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Staircase Negotiation Learning for Articulated Tracked Robots with
Varying Degrees of Freedom

Andrei Mitriakov, Panagiotis Papadakis, Sao Mai Nguyen and Serge Garlatti

Abstract— Tracked robots capable of negotiating 3D ter-
rains require delicate control, most often tailored to a spe-
cific platform or setting. For staircase traversal in particular,
autonomous robot behaviours are difficult to obtain due to
the increased risk of accident and stochasticity. Based on a
previously developed reinforcement learning based framework
that allows learning staircase ascent for an articulated tracked
robot, in this work we extend our work to allow also staircase
descent and further investigate the role of a manipulating arm
in the stability and smoothness of the traversal. By relying
on a precise simulation of geometry and kinematics of a real
robot, we demonstrate prototype policies for staircase ascent
and descent, optionally under the influence of an integrated
active arm and different penalty criteria. The obtained results
are qualitatively and quantitatively compared and show that the
robot can learn plausible behaviors effectively, when guided by
appropriate reward and penalty criteria.

I. INTRODUCTION

Robots capable of 3D navigation bear a strong potential
for applications pertaining to hazardous or extreme envi-
ronments. In such cases, a resilient robot construction may
compensate collisions with the environment as the robot
passively negotiates the traversed terrain. On the other hand,
applications where robot as well as environment safety is
crucial require active control of the articulated robot parts.

Most previous works on the development of active 3D
obstacle negotiation by tracked robotic vehicles are cus-
tomized to specific platforms [1], [2], inevitably relying
on complex inverse kinematics and accurate estimates of
environment geometry. Such solutions are not easily trans-
ferable to different platform/environment setups and devel-
oping alternative negotiation strategies is not straightfor-
ward. Additionally, the development of a robot controller
necessitates domain expertise or experience which may not
be easy or even feasible to acquire, e.g. for search and
rescue environments [3]. Learning from demonstration [4]
can alleviate some of these challenges yet providing good
demonstrations is costly, partly because controlling multiple
degrees of freedom (DOF) in parallel is not intuitive and
hence cumbersome. To increase autonomy in the process
of learning robot mobility, we perform the acquisition of
such skills via reinforcement learning (RL) where we can
favor the emergence of the desired control properties through
the appropriate design of reward/penalization functions and
state/action domains. Since learning in reality is risky and
tedious due to the need to perform manual environment
reset, we opt for learning such skills through simulation.
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Fig. 1: Jaguar V4 Manipulator with raised arm (a), the
corresponding CSM simulated model (b) and simulated

ascent staircase negotiation using a learnt policy (c)

A recent approach for simulating robot tracks that provides
more realistic robot track simulation and has shown highly
plausible results and faster simulation is the Contact Surface
Motion (CSM) [5], which we employ in the present work.

Relatedly, we recently developed a RL-based framework
for tracked robots equipped with flippers, for learning ascent
control policies of staircases of varying size [6]. In continu-
ation of that work, we present here our latest developments
for learning more elaborate mobility skills that are altogether
critical in enabling tracked robots to undertake the commonly
required task of object search and transport. The main
contributions of this work can be summarized as follows:
• We upgrade our previous RL-problem formalization

to allow learning of staircase ascent and descent and
further investigate the influence of an active arm during
staircase negotiation.

• We update our simulation model using the geometrical
and physical properties of the robot Jaguar V4 with
Arm (jaguar.drrobot.com/specification_
V4Arm.asp) and adopt the CSM approach for the
simulation of robot tracks (see Fig. 1).

The remainder of the paper is organized as follows.
Section II presents most relevant works that deal with
the problem of staircase negotiation for articulated tracked
robots. In section III we augment our previous formalization
[6] to further allow learning of staircase descent and consider
the influence of an articulated arm. Finally, in section IV the
experimental setup is presented together with the obtained
qualitative and quantitative results.

