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Key Points:  24 

• A machine learning approach is applied to reconstruct the surface phytoplankton biomass at 25 

global scale over three decades. 26 

• Chlorophyll variability derived from this statistical approach accurately reproduces satellite 27 

observations (possibly better than biogeochemical models). 28 
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• The sole use of surface predictors allows to accurately reproduce chlorophyll variability, in 29 

spite of its known sensitivity to three-dimensional processes. 30 

   31 
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Abstract  32 

Monitoring the spatio-temporal variations of surface chlorophyll-a concentration (Chl, a 33 

proxy of phytoplankton biomass) greatly benefited from the availability of continuous and global 34 

ocean color satellite measurements from 1997 onwards. These two decades of satellite 35 

observations are however still too short to provide a comprehensive description of Chl variations 36 

at decadal to multi-decadal timescales. This paper investigates the ability of a machine learning 37 

approach (a non-linear statistical approach based on Support Vector Regression, hereafter SVR) 38 

to reconstruct global spatio-temporal Chl variations from selected surface oceanic and atmospheric 39 

physical parameters. With a limited training period (13 years), we first demonstrate that Chl 40 

variability issued from a 32-years global physical-biogeochemical simulation can generally be 41 

skillfully reproduced with an SVR using the model surface variables as input parameters. We then 42 

apply the SVR to reconstruct satellite Chl observations using the physical predictors from the 43 

above numerical model and show that the Chl reconstructed by this SVR more accurately 44 

reproduces some aspects of observed Chl variability and trends compared to the model simulation. 45 

The SVR is able to reproduce the main modes of interannual Chl variations depicted by satellite 46 

observations in most regions, including El Niño signature in the tropical Pacific and Indian Ocean. 47 

In stark contrast with the trends simulated by the biogeochemical model, it also accurately captures 48 

spatial patterns of Chl trends estimated by satellites data, with a Chl increase in most extratropical 49 

regions and a Chl decrease in the center of the subtropical gyres, although the amplitude of these 50 

trends are underestimated by half. Results from our SVR reconstruction over the entire period 51 

(1979-2010) also suggest that the Interdecadal Pacific Oscillation drives a significant part of 52 

decadal Chl variations in both the tropical Pacific and Indian Ocean. Overall, this study 53 

demonstrates that non-linear statistical reconstructions can be complementary tools to in situ and 54 
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satellite observations as well as conventional physical-biogeochemical numerical simulations to 55 

reconstruct and investigate Chl decadal variability.   56 
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1 INTRODUCTION 57 

Phytoplankton—the microalgae that populate the upper lit layers of the ocean—fuels the 58 

oceanic food web and regulates oceanic and atmospheric carbon dioxide levels through 59 

photosynthetic carbon fixation. The launch of the "Coastal Zone Color Scanner" (CZCS) onboard 60 

the Nimbus-7 spacecraft in October 1978 (Hovis et al., 1980) provided the first synoptic view of 61 

near-surface chlorophyll-a concentration (Chl, a proxy of phytoplankton biomass). Although 62 

primarily focusing on coastal regions, CZCS also provided global pictures of Chl distribution and 63 

a new perspective on phytoplankton biomass seasonal variability (Campbell and Aarup, 1992; 64 

Longhurst et al., 1995; Yoo and Son, 1998; Banse and English, 2000). 65 

After the failure of CZCS in 1986, ocean color observations were not available for more 66 

than a decade. The launch of the modern radiometric Sea-viewing Wide Field-of-View Sensor 67 

(SeaWiFS; McClain et al., 2004) in late 1997 followed later by other satellites allowed monitoring 68 

and understanding the spatio-temporal Chl variations at global scale over the past two decades. 69 

For instance, it revealed that El Niño events induce a Chl decrease in the central and eastern 70 

equatorial Pacific in response to reduced upwelled nutrients to the surface layers (e.g., Chavez et 71 

al., 1999; Wilson and Adamec, 2001; McClain et al., 2002; Radenac et al., 2012) but also a Chl 72 

signature outside the tropical Pacific through atmospheric teleconnections (Behrenfeld et al., 2001; 73 

Yoder and Kennelly, 2003; Dandonneau et al., 2004; Messie and Chavez, 2012). It also allowed 74 

identifying the Indian Ocean Dipole (IOD; Saji et al., 1999) as the main climate mode driving Chl 75 

interannual variations in the Indian Ocean (e.g. Murtugudde et al., 1999; Wiggert et al., 2009; 76 

