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ABSTRACT

The upcoming Surface Water Ocean Topography (SWOT)
satellite altimetry mission is expected to yield two-dimensional
high-resolution measurements of Sea Surface Height (SSH),
thus allowing for a better characterization of the mesoscale
and submesoscale eddy field. However, to fulfill the promises
of this mission, filtering the tidal component of the SSH mea-
surements is necessary. This challenging problem is crucial
since the posterior studies done by physical oceanographers
using SWOT data will depend heavily on the selected fil-
tering schemes. In this paper, we cast this problem into a
supervised learning framework and propose the use of con-
volutional neural networks (ConvNets) to estimate fields free
of internal tide signals. Numerical experiments based on an
advanced North Atlantic simulation of the ocean circulation
(eNATL60) show that our ConvNet considerably reduces the
imprint of the internal waves in SSH data even in regions
unseen by the neural network. We also investigate the rele-
vance of considering additional data from other sea surface
variables such as sea surface temperature (SST).

Index Terms— Internal Gravity Waves, Filtering, Deep
Learning, Sea Surface Height, SWOT

1. INTRODUCTION

This study is conducted within the framework of the next-
generation Surface Water Ocean Topography (SWOT) satel-
lite altimetry mission. The SWOT altimeter will rely on
its wide-swath capacities to provide unprecedented two-
dimensional maps of Sea Surface Height (SSH) down to
a 10 km effective resolution. These measurements are ex-
pected to drastically improve the quality of SSH mapping and
therefore enhance our understanding of the mesoscale and
submesoscale dynamics of the upper ocean [1, 2, 3]. SWOT
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Fig. 1. Footprints of internal tides on the Laplacian of a SSH
snapshot: (a) Original data (b) 24h-averaged data

data will also yield valuable information on tidal compo-
nents of the SSH signal such as shelf tides, coastal tides and
open-ocean internal tides. Separating the tidal and non-tidal
components of the SSH data is a critical issue for the physical
oceanography community to ensure a proper exploitation of
SWOT data for studying mesoscale and submesoscale flows
[4].

At the best of our knowledge, Torres et al. [5] have
been the only to propose a method to extract Internal Gravity
Waves (IGWs) from two-dimensional SSH snapshots. Their
method is based on the identification of spectral slope discon-
tinuities that separates IGWs at small scales from balanced
motions at large scales. As such, it can recover the spectral
content of the mesoscale and submesoscale flows only for
spatial scales, where they strongly dominate over the IGWs,
which may limit the use of this method. For instance, for this
reason, only summer SSH data are investigated in [5].

Here, we state the filtering of tide signals in SSH fields as
a supervised machine learning issue and explore deep learn-
ing techniques [6]. We present a case-study, which encom-
passes both summertime and wintertime data, based on high
resolution oceanic numerical simulation data [7]. Our main
contributions are as follows: i) investigating the extent to
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which ConvNets can be relevant schemes for filtering IGWs,
ii) illustrating the relevance of the proposed ConvNets for
both summertime and wintertime sea surface dynamics, iii)
evaluating the potential gain of of considering multi-temporal
data or multi-modal synergies.

This paper is organized as follows. Section 2 presents the
dataset considered as a testbed in this study. We describe the
proposed ConvNet schemes in Section 3. Numerical experi-
ments are reported and discussed in Section 4, and finally a
conclusion is drawn in Section 5.

2. DATA

2.1. Data preparation

Advancements in ocean numerical modeling have reached
a state where realistic numerical simulation with Petabytes
(1015 bytes) of data are available and represent a real oppor-
tunity for machine learning based techniques. In this work,
we consider the high-resolution eNATL60 (North Atlantic,
hourly temporal resolution, 1/60◦ horizontal resolution) con-
figuration of the NEMO (Nucleus for European Modelling
of the Ocean) modelling system [7]. Within the framework
of the upcoming SWOT mission, we degrade the resolu-
tion by a factor of 3. We here focus on a subregion of the
North Atlantic, namely, the OSMOSIS region (44.821◦N-
55.363◦N, 20.016◦W-10.008◦W). The OSMOSIS region has
a weaker large-scale component compared to highly energetic
regions such as the Gulf Stream [8]. This makes OSMOSIS
a relevant region for assessing the ability of the investigated
filtering schemes to recover small-scale dynamics which are
the main component of interest awaited from SWOT.