II. RELATED WORKS

The domain of Urban Search and Rescue (USAR) has
drawn considerable attention to the problem of kinematic
modelling in order to allow 3D terrain negotiation [7]–
[9]. Our particular focus here regards staircase negotiation,
generally considered as an important milestone in enabling
robots to explore 3D indoor environments.

jaguar.drrobot.com/specification_V4Arm.asp
jaguar.drrobot.com/specification_V4Arm.asp


1) Learning-free approaches: Relatedly, Mourikis et al.
[8] presented an algorithm for autonomous stair ascent
through the use of gyroscopic data and estimation of stair
step edges. Stair descent was studied in [10] together with
stair traversal with the aid of an actively rotating pendulum in
a complex track system, yet the obtained behavior is specific
to the particular kinematics and hence not generalizable.
An approach using dense laser sensory data and passive
flippers was proposed in [11] where the robot orientates
flippers tangentially to the traversing obstacle while being
tele-operated. A planning and control method for 4-DOF
tracked robots in autonomous ascent and descent of known
staircase was proposed in [12] where the robot estimated its
state through internal sensors. The main limitation of that
work is that the robot can only negotiate staircases known
beforehand. Finally, an elaborate analysis of robot stability
and control was presented in [9], taking into account active
arm adaptation during stair ascent and descent. The derived
analytical solution is characteristic of the high complexity
of direct modelling of the interaction between a multi-
DOF robot and a negotiated obstacle. Still, it requires full
knowledge of the platform kinematic, geometric and physical
characteristics, it does not employ congruent control of
flippers, main tracks and the arm, nor does it account for
the influence of a transported object.

2) Learning-based approaches: Learning-based control
approaches on the other hand, tend to be more straightfor-
ward when the dynamics of physical interaction are hard
to be estimated. Authors of [13] were among the first who
treated the problem of staircase traversal via deep reinforce-
ment learning in the end-to-end fashion. Using front and rear
cameras they showed that the robot can learn to ascend a
previously known staircase, yet at a high computational cost.
Reinforcement learning was also applied to the problem of
flipper configuration and compliance autonomous control by
[14] in order to reduce the operator’s cognitive load. That
approach enabled negotiation of single palettes and uneven
terrain obstacles, nonetheless, assuming that main tracks are
independently controlled. Another more sophisticated ap-
proach was demonstrated in [15] where authors incorporated
constraints into the optimization problem of relative entropy
policy search using a RL algorithm [16]. Still, results were
limited to the traversal of a palette.

Endowing a system with constraint respect such as sta-
bility can be performed in different manners. It is a com-
mon practice to introduce safety constraints into the RL
algorithm [15], [17], often giving promising results at the
cost of exhaustive exploration effort. Alternatively, one can
associate safety and reward inside a single function [14],
[18], which raises the question of determining their relative
influence. In the following, we describe our approach for
RL-based staircase ascent and descent under the influence of
an integrated arm transporting an object. The diversification
of the task incurred by the inclusion of new DOF leads to a
harder problem and higher risk of accident, requiring a more
comprehensive treatment. In comparison with related works,
our framework is easily applicable to different platforms,

allows to generalize over a variety of obstacles, accounts for
arm control and considers ascent and descent traversals.

III. METHODOLOGY

At time step t, the system being in the state st ∈ S executes
the action at ∈ A with respect to its policy π, obtains a
scalar reward rt ∈ R and transits into a new state st+1 ∈ S.
The total set of transitions from the episode start to the
end is called a roll-out τ = {s0,a0, .., sT−1,aT−1} where
T is its number of time steps. To solve this RL problem,
we will use policy gradient algorithms where the policy is
directly optimized. The main idea consists in performing
policy ascent over policy parameters θ to maximise the
expected gradient ∇θJ(πθ) return. In the sequel, we present
the variables used to describe the problem of ascent and
descent staircase negotiation learning. Then, we propose a
reward function to entice stair traversal while taking into
account the stability constraints.

A. Problem description

In our previous work [6] where we opted for independent
tracks and flipper control, the robot was able to learn a
behavior required for accomplishing staircase ascent while
respecting safety constraints. However, with the inclusion
of DOF of an articulated arm, separate control of the main
tracks with the arms actuators can be sub-optimal.

This motivated us to explore two types of action spaces;
(i) when the robot controls 3 DOF consisting of the robot
base linear velocity, front flipper and rear flipper angles and
(ii) 3 + 2 = 5 DOF where the 2 additional DOF correspond
to the joints of an arm. With reference to (i), the robot selects
3 action parameters, namely, front and rear flippers rotation
angles and velocity of the base forming an action vector:

a = (ψfronta , ψreara , va) ∈
[ψmina , ψmaxa ]2 × [vmin, vmax]

(1)

where ψfronta and ψreara are front and rear flipper angles,
va is the applied velocity. For case (ii), the previous action
vector is extended with the joint angles of the arm:

(φ1a, φ
2
a) ∈ [φmin1 , φmax1 ]× [φmin2 , φmax2 ] (2)

Fig. 2: Front and rear obstacle (step edge) coordinate
systems



that correspond respectively to the angles of the first and
second joints (see Fig. 2).