Currie et al., 2013) and monitoring a Chl increase in the subpolar North Atlantic related to the 77 

positive phase of the North Atlantic Oscillation (NAO) (Martinez et al., 2016). Aside from the 78 

robust Chl decrease monitored in the mid-ocean gyres over the first decade of the XXIst century 79 
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(Polovina et al., 2008; Irwin and Oliver, 2009; Vantrepotte and Melin, 2009; Signorini and 80 

McClain, 2012), the reliability of the long-term trends derived from these satellite data are more 81 

questionable and led to conflicting results in the past literature (Behrenfeld et al., 2006; 82 

Vantrepotte and Mélin, 2011; Siegel et al., 2013; Gregg and Rousseaux, 2014). These 83 

discrepancies suggest that detection of robust global trend may require several decades of 84 

continuous observations (Beaulieu et al. 2013).  85 

The production of longer, consistent ocean color time series can partly alleviate this issue. 86 

The combination of the global CZCS and SeaWiFS datasets provided an insight on the Chl 87 

response to natural decadal climate variations (Martinez et al., 2009; D’Ortenzio et al., 2012), such 88 

as the Pacific Decadal Oscillation (PDO; Mantua et al., 1997) and the Atlantic Multidecadal 89 

Oscillation (AMO; Enfield et al., 2001). However, blending these two archives or reconstructing 90 

them using compatible algorithms also led to contrasting results (Gregg and Conkright, 2002; 91 

Antoine et al., 2005).  92 

The time span of the modern radiometric observations (~20 years), as well as the CZCS-93 

SeaWiFS reprocessed time series, are still too short to investigate Chl decadal variations and 94 

longer-term trends. Longer, continuous and consistent records are required. In situ biogeochemical 95 

observatories can provide such long and continuous records, but their inhomogeneous spatial 96 

distribution and varying record length prevent a confident assessment of Chl long-term changes at 97 

the scale of a basin (Henson et al., 2016). 98 

Coupled physical-biogeochemical ocean model simulations can provide additional, 99 

valuable information’s in areas with limited observational coverage. These models resolve 100 

reasonably well the seasonal to interannual biogeochemical variability (Dutkiewicz et al., 2001; 101 

Wiggert et al., 2006; Aumont et al., 2015). They can however diverge in capturing Chl variations 102 
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at a timescale of a decade (Henson et al., 2009a,b; Patara et al., 2011), in particular phytoplankton 103 

regime shifts (Henson et al., 2009b). Different biological models are often coupled to different 104 

physical models, which renders the attribution of the different modelled responses to their physical 105 

or biological components difficult. The decadal or longer variability of the simulated primary 106 

producers should then be interpreted cautiously.  107 

In this context, statistical methods reconstructing past Chl variations may be useful 108 

alternatives to overcome limitations associated with both observations and numerical models. 109 

While statistical reconstructions are now commonly used to extend physical variables back in time 110 

(e.g. Smith et al., 2012; Huang et al., 2017; Nidheesh et al., 2017), reconstructions of surface Chl 111 

are still in their infancy. Phytoplankton distribution is strongly controlled by physical processes, 112 

such as mixing and uplifting, fueling nutrients in the upper-lit layer (i.e., bottom up processes). 113 

Thus, relevant physical variables may allow to reconstruct Chl past variations. To our knowledge, 114 

a single study allowed the derivation of spatio-temporal surface Chl variations over the 1958-2008 115 

period in the tropical Pacific (Schollaert et al., 2017). This reconstruction used a linear canonical 116 

correlation analysis on Sea Surface Temperature (SST) and Sea Surface Height (SSH) to improve 117 

the description of the Chl response to the diversity of observed El Niño events and decadal climate 118 

variations in the tropical Pacific.  119 

The objective of the present study is to explore the potential of an alternative statistical 120 

technique to reconstruct Chl at global scale over a 32-year time-series (i.e., 1979-2010). The 121 

considered machine learning technique is based on a Support Vector Regression (SVR) which 122 

accounts for non-linearities between predictors and Chl. First, the SVR is trained over 1998-2010 123 

on a self-consistent dataset of physical and Chl variables, all extracted from a forced ocean model 124 

simulation that includes a biogeochemical component (i.e., the NEMO-PISCES model). Then, 125 
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modelled physical variables are used to reconstruct Chl over 1979-2010. The feasibility and 126 

robustness of the proposed reconstruction process is assessed through the comparison of modelled 127 

vs. reconstructed Chl. In a second step, this framework is applied to satellite ocean color 128 

observations. 129 

2 DATA AND METHODS 130 

2.1 The NEMO-PISCES simulation 131 

In this study, we used the “Nucleus for European Modelling of the Ocean” (NEMO) 132 

modelling framework (Madec, 2008). The NEMO configuration used displays a coarse resolution 133 

with 31 vertical levels and a 2° horizontal grid with a refined 0.5° resolution in the equatorial band. 134 

