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Abstract—Uncertainty quantification in numerical weather
and climate prediction is usually achieved using a Monte Carlo
estimation (i.e., ensemble forecasting) of the forecast probability
distribution function of the state of the system. In this work, we
present a method for uncertainty quantification based on neural
networks and using a likelihood-based loss function to train the
network. This provides state dependent uncertainty estimation,
without the need of integrating an ensemble of forecasts. The
method is evaluated with a chaotic low-dimensional model in
two scenarios: with stochastic errors only (SE) and systematic
and stochastic errors (SSE).

I. MOTIVATION

Uncertainty quantification in numerical weather and cli-
mate prediction is one of the main goals of ensemble fore-
casting approaches, which routinely provide an estimation
of the state dependant uncertainty due to the errors in the
initial conditions and in model formulation. This estimation
comes at the cost of running the numerical model several
times. Some studies have explored low cost approaches to
estimate forecast uncertainty based on machine learning tech-
niques. [1] designed a neural network that learned uncertainty
quantification from an existing ensemble system. [2] and
[3] estimated the uncertainty of a forecast system directly
from the observations, using a new type of loss functions
explicitly including the uncertainty in their formulation. In
this work, we use a likelihood-based loss function to train a
neural network as in [3], to incorporate both a correction in
the systematic error component, and a quantification of the
forecast uncertainty.

II. METHOD

The key to achieve a simultaneous estimation of the
systematic error and the uncertainty associated with a forecast
system is to incorporate the uncertainty in the formulation
of the loss function. One possible way to achieve that is
to define a cost function based on the likelihood of the
observations given the forecast. Assuming that the error
distribution is Gaussian, the likelihood can be expressed
as a function of the forecast values and the forecast error
standard deviations. In our implementation, optimal state-
dependent values for both quantities are estimated through
a neural network, whose input is the forecast produced by
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Fig. 1. The plot shows the Mean of the Continuous Ranked Probability
Score computed over 3000 forecasts obtained with an ensemble of forecasts
(blue) and with the neuronal network (orange) for both perfect (perf) and
imperfect (imperf) model experiments.

a numerical model. Moreover, in the implementation here
proposed, instead of using observations (which are usually
sparse in space and time as well as diverse in nature), we
use the mean state of the system estimated using a data
assimilation approach.

III. EVALUATION

We evaluate the method using the Lorenz-96 chaotic low-
dimensional model to simulate a numerical weather predic-
tion system. Figure1 shows the continuous ranked probability
score of the probabilistic forecast produced from a determin-
istic forecast combined with the neural network, and the one
produced by an ensemble of forecasts under both SE and SSE
scenarios. In the SE scenario, the ensemble method performs
slightly better, with the neural network, being less expensive
in terms of computation. In the SSE scenario, the neural
network outperforms the ensemble approach. The advantage
of the neural network approach is that it can capture both the
stochastic and systematic components of model error.
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