The sensory space structure is set as follows. For case (i),
the observation vector is represented as:

s = (pfrontx , pfronty , prearx , preary , vs, ψ
front
s , ψrears ) (3)

where pfrontx , prearx are distances of the robot centroid rel-
ative to the next and previous nearest step edge along the
X-axis of the robot as shown in Fig. 2, with pfronty , preary

corresponding to the relative distances along the Y -axis and
vs being the current linear velocity. The state further includes
ψfronts and ψrears as the current flipper angles. For case (ii),
the state vector is extended with the arm joint angles φ1s, φ

2
s.

B. Reward function design

In this section we present reward functions used for
learning staircase ascent and descent. In detail, we employ
the same positive reward as in [6] representing the total
travelled distance on the stairs which drives learning, namely:

Rtr(τ) =

∑Nτ

t=1 xt
Dmax

(4)

where Rtr(τ) is a cumulative return along a rollout τ whose
maximal value can attain 1, Nτ is the number of time steps
in the rollout, xt is a travelled distance during one time step,
Dmax is the maximal possible travelled distance. As stated
earlier, learning with constraints can be performed through
accounting for a negative reward (penalty) within an episode.
We first propose a reward function that addresses the problem
of robot stability for ascent and descent negotiation. Then, a
reward function meant to reduce the pitch angular velocity
experienced by the platform during descent is proposed.

1) Center of Gravity stabilization: The center of gravity
of the robotic platform is known to be instrumental in
preventing tip-over accidents and improving stability [9],
[19]. In [6] we enabled a robot to learn a stable behavior
by favoring robot poses with low center of gravity (COG)
with respect to the underlying surface A′ that represents
the Normalized Energy Stability Margin (NESM) [20]. The
presence of an arm nonetheless may place the COG low but
also close to the ”safety zone” border [9], without violating
the NESM. To overcome this problem, we use the Stability
Margin (SM) [21] that estimates the distance between the
lower footprint and the COG projection on the ground.
Since it is generally difficult to estimate where exactly the
lower footprint touches the ground, we instead minimize the
deviation of the COG projection on the stair surface Cx from
the projection point O of the centroid of the robot base. In
this manner, we can guarantee that the robot respects the
SM criterion. We consider that the arm has to place the
COG as close as possible to the point O - the most stable
point (see Fig. 3) along both the X and Y axes, optimizing
both for the SM and the NESM. Thus, we minimize the
deviation D =

√
d2 + h2 where d and h are the distances

between O and the projections of the COG on X and Y axes.
This minimization serves the purpose of improving stability
through the SM and NESM criteria but also redistribute

symmetrically the weight forces exerted by the moving robot
tracks to the staircase.

We further wish to penalize the robot when it loses
stability and tips over that happens when the pitch angle
of the robot reaches π/2. Thus, letting the COG deviation at
every time step be Dt, the penalty term is defined as:

rDt =

{
−1, if tip over

−KD ∗Dt, otherwise (5)

where the scaling coefficient KD is used for normalisation
as will be explained later in III-B.3.

Fig. 3: Side schematic view of the robot on a staircase

2) Drop impact reduction: Robot dynamics are different
between ascending and descending a staircase, as gravity
hinders the accomplishment of the former and it may conduct
the robot to fall in the latter. Even if no accident happens,
repetitive collisions caused by every step negotiation would
have impact on the robot. Such events appear when the COG
crosses step edges, at this moment, the base starts rotating
downwards which yields an increase of pitch angular velocity
that we refer as drop impact (bumpiness). As a way to
prevent such behavior, the robot can learn to influence these
dynamics through a pitch angular velocity based penalty. The
robot may experience a front tip-over when the pitch angle
of the robot reaches −π/2, that we wish to penalize as well.
Letting Wt denote the average pitch angular velocity, then
the corresponding negative reward is:

rWt =

{
−1, if tip over

−KW ∗Wt, otherwise (6)

3) Adjustment of scaling coefficient: The learned policy
is largely determined by the reward function that guides
learning of a specific task. At the same time, it can endow
the policy with specific characteristics such as improvement
of traction and respect of safety. While there is no ambiguity
if we learn a specific task with only positive rewards, direct
summing up the latter with another reward, for example the
negative one, may mislead - bias the robot to concentrate on
respecting auxiliary constraints rather than the main task.