The model includes a biogeochemical component, the Pelagic Interaction Scheme for Carbon and 135 

Ecosystem Studies (PISCES; Aumont et al., 2015). PISCES is a model of intermediate complexity 136 

designed for global ocean applications (Aumont and Bopp, 2006), which uses 24 prognostic 137 

variables and simulates biogeochemical cycles of oxygen, carbon and the main nutrients 138 

controlling phytoplankton growth (nitrate, ammonium, phosphate, silicic acid and iron). It 139 

simulates the lower trophic levels of marine ecosystems distinguishing four plankton functional 140 

types based on size: two phytoplankton groups (small=nanophytoplankton and large=diatoms) and 141 

two zooplankton groups (small=microzooplankton and large=mesozooplankton). Chl from 142 

PISCES (hereafter referred to as ChlPISCES) is defined as the sum of the simulated diatoms and 143 

nanophytoplankton Chl content. 144 

The NEMO-PISCES simulation is forced with atmospheric fields from the interannual 145 

Drakkar Forcing Set 5 (DFS5.2, Dussin et al., 2014) for wind, air temperature and humidity, 146 

precipitation, shortwave and longwave radiations. It is initialized with the World Ocean Atlas 2005 147 
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(WOA05) climatology for temperature, salinity, phosphate, nitrate and silicate (Garcia et al., 148 

2006), while iron initial state is similar to the model climatology employed by Aumont and Bopp 149 

(2006). The model simulation was spun up using 3 repetitions of the 30 years’ DFS5.2 forcing set, 150 

and finally ran over 1979-2010.  151 

Although successfully used in a variety of biogeochemical studies (e.g. Bopp et al., 2005; 152 

Gehlen et al., 2006; Lengaigne et al., 2007; Schneider et al., 2008; Steinacher et al., 2010; 153 

Tagliabue et al., 2010; Séférian et al., 2013; Aumont et al., 2015; Keerthi et al., 2017; Parvathi et 154 

al., 2017 and references therein), the ability of the PISCES model to reproduce satellite surface 155 

Chl is briefly illustrated in section 3.1. 156 

2.2 Chl derived from satellite radiometric observations  157 

Satellite surface Chl for Case I waters is provided by the Ocean Colour – Climate Change 158 

Initiative (OC-CCI, hereafter referred to as ChlOC-CCI) from the European Space Agency 159 

(http://www.esaoceancolour-cci.org/). This product combines multi-sensor, global, ocean-color 160 

products while attempting to reduce inter-sensor biases for climate research (Storm et al., 2013). 161 

OC-CCI extends the time series beyond that provided by single satellite sensors and perform better 162 

in terms of long-term consistency than other products from multi-mission initiatives (Belo Couto 163 

et al., 2016).  164 

Only deep oceanic areas (depth>200 m) are considered to avoid coastal waters where 165 

specific non-case-1 waters products are required. The Chl Level-3 product is binned on a regular 166 

1° grid with a monthly resolution over January 1998-December 2010. This time period does not 167 

extend beyond 2010 to be consistent with the NEMO-PISCES simulation. ChlOC-CCI is used to 168 
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evaluate the PISCES model performances in Section 3.1, and to train the statistical method in 169 

Section 4.  170 

2.3 Predictors and Chl variables 171 

The variability of phytoplankton biomass is driven in many regions of the world ocean and 172 

at many timescales by physical processes (e.g., Wilson and Adamec, 2002; Wilson and Coles, 173 

2005; Kahru et al., 2010; Feng et al., 2015; Messie and Chavez, 2015). Our statistical architecture 174 

relates to 12 predictors and one biological variable (Chl). A sample thus refers to 13 variables. The 175 

12 predictors (7 physical variables from NEMO-DFS5.2, 2 temporal and 3 spatial parameters) are 176 

detailed in Table 1, including their influence on Chl variations and the references supporting this 177 

influence. 178 

Table 1: physical predictors, the drivers of which they are proxy and associated references. 179 

Proxy used as predictors Relevance to Chl variations References 

SST - Vertical mixing and upwelling  

 

- Impacts on phytoplankton metabolic rates 

- Behrenfeld et al. (2006); Polovina et al. 

