed models. Learning curves
show that by increasing the training examples, the accuracy of the proposed
model increases on training and validation set. Learning curves for
XGBOOST and RF exhibit overfitting whereas, SVM and LogReg exhibit
underfitting. Scalability curves illustrate time taken for training increases
exponentially for all models other than RF (linear). Performance of the
models indicates the trade-off between fit times and prediction accuracy. It
can be observed that lowest fit times are for SVM, and logReg followed by
XGBOOST, RF and the proposed model. However, prediction accuracy is
highest for proposed model vis-a-vis the rest.
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6 Conclusion and Future works

The volume and complexity of Bitcoin Blockchain make machine learning an
indispensable tool for forensic investigation. However, issues that machine
learning models face in Bitcoin forensics are lack of public, benchmark
datasets for training. Lack of ground truth labeled information is seen in
Bitcoin, which is not observed in other domains such as image processing
and audio processing. Hence, the current work collected a dataset of 1216
Bitcoin users and categorized them into 16 classes. Due to the secrecy
provided by Bitcoin, data collection was a mammoth task requiring manual
labeling of entities using third-party tools. By allowing open access, the hope
is to motivate other researchers by providing a starting point. Nine
independent and discriminating features identified for each observation
allowed the training of an ensemble decision tree-based model.

Due to higher parameters of the ensemble tree model, the classification
accuracy was 0.91, with 95% CI - 0.8727, 0.9477. This was better than two
popular models in the literature and comparable to the RF model. The
sensitivity and specificity also highlight the efficacy of the proposed method.
Compared to existing methods, the number of features used was lower,
leading to more accessible feature engineering and model training. Based on
the results of the proposed model on the test set, misclassifications of classes
of legal businesses to illegal and more seriously illegal businesses to legal was
observed. For instance, ponzi as payment gateway or pools, dark markets to
exchanges, and exchanges as darkmarkets. This was the results of limited
instances of these classes in the training data. This data limitation caused
the learning technique to fail at learning discriminative features.

Improving the accuracy of the model could be the next step. This can
be possible with more features and with a larger dataset. CPU and RAM
utilization could be reduced by feature sampling or regularization techniques.
In addition, one-shot or zero-shot learning strategies could be investigated for
overcoming issues due to lack of sufficient data.
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