To control the arbitrary bias of the penalty term, we
normalize it by a scaling coefficient whose approximation
can balance the learning of the main task along with the
desired property. Towards this goal, we initiate a small set of



trial experiments for the first n steps where we do not assign
negative rewards, in order to acquire sufficient statistics
related to the target value V , for example, COG distance
D or angular velocity W in our case. This results in making
the robot optimize its behavior only with respect to the main
task as specified by the positive reward, setting aside the
consideration of the penalty term. Upon the completion of the
nth step, we calculate the ”sub-optimal” mean target value
V̂ =

∑n
t=1 Vt/n , then the scaling coefficient as follows:

KV = (V̂ ·Nepisode)−1 (7)

where Nepisode is the maximum episode length. Thus, the
cumulative episode return could be expressed as follows:

RV (τ) = Rtr(τ) +

Nτ∑
t=1

rVt (8)

Normalization guarantees that the absolute episode return
Rtr(τ) varies from 0 to 1 as well as the absolute episode
penalty without tipping over penalization R̃penaltyV (τ). This
can be easily seen by defining:

R̃penaltyV (τ) =

∑Nτ

t=1 Vt

V̂ ·Nepisode
· Nτ
Nτ

=
V̂τNτ

V̂ ·Nepisode
(9)

where V̂τ is the mean target value during the episode after
trial experiments. We consider that in the beginning of
learning the policy is sub-optimal, thus the ”sub-optimal”
mean target value V̂ calculated in trial experiments relates
to further target value mean observations as V̂τ ≤ V̂ . Since
the rollout length does not exceed its maximal length Nτ ≤
Nepisode, we can conclude:

V̂τNτ ≤ V̂ ·Nepisode (10)

It was finally observed that the tip-over penalty prevents
learning of sub-optimal policies, therefore we added aux-
iliary negative reward −1 and end the episode in such cases,
thus, RpenaltyV (τ) ∈ [−2, 0]. Finally, we obtain the limits for
the episode cumulative return as RV (τ) ∈ [−2, 1].

IV. EXPERIMENTS

In this section we present the experiments that we con-
ducted, allowing us to obtain staircase ascent and descent
policies with desired properties. We also provide a quali-
tative analysis of learned behaviours in the supplementary
video (also available at partage.imt.fr/index.php/
s/JBdmEXaWcjLmgmB/download).

1) Environment set-up: We developed a simulation en-
vironment as illustrated in Fig. 1, using the physics-based
Gazebo simulator (gazebosim.org). Staircase size was
varied in ranges corresponding to real-world staircases (cf.
[6] for details), allowing to learn behaviours in randomly
generated staircases further taking into account the influence
of noise in the state estimation process.

Furthermore, we increased the maximum total number
of steps from 5 to 10. More importantly, we have shifted
from a wheeled-based simulation of robot tracks to the more
realistic CSM model [22] that is more lightweight in terms

Fig. 4: Illustration of stair traversal task set-up

of surface collision calculations and increases the level of
accuracy. We instantiate a model of the robot Jaguar V4 and
add a manipulator arm platform (see Fig. 1) incorporating its
geometrical and weight parameters. To study the influence
of transporting objects we perform learning with a cargo
added to the robot end-effector that constitutes 10% of total
robot mass and the heaviest permissible load, then we show
resilience to its variation via test roll-outs with cargo masses
that constitutes 5% and 15% of total robot mass.

A two-layer perceptron is used for policy representation.
Its parameters are optimised using Proximal Policy Opti-
mization [23]. In the beginning of the ascent tasks, the robot
starts at the start point (see Fig. 4) being orientated towards
the stairs. It has to traverse the distance from the start to
the finish line. For the descent tasks, start and goal positions
are swapped. We assign both positive and negative rewards
from the beginning of the episode to its end. The episode
ends when either the robot reaches the finish line, goes
out of the training zone (rectangle defined by red, blue and
green lines), tips over or number of time steps exceeds the
maximal episode length. We studied learning a total of 5
variants of the staircase traversal task, distinguished by the
staircase negotiation direction, DOF involvement and penalty
optimization criterion as summarized in Table I.