(2008); Martinez et al. (2009); Thomas 

et al. (2012) 

- Lewandowska et al. (2014) 

Sea Level Anomaly  Thermocline/pycnocline depths Wilson and Adamec (2001; 2002); 

Radenac et al. (2012) 

Zonal and meridional  

wind components 

Surface momentum flux forcing and vertical 

motions driven by Ekman pumping 

Martinez et al. (2011); Thomas et al. 

(2012) 

Zonal and meridional  

surface current components 

Horizontal advective processes Messie and Chavez (2012); Radenac et 

al. (2013) 

Short-Wave radiations  Photosynthetically Active Radiation  Sakamoto et al. (2011) 

Month (cos and sin) Periodicity of the day of the year (day 1 is very 

similar to day 365 from a seasonal perspective) 

Sauzède et al. (2015) 

Longitude (cos and sin)  

Latitude (sin) 

Periodicity (longitude 0°= longitude 360°) Sauzède et al. (2015) 

  180 
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We purposely limited the predictors to surface variables because our objectives are 1) to 181 

reconstruct Chl from physical observations, which are mainly available through remotely sensed 182 

surface data (oceanic observations below the surface are indeed usually not accessible at large 183 

spatial-scales or interannual time-scales); 2) to build a statistical scheme that can complement more 184 

complex numerical models (here, NEMO-PISCES) which simulate complex three-dimensional 185 

processes and are costly to run.  186 

First, the SVR is trained on physical predictors from NEMO and DFS5.2 vs. ChlPISCES. The 187 

reconstructed Chl time-series is referred to as ChlSvr-PISCES. Second, the SVR is trained using the 188 

same physical predictors but vs. satellite Chl observations (ChlOC-CCI). The reconstructed Chl time-189 

series is referred to as ChlSvr-CCI.  190 

2.4 Climate indices 191 

Climate indices are provided by the National Oceanic and Atmospheric Administration 192 

website (www.esrl.noaa.gov/psd): the AMO, the Multivariate El Niño Southern Oscillation 193 

(ENSO) Index (MEI) and the Interdecadal Pacific Oscillation (IPO). 194 

2.5 Support Vector Regression 195 

The statistical reconstruction technique is based on a SVR. This method belongs to kernel 196 

methods in Statistical Learning Theory and relates to the Support Vector Machine (SVM, Vapnik, 197 

1998). SVM is a kernel-based supervised learning method (Vapnik, 2000) developed for 198 

classification purpose in the early 1990s and then extended for regression by Vapnik (1995). The 199 

basic idea behind SVR is to map the variables into a new non-linear space using the kernel 200 

function, so that the regression task becomes linear in this space. The learning step estimates the 201 

parameters of the regression model according to a linear quadratic optimization problem, which 202 

http://www.esrl.noaa.gov/psd)
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can be solved efficiently. SVR also uses a robust error norm based on the principle of structural 203 

risk minimization, where both the error rates and the model complexity should be minimized 204 

simultaneously. Because SVR can efficiently capture complex non-linear relationships, it has been 205 

used in a variety of fields, and more specifically for  oceanographic, meteorological and climate 206 

impact studies (Aguilar-Martinez and Hsieh,  2009; Descloux et al., 2012; Elbisy, 2015; Neetu 207 

et al., 2020), as well as in marine bio-optics (Kim et al., 2014; Hu et al., 2018; Tang et al., 2019). 208 

Predictors and Chl are normalized by removing their respective average and dividing them 209 

by their standard deviations. Two SVR are trained over 1998-2010: one on ChlPISCES and one on 210 

ChlOC-CCI (Step A in Figure 1). This time period has been chosen as 1998 is the first complete year 211 

of the satellite ChlOC-CCI time-series, and 2010 is the last year available of the modelled ChlPISCES. 212 

The two resulting SVR schemes are applied on the NEMO-DFS5.2 physical predictors over 1979-213 

2010. Finally, the annual means and standard deviations initially removed are applied to perform 214 

the back transformation and reconstruct either ChlSvr-PISCES or ChlSvr-CCI (Step B in Figure 1). 215 

 216 

Figure 1 | Steps performed to train the SVR and reconstruct Chl time-series 217 

 218 
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Considering a Gaussian kernel, SVR only involves the selection of two hyperparameters: the 219 

penalty parameter C of the error term and the kernel coefficient gamma, driving the reduction of 220 

the cost function. C and gamma values are 1 and 0.1, respectively when the SVR is trained on 221 

ChlPISCES, and 2 and 0.3 when trained on ChlOC-CCI (See details in the Supplementary material, and 222 

Figure Supp 1A). Sensitivity tests to an increasing portion of the sample total number (from 0.2 223 