We may point out that mesoscale and submesoscale up-
per ocean dynamics are known to be seasonally-dependent.
Hereafter, we refer to ”JAS” (July, August, September) for
summer and ”JFM” (January, February, March) for winter,
when considering a season-related analysis. The one-year
span of eNATL60 resorts in 24× 90 = 2160 images for each
dataset. We also split the region into several non-overlappling
64 × 64 patches. Splitting the dataset into train/val/test
splits is done spatially which is arguably more challenging
in our context than a temporal splitting, since oceanic pat-
terns may strongly depend on the geographic area (different
bathymethry, Rossby radius, etc.). We consider a spatial split
according to the latitude. Overall, 5 boxes from 44.821◦N-
52◦N were used to train our models resulting in 5*2160 =
10800 patches, and 1 box from the northwestern area of the
OSMOSIS region is considered as the test region.

2.2. Reference data used for supervised training

Within a supervised training framework, we exploit the hourly
time sampling of the eNATL60 simulation to build a tide-free
reference using a 24-hour time averaging. This straightfor-
ward approach is commonly used in the analysis of the out-

puts of oceanic numerical models [9]. More complex time
filtering approaches could be considered to improve the gen-
eration of the tide-free samples.

An example of the Laplacian of a SSH snapshot from the
considered dataset and its corresponding 24h filtered SSH is
shown in Figure 1. we show Laplacian fields, which relate to
the vorticity and clearly exhibit the footprints of the IGWs.

3. METHODS

3.1. Convolutional Neural Networks

Inspired by the connectivity patterns of neurons in animals’
visual cortex, convolutional neural networks (hereinafter
ConvNets) are one of the main and most important break-
throughs in neural networks literature [10]. They have rapidly
become a key component of state-of-the-art deep learning
architectures in numerous computer vision tasks. Mathemat-
ically speaking, ConvNets in their basic form consist of a
cascade of convolutional layers where the output of layer k
(consisting in so called feature maps) is a function of an affine
transformation of the previous layer output:

hkij = f
((
W k ∗ x

)
ij
+ bk

)
, (1)

where ∗ denotes the convolution operation, f is a nonlin-
ear function (a common choice is the Rectifier Linear Unit
ReLU(x) = max(0, x)). Weights W k and biases bk are the
parameters of the ConvNets to be inferred. The learning step
comes to solve for a minimization issue with regard to the
parameters of the ConvNet, for instance using the Stochas-
tic Gradient Descent (SGD) with the backpropagation algo-
rithm. The interested reader can refer to [6] and references
therein for more reading about ConvNets and their mathemat-
ical properties.

Here, we focus on ResNet, a specific class of ConvNets
which rely on residual blocks [11, 12]. Let G be a series
of neural operations (convolutions, nonlinearities, normaliza-
tion, etc), a residual block takes an input and adds it to its
transformed version by G, i.e., hk = hk +G(hk). The ease of
training and the simple mathematical intuitions behind resid-
ual blocks made them ubiquitous in recent ConvNet architec-
tures and led to successful application in several image and
signal processing applications [13].

3.2. ConvNets for filtering IGWs

Here, we aim to design a ConvNet, denoted by F , to re-
construct a tide-free SSH field, referred to as Sf from some
Input, which may be given as a single or a series of SSH
snapshots, possibly complemented by other observed sea sur-
face fields, such as SST fields. Formally, the considering fil-
tering issue comes to train F such that Sf = F(Input).

We consider the following architecture for ConvNet F . It
consists of a first Conv layer followed by Nr residual units as



Fig. 2. Illustration of the ConvNet based approach for filtering IGWs. A Residual block consists of two series of Batch
Normalization (BN), LeakyReLU activation followed by a Conv layer. The notation M@H*H means M filters of size H*H.

introduced in [11] then a final regression Conv layer. In this
paper, we consider three choices for the input: i) SSH: Our
ConvNet takes a single SSH snapshot as input, and outputs
its filtered version. ii) 3SSH: SWOT fast-sampling phase is
expected to deliver SSH measurements on a daily cycle, we
simulate this behaviour by considering as input SSH at time t
concatenated with SSH at t−24h and t+24h. iii) 3SSH-SST:
we complement the three successive daily SSH snapshots as
above with a SST field. The later is motivated by known rela-
tionships between SSH and SST features for some dynamical
modes [14].