For all experiments the robot arm starts with the same,
vertically stretched, initial configuration perpendicular to the
robot base (see Fig. 1 middle). We select this initial arm pose
as it does not alter the COG projection of the robot when
it moves on flat terrain but it may severely hinder staircase
traversal and should therefore incite the robot to learn to
move the arm at a better pose. We recall that in the case of
a 3DOF action space, the arm remains fixed in this pose.

2) Performance for staircase ascent: Three independent
learning trials were performed for each task (i) and (ii),
after which we average the obtained performances. Fig.
5 (a) presents the average over all trials of the exponen-
tially smoothed cumulative reward with min-max bands. The
smoothing factor is set to 0.95, considering the trade-off

TABLE I: Description of tasks
Task id Direction DOF Criterion
i Ascent 3 COG
ii Ascent 5 COG
iii Descent 3 Ang. vel.
iv Descent 5 Ang. vel.
v Descent 5 COG

partage.imt.fr/index.php/s/JBdmEXaWcjLmgmB/download
partage.imt.fr/index.php/s/JBdmEXaWcjLmgmB/download
gazebosim.org


between curve smoothing while highlighting local changes.
At the end of learning, a total relative reward gain of 0.21
is observed between the tasks, clearly suggesting that the
robot learns to control the arm in a way that optimizes the
respective criterion. Cumulative reward curves do not reach
their maximum positive cumulative return value of 1 because
of the minimal COG bias that results from its inability to put
the COG closer to the base centroid than a certain distance.
It is worth noticing of the considerable distance between the
two curves by the end of learning, explained by the fact that
the robot with static raised arm and only using its flippers,
is unable to attain the same level of positive reward because
of the higher COG deviation.

Fig. 5 (b) shows how the COG deviation evolves during
the learning process. We can see that the robot learns its
dynamics in both tasks. It shows that in both cases the
robot converges to a better behaviour in a similar pace.
Eventually, the arm control allows to decrease the COG
deviation by 0.06m compared to the beginning of learning.
This figure contains the COG evaluation curve obtained for
the task (ii) without reward shaping. This illustrates how
absence of reward scaling worsens final optimal control
policy. We can see that the sub-optimal policy increases
the COG deviation and converges to the mean value which
exceeds the corresponding optimal one by 0.15m.

3) Performance for staircase descent: Cumulative reward
curves are presented in Fig. 6a. We can see that the reward
for all tasks reaches approximately the value 0.6 and does not
attain the maximal reward 1 because of constant presence of
the minimal negative reward. Fig. 6b shows the evaluation of
the COG deviation during learning. As expected, we observe
that the most unstable robot behavior is obtained for task
(iii), where the reduction of COG distance due to the flipper
control from the centroid projection point is low. Results

(a)

(b)

Fig. 5: Ascent task learning analysis

of pitch angular velocity optimization with moving arm (iv)
improves stability and the robot has further achieved to
reduce the COG deviation by a total of 0.02m. Nevertheless,
direct minimization of the COG distance (v) provides the best
overall results, wherein the COG decreases by more than
0.03m and attains the lowest absolute value among tasks.

The pitch angular velocity evaluation is presented in
Fig. 6c. We can see that COG and pitch angular velocity
optimizations (iv) and (v) behave quite similarly, with the
former yielding a slightly lower angular velocity. Comparing
it with the performance of task (iii), we could claim that the
mean pitch angular velocity is smaller if the arm does not
move. Also, it may seem that the robot control policy fails to
converge to an optimal behaviour but this could be partially
explained. We have seen that the initial, vertically stretched
arm performs worst of all in terms of stability easily leading
to front tip-over, end of episode and penalization by −1.
Thus, starting in the vertical arm position, the robot would
experience more tip-overs that drives the arm control to more
stable configuration even if it increases pitch angular velocity
during movements. This seems a plausible behavior in reality,
as we would prefer to undergo small bump impacts due to
increased pitch angular velocity instead of a drastic accident.

4) Overall performance: We refer the interested reader to
the qualitative results provided in the accompanying video,
which presents the policies learned for the ascent and descent
tasks in simulation. Policy learning time is constrained by
action execution duration in the simulation. Using a con-
temporary machine, a 10000 time step simulation required
approximately 20 minutes. As an empirical check that our
simulation environment is realistic, we also transferred a
learned policy from simulation to a real robot in an example
staircase for the task (iii) policy.

Fig. 8a presents mean values with min-max of the COG
distance during a test episode for ascent tasks (i) and (ii). We
can see that after the initial phase of the task progress, i.e.
from 30% of the ascent of the staircase, the COG deviation
for the policy (ii) is lower than for the policy (i), further
illustrated by Fig. 9 which presents mean values of COG
deviations and angular velocities with their standard devia-
tions during simulation test deployment for corresponding
experiments of Table I. The mean COG deviation of the
policy (i) is higher of the policy (ii) by 0.03m. Fig. 7
provides indicative snapshots of robot configurations during
ascent (a) and descent (b) transitions while respecting the
COG criterion. We can see that the robot pushes its arm in
front during ascent owing to which tip-over of the platform
is largely avoided. The front flippers are raised during ascent
while rear flippers are pushed down. Such configuration
improves robot traction with front and rear step edges.

Mean transition curves given in Fig. 8b show the evolution
of the angular velocity during descent negotiation. To eval-
uate policy effectiveness in the descent tasks we compare
quantitatively corresponding policies with the help of Fig.
9. Angular velocity optimization shows better results for the
policies (iii) and (iv) in contrast to the policy (v) which is
correspondingly higher by around 0.04rad/s and 0.05rad/s.



(a) (b) (c)

Fig. 6: Descent task learning analysis

Yet, the latter shows the smaller COG deviation by 0.018m
and 0.028m. The robot configuration respecting the COG
criterion during descent negotiation is shown in Fig. 7 (b).
Flipper rotation angles are reversed in the manner that front
and rear flippers touch correspondingly lower and upper
obstacles making transitions smoother. Thus, front flippers
prevent the robot from dropping forward while rear flippers
allow the robot to descend smoother from the rear step edge.
We favor pitch angular velocity reduction in the descent
tasks (iii) and (iv), but the stability (v) remains important.
In reality, we would prefer to expose the robot to some drop
impacts rather to tip-over that could damage the robot.

We have performed additional tests in the ascent and
descent tasks for the same policies when the end effector
holds loads constituting 5 to 15% of the robot mass. We can
observe from Fig. 9 that the robot is capable of controlling
the COG deviation if load mass changes in the ascent tasks.
For example, the robot controls the arm in a manner that
it improves the target value for tests with loads of 5, 10
and 15% of the robot mass by 0.046, 0.044 and 0.083m in
comparison with the stretched arm tests. In the descent tasks,
the COG deviation is the highest in the task (iii) for all load
types. Then, it is decreased if the robot controls its arm to
minimize the angular velocity, but the minimal target value
corresponds to the policy of the task (v). The mean angular
velocity decreases along with load mass augmentation for all
tasks. We can conclude that the angular velocity is smaller
for tasks (iii) and (iv) than for task (v).

V. CONCLUSION

We have presented an improved RL-based framework
for the problem of control policy learning during staircase
descent and ascent, further investigating the influence of an
integrated arm. Within 150 episodes, the robot is able to

(a) (b)

Fig. 7: Robot during transitions on the staircase; front arm
configuration (a), rear arm configuration (b)

(a)

(b)

Fig. 8: Evolution of penalty values during task execution

learn its dynamics and safety constraints while negotiating
varying staircases. The automated scaling coefficient estima-
tion proved effective by constraining cumulative returns to
appropriate scales and avoiding biasing the convergence of
the obtained optimal policies. We have studied optimization
of the COG and pitch angle velocity criteria for both ascent
and descent. The COG based policies have exhibited better
performance in terms of stability and qualitatively presented
the same optimal arm control behavior in comparison with
ordinary control. Despite the addition of more DOF, the
control of the arm yields better overall stability to the robot
during traversal. The angular velocity minimization showed
minor improvements of the policy and indirectly improved
the COG deviation. The learned control has shown resilience
in application to different carrying loads. Finally, policy test
evaluations showed that optimizing the COG criterion allows
the execution of ascent and descent in a safer manner.

We are currently working on transferring the learned
behavior to the real robot, integrating auxiliary components
such as robot localization while we further consider com-
paring against conventional control or other learning-based
techniques to different platform configurations.



Fig. 9: Performance of learned policies with varying weight
of transported object
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