% to 9 % of the full dataset) used in the training process are performed (See Supplementary 224 

materials and Figure Supp 1B). The mean absolute error stabilizes for a sample number higher 225 

than 6 %, suggesting that the SVR skills don’t improve much afterward. This observation 226 

combined with computational limitations lead us to present the 9% experiment hereafter. 227 

2.6 Empirical Orthogonal Function analysis 228 

The SVR skills to reconstruct Chl interannual to decadal variations are investigated 229 

performing Empirical Orthogonal Function analysis on ChlPISCES, ChlOC-CCI, ChlSvr-PISCES and ChlSvr-230 

CCI. First, Chl data are centered and reduced (i.e., the monthly climatology is removed and the 231 

induced anomalies are divided by their standard deviations) to avoid an overly dominant 232 

contribution of high values on the analysis (Emery and Thompson, 1997) over the periods of 233 

interest (i.e., 1998-2010 or 1979-2010). A 5-month running mean is applied to focus on the 234 

interannual/decadal signal. The analysis is separately performed for the Atlantic, Pacific and 235 

Indian Oceans north of 40°S until 60°N, and for the 40°S-60°S region hereafter referred to as the 236 

Austral Ocean. Indeed, the large area covered by the Pacific Ocean and its dominant modes in 237 

climate variability (i.e., ENSO/IPO), could regionally dampen other modes of variability. Basin-238 

scale spatial maps are then gathered to a global one, refer to as EOF. The associated time-series 239 

refer to as the Principal Components (PCs). 240 
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3 Synthetic reconstruction from a physical-biogeochemical ocean 241 

model  242 

This section assesses the reliability and robustness of the SVR approach using a complete 243 

and coherent dataset extracted from a global simulation performed with a coupled physical-244 

biogeochemical ocean model. The SVR is first trained over 1998-2010 on ChlPISCES, and ChlSvr-245 

PISCES is reconstructed over 1979-2010. ChlPISCES and ChlSvr-PISCES are then compared over 32 years 246 

to evaluate the consistency of the proposed data-driven reconstruction scheme. 247 

3.1 Evaluation of ChlPISCES at global scale 248 

The ability of the NEMO-PISCES model to reproduce the satellite Chl over 1998-2010 is 249 

briefly presented here. Boreal winter and summer climatology from ChlPISCES compare reasonably 250 

well with those of ChlOC-CCI (Figures 2A vs. B, and C vs. D). The model correctly represents the 251 

main spatial patterns with, for instance, higher Chl and a stronger seasonal cycle at high latitudes, 252 

despite an overestimated biomass in the Southern Ocean (Launois et al., 2015). The model also 253 

captures low Chl in the subtropical gyres, with some underestimation. This discrepancy may be 254 

explained by the lack of acclimation dynamics to oligotrophic conditions or by the assumption of 255 

constant stoichiometry either in phytoplankton or in organic matter in the model (Aumont et al., 256 

2015; Ayata et al., 2013). The model underestimates Chl values in the equatorial Atlantic and 257 

Arabian Sea. In this latter region, mesoscale and submesoscale processes unresolved by the model 258 

have been shown to be of critical importance (Hood et al., 2003; Resplandy et al., 2011). Finally, 259 

the parameterization of nitrogen-fixing organisms not explicitly modelled in that PISCES version 260 

could explain the ChlPISCES underestimation in the western Pacific in austral summer (Dutheil et 261 

al., 2018). 262 
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High Chl are accurately simulated in the eastern boundary upwelling systems. In two of 263 

the three main High Nutrient Low Chlorophyll (HNLC) regions, i.e. the equatorial Pacific and the 264 

eastern subarctic Pacific, the model successfully reproduces the moderate ChlOC-CCI. However, the 265 

model overestimates ChlOC-CCI east of Japan because of an incorrect representation of the Kuroshio 266 

current trajectory. This common bias in coarse resolution models (i.e., Gnanadesikan et al., 2002; 267 

Dutkiewicz et al., 2005; Aumont and Bopp, 2006) is potentially related to too deep mixed layer 268 

simulated in winter inducing very strong spring blooms (Aumont et al., 2015). In the Southern 269 

Ocean, the third and largest main HNLC region, the model overestimates ChlOC-CCI values, 270 

especially during summer. However, the standard satellite algorithms that deduce Chl from 271 

reflectance tend to underestimate in situ observations by a factor of about 2 to 2.5, especially for 272 

intermediate concentrations (e.g., Dierssen and Smith, 2000; Kahru and Mitchell, 2010). It is to 273 

note that Chl in physical-biogeochemical coupled models is commonly overestimated in the 274 

