Toward an integrated NWP-DA-AI system for 30-second-update precipitation prediction

Shigenori Otsuka (RIKEN), Yasumitsu Maejima (RIKEN), Pierre Tandeo (IMT Atlantique), and Takemasa Miyoshi (RIKEN)

1. Introduction
- Phased-Array Weather Radar (PAWR) at NICT Kobe
 - Every 30 seconds, 60-km-range, 100-m range resolution, 300 azimuth, 110 elevation
- A high-resolution regional NWP system (SCALE-LETKF, Miyoshi et al., 2016a,b, Lien et al., 2017)
- 3D optical flow nowcast: https://weather.riken.jp/ (Otsuka et al. 2016, WAF)
- A deep-learning-based system to merge observations and forecasts is newly developed.

2. Deep-learning-based system
- Based on Conv-LSTM (Shi et al. 2015, NIPS)
 - Long Short Term Memory (Hochreiter & Schmidhuber 1997, Neural Comp.)
 - Suitable for time series
 - Convolution: taking account of spatial pattern
 - Weights: copied from the encoder to the forecaster
- Conv-LSTM outperforms CNN for two-dimensional precipitation nowcasting
- Extended to three-dimensional data
- Future data are used in the decoder network

3. Test case
- Observation data: Kobe PAWR observations, 250-m mesh, 321x321x57 pixels
- Future data:
 - Optical flow-based 3D nowcast (TREC)
 - Surface precipitation forecast by SCALE-LETKF
- Training period:
 15:10:00-17:29:30 UTC, 10 June 2019
- Verification period:
 17:40:00-17:59:30 UTC, 10 June 2019
- 6 steps for the past data (encoder), 20 steps for the future data (decoder)
- Subregions of 61 x 61 x 9 pixels (z = 1.5-3.5 km) with rain echoes are extracted from the original data, and are used for training and inference.
- Optimizer: Adam
- Loss function: Balanced mean square error
- Convolution kernel size: 3
- ConvLSTM1: 24 channels, ConvLSTM2: 3 channels

5. Summary
- The Conv-LSTM is extended to 3D. A real-time 3D Conv-LSTM system is implemented with the Kobe PAWR.
- The 3D Conv-LSTM captured the evolution of convective cores.
- Conv-LSTM with forecast data outperformed that without forecast data.
- Future perspective: Training with PAWR data in different seasons / training with other model variables such as winds, humidity
- The machine learning architecture will be updated to improve the prediction accuracy.