To train our ConvNet, we consider a loss function, which
combines a mean square error on the SSH and a mean abso-
lute error on the Laplacian of the SSH:

L(Sf , Ŝf ) = ||Sf − Ŝf ||2 + α|∇2Sf −∇2Ŝf |, (2)

The rationale behind this choice is that SSH fields are rather
smooth while vorticity fields contain a considerable amount
of high frequency information that need to be preserved. In
the machine learning community, it is known that the use of
the MSE loss function leads to blurry images and that adding
losses on image gradients or Laplacians can help sharpen the
predictions [15].

4. NUMERICAL EXPERIMENTS

4.1. Experimental setup

Weights of the convolutional layers were initialized with the
Kaiming initialization [16], biases to zero. To ease the op-
timization of the ResNets at early stages, we found it useful
to use the ”Zero γ” heuristic [17]. Slope of the LeakyReLUs
is 0.2. The networks were coded using PyTorch, and trained
using the ADAM optimizer with an initial learning rate of
3e-4. The learning rate is divided by 10 every 100 epochs.

Early stopping is also used leading all the networks to con-
verge after around 400 epochs. Experiments were run using a
Nvidia Tesla V100 GPU with a batch size of 32. The hyper-
parameters Nr and α were tuned using a grid search leading
to Nr = 10 and α = 103.

4.2. Results

We compare the performance of the variants of the proposed
ConvNet. As baseline, we consider a linear 5 × 5 filtering
of the SSH. The parameters of the linear filter are optimized
with regard to loss function (2) to provide a fair comparison
with the proposed schemes. This linear filtering approach is
referred to as Baseline.

Top panels of Figure 3 show the power spectral density
(PSD) functions of ∇2SSH resulting from the 4 competing
methods. At large scale, the different approaches are close
to the PSD of the reference data and differences start to ap-
pear at finer scales. For Summer data (left panel), the three
proposed methods beat the baseline by a large margin, and
unsurprisingly 3SSH and 3SSH-SST outperform 1SSH. For
Winter data (right panel), the intensification of sea surface
dynamics enhances non-wave processes at scales similar to
IGWs, which makes the separation much more challenging.
Still, the PSD shows that the three ConvNets outperform the
baseline.

We further analyse the reconstruction performance ac-
cording to ratio R = 1 − E[(Sref−Sf )

2]

E[S2
f ]

that reflects the
relative quality of the estimation as a function of the spatial
frequency. R values close to 1 indicate a perfect estima-
tion. The R values calculated on ∇2SSH are shown in the
bottom panels of 3. For both JAS and JFM datasets we
now clearly observe the differences between the introduced
models. The baseline does not behave badly for a rough
approximation, but is quickly outperformed by 1SSH and



Fig. 3. (Top) Power spectral density calculated on the Lapla-
cian of SSH. (Bottom) Ratio R. Results on the JAS dataset
are on the left, those on JFM on the right.

3SSH. The addition of SST introduces a slight improve-
ment over 3SSH. Examples of SSH filtered maps and their
Laplacians can be found in this following Github repository
https://github.com/CIA-Oceanix/DetideNet
along with the codes used for this work.

5. CONCLUSION

In this work, we present a new deep learning based method
to filter internal gravity waves from SSH data. Aiming for a
proof of concept, this paper considered a numerical simula-
tion as a testbed and has shown the relevance of the use of
domain knowledge in the derivation of the loss function used
for training the ConvNets. Experiments performed on winter
and summer datasets prove that our method can yield compet-
itive results with regard to simple linear filters. Results as pre-
sented are promising and call for more thorough investigation
of the effect of adding other sources of noise that contaminate
satellite altimeters, especially in the context of SWOT. This is
the main subject of future work.
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