Southern Ocean, and systematically underestimated in the oligotrophic gyres (Séférian et al., 275 

2013).  276 
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 277 

Figure 2 | Surface seasonal mean of Chl (mg.m-3) over 1998-2010 derived from satellite (left panels) and the PISCES 278 

model (right panels), in October-November-December (A-B) and April-May-June (C-D). 279 

 280 

The 1st mode of the EOF analysis performed on interannual Chl displays close percent of 281 

total variance for ChlOC-CCI and ChlPISCES (16.6% vs. 21.1%, respectively). Their PCs in the Pacific 282 

Ocean are well correlated with the MEI (r = 0.71 and 0.89 with p=0.0015 and p<0.001, 283 

respectively; Figure 3C). PCs show the greatest positive values in January 1998 during the peak 284 

of the strong 1997/1998 El Niño event and the greatest negative values during the following La 285 

Niña beginning of 1999. The associated EOFs display a Chl horseshoe pattern (Figure 3A and 286 

3B), reminiscent of the ENSO pattern on SST from NEMO (SSTNEMO; Figure Supp 2; Messie 287 

and Chavez, 2012). While the tropical Pacific experiences a Chl decrease during El Niño events, 288 

the North and South Pacific display a Chl increase, and inversely during La Niña. This typical 289 

ENSO pattern is also related to remote Chl anomalies outside the Pacific induced by atmospheric 290 

teleconnections, such as a Chl decrease in the tropical North Atlantic and in the South Indian Ocean 291 
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during El Niño. Although the Atlantic and Indian Ocean’s PCs are not correlated with the MEI 292 

(0.14 and 0.05, respectively), their EOFs are similar to those obtained from analysis performed at 293 

global scale (vs. basin scale here) and which have been largely discussed in the past (e.g., 294 

Behrenfeld et al., 2001, 2006; Chavez et al., 2011; Yoder and Kennelly, 2003). ChlPISCES 295 

reasonably well captures the first mode of ChlOC-CCI interannual variability over 1998-2010 in the 296 

Pacific and Atlantic Oceans, with 0.89 and 0.77 (p<0.001) correlations between their PCs, 297 

respectively, but not in the Indian Ocean, where the PCs correlation is far weaker (0.13) and 298 

insignificant (Figure 3C-E). 299 

 300 
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Figure 3 | 1st mode of basin-scale EOFs of interannual A) ChlOC-CCI and B) ChlPISCES, and their corresponding PCs over 301 

1998-2010 in the C) Pacific, D) Indian and E) Atlantic Oceans. ChlOC-CCI and ChlPISCES PCs are represented by the black and blue 302 

lines, respectively. The MEI index is reported in red (right y-axis) on C. 303 

 304 

3.2 Evaluation of the SVR method trained on synthetic data only 305 

3.2.1 Statistical performances 306 

A first evaluation of the SVR applied on the synthetic dataset (i.e., both physical and 307 

biogeochemical model outputs) is provided for the dedicated subset (i.e., 20% of 9% of the total 308 

data set) over the 1998-2010 training time period. ChlPISCES and ChlSvr-PISCES datasets display a 309 

determination coefficient of 0.95 and a root mean square error (RMSE) of 0.22 (see Figure Supp 310 

1C), indicating at first glance a very good ability of the SVR to reconstruct ChlPISCES. The SVR 311 

reconstruction is very accurate when comparing the full modelled and reconstructed Chl for (i) the 312 

1998-2010 training time period, (ii) the 1979-1997 fully independent dataset and (iii) the 1979-313 

2010 whole dataset, both at global and basin scales (Table 2 and Figure 4). For each oceanic 314 

basin, determination coefficients between both datasets exceed 0.85, except in the Austral Ocean 315 

where they get down to 0.71. RMSE are lower than 0.14 and associated with a slope ranging from 316 

0.84 in the Austral to 0.97 in the Atlantic (Figure 4). In addition, the quality of the reconstructed 317 

ChlSvr-PISCES over the 1979-1997 independent time period is only marginally degraded compared 318 

to the 1998-2010 training period or the 1979-2010 full period.  319 

 320 

 321 

 322 
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Table 2 | Statistical performances between ChlPISCES vs. ChlSvr-PISCES normalized monthly anomalies for the global ocean 323 

and the 4 oceanic basins over the 1998-2010, 1979-1997 and the whole 1979-2010 time period. The determination coefficient, 324 

NRMSE and the slope of the ChlPISCES vs. ChlSvr-PISCES regression line are indicated. 325 

 1998-2010 1979-1997 1979-2010 

 R2 RMSE slope 

 

number of 

bins 

R2 RMSE slope number of 

bins 

R2 RMSE slope number of 

bins 

Global 

60°S-60°N 

0.96 0.1 0.95 4 487 457 0.94 0.12 0.95 6 562 272 0.94 0.11 0.95 11 049 729 

Pacific 0.92 0.1 0.93 1 945 173 0.88 0.12 0.9 2 843 501 0.9 0.11 0.91 4 788 674 

Indian 0.86 0.11 0.85 612 612 0.85 0.11 0.89 895 356 0.85 0.11 0.87 1 507 968 

Austral 0.81 0.06 0.8 1 026 876 0.71 0.08 0.75 1 506 260 0.76 0.07 0.77 2 533 136 

Atlantic 0.96 0.12 0.96 902 796 0.94 0.14 0.94 1 317 155 0.94 0.13 0.95 2 219 951 

 326 

 327 

Figure 4 | Scatter plots of ChlPISCES vs. ChlSvr-PISCES normalized monthly anomalies over 1979-1997, A-D) for each basin 328 

and E) at global scale between 60°S and 60°N. The ChlPISCES vs. ChlSvr-PISCES and the 1:1 regression lines are plotted as the red and 329 

black lines, respectively. The figure is color-coded according to the density of observations.  330 

 331 

3.2.2 Evaluation of the reconstructed Chl spatio-temporal variability  332 

The Normalized Root-Mean-Square-Error (NRMSE, i.e. RMSE normalized by the average 333 

of Chl used to train the SVR) between ChlPISCES and ChlSvr-PISCES filtered with a 5-month running 334 
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mean (to discard the high frequency signal) shows an error ranging between 10 and 20% over 335 

1998-2010 (Figure 5A). Their correlation exceeds 0.7 (p<0.001) over most of the global ocean 336 

(Figure 5B). At mid-latitudes they are generally larger than 0.8, and they range between 0.6 and 337 

0.9 in the equatorial Pacific. This accurate reconstruction demonstrates that a strong relationship 338 

exists between physical processes and Chl at global scale. However, the reconstructed Chl field 339 

can be regionally less accurate. For instance, the edges of the oligotrophic gyres (delimited by the 340 

0.1 mg.m-3 contour in Figure 5A) exhibit the highest NRMSE and lowest correlations. Large 341 

NRMSE are also evident in the Gulf Stream region while the western tropical Atlantic exhibits 342 

lower correlations than 0.5.  343 

Those discrepancies could be due first to the zooplankton grazing pressure (top-down 344 

control) which is often overestimated in PISCES simulations. It results in an underestimated 345 

nanophytoplankton biomass in the oligotrophic gyres, emphasized along their edges (Laufkötter 346 

et al., 2015). Because the top-down control is not accounted for by the SVR, Chl variability 347 

induced by the overgrazing in these areas might not be captured. Second, in the equatorial Pacific 348 

Ocean, a minimum iron threshold value has been imposed (0.01 nmol.L-1) in the biogeochemical 349 

model. Without that threshold Chl is too low on both sides of the equator, resulting in a strong 350 

accumulation of macronutrients and a spurious poleward migration of the subtropical gyre 351 

boundaries (Aumont et al., 2015). While the existence of such a threshold suggests that a minor 352 

but regionally important source of iron is missing in PISCES, it also suggests the inability of the 353 

SVR in reproducing ecosystem dynamics related to such artificial input of micro-nutrient. Finally, 354 

atmospheric input of iron through desert dust deposition is known to be stronger in the Atlantic 355 

than in the Pacific Ocean (Jickells et al., 2005). Such signal cannot be accounted for by the SVR 356 
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with the given predictors, which might (with meso – and sub-mesoscale activities) explain the 357 

higher NRMSE in the north western Atlantic than in the north-western Pacific. 358 

As expected, areas of high NRMSE and low correlations between ChlPISCES and ChlSvr-359 

PISCES identified over 1998-2010 (Figure 5, left column) extend and strengthen over 1979-1997 360 

(Figure 5, right column). Indeed, the correlations significantly decrease in the tropical Pacific 361 

while they slightly decrease in mid-latitudes between the two periods. Correlations remain high 362 

and NRMSE low in the North-West Pacific, North and South-West Atlantic, and South Indian 363 

Oceans as well as over a large part of the Southern Ocean providing confidence for analyses 364 

extended beyond the training period of the SVR. 365 

 366 

Figure 5 | A-B) NRMSE (in %) and C-D) correlation between ChlPISCES vs. ChlSvr-PISCES after applying a 5 month-running 367 

mean on both time-series. These 2 diagnostics are calculated over 1998-2010 (left column) and 1979-1997 (right column). Contours 368 

on the upper panels show their respective 1998-2010 Chl time average (every 0.1 mg.m-3). 369 

 370 

The analysis is now extended to the 1979-2010 time-period to investigate the skills of the 371 

SVR in reproducing phytoplankton interannual/decadal cycles. The 1st EOFs of ChlPISCES vs. 372 
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ChlSvr-PISCES have the same sign of variability over 72% of the global ocean (Figures 6A-B). Both 373 

EOFs are similar in the Pacific and Atlantic Oceans and their PCs are highly correlated over 1979-374 

2010 (Table 3; Figures 6C,6E). In the Pacific, these EOFs strongly resemble the typical horseshoe 375 

pattern of IPO with SST anomalies of opposite polarities in the tropical and extra-tropical Pacific 376 

regions (Figure Supp 3). Correlations between ChlPISCES and ChlSvr-PISCES 1st PCs and the IPO 377 

index are high (0.94 and 0.95 with p<0.001, respectively; blue and black vs. red lines in Figure 378 

6C). It highlights that the 1st mode of Chl variability in the Pacific is strongly driven by the IPO. 379 

In the Atlantic, both PCs are strongly correlated with the AMO (-0.8 for ChlSvr-PISCES and -0.85 for 380 

ChlPISCES with p<0.001; Figure 6E). The AMO shifts from a cold to a warm phase in the mid-381 

1990’s (Figure Supp3), and is associated with a decrease in Chl (Figures 6A-B).  382 

The 1st two modes explain a similar percent variance for ChlPISCES and ChlSvr-PISCES in the 383 

four oceanic basins, with the exception of the 1st mode in the Atlantic Ocean (see Table 3). In this 384 

basin ChlSvr-PISCES percent variance is underestimated by a factor 2 compared to ChlPISCES, while 385 

their 1st EOFs and PCs are well correlated. One explanation might be that the AMO is the climate 386 

cycle with the longest period (80 years) when compared to the IPO. Thus, it might be the most 387 

difficult signal to reproduce as the SVR is trained over a relatively “short” 12 years’ time-period.  388 

The agreement between ChlPISCES and ChlSvr-PISCES 1st EOFs is not as good in the Austral 389 

and Indian Oceans when compared to the Atlantic and Pacific Oceans (Table 3 and Figures 6A-390 

B). In the Indian Ocean, the ChlPISCES EOF exhibits a maximum positive variability along the 391 

western Arabian Sea, while it is located north-east of Madagascar for ChlSvr-PISCES. In the Austral 392 

Ocean, ChlPISCES and ChlSvr-PISCES EOFs roughly follow a zonal distribution.  393 

A strong correspondence between SST and Chl has been previously reported over a large 394 

part of the global ocean (Behrenfeld et al., 2006; Martinez et al., 2009; Siegel et al., 2013), 395 
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demonstrating the close interrelationship between ocean biology and climate variations. 396 

Consequently, it is not surprising to observe strong correlations between ChlPISCES or ChlSvr-PISCES 397 

and climatic indexes mostly built on SST anomalies (Figure Supp 3). 398 

Table 3 | Percent variance explained by the first two modes of the Empirical Orthogonal Function analysis performed on 399 

ChlPISCES and ChlSvr-PISCES for each oceanic basin over 1979-2010. The correlation (r) between the ChlSvr-PISCES and ChlPISCES PCs 400 

is also reported with a significant level of p<0.001 (*) and p<0.002 (**). 401 

 1st mode  2nd mode 

 ChlPISCES ChlSvr-PISCES r ChlPISCES ChlSvr-PISCES r 

Pacific 19.7 23.5 0.95* 7.8 6.7 0.6* 

Indian 13.1 14.1 0.58* 10.5 9.4 0.78* 

Austral 13.8 12.1 0.62* 11 8.4 0.47** 

Atlantic 23.2 13.9 0.81* 9.6 10.9 0.73* 

 402 
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 403 

Figure 6 | 1st mode of basin-scale EOFs of interannual A) ChlPISCES and B) ChlSvr-PISCES, and their corresponding PCs 404 

over 1979-2010 in the C) Pacific, D) Indian E) Atlantic and F) Austral Oceans (black and blue lines, respectively). Climate indices 405 

are reported in red (right y-axis). 406 

 407 
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The 2nd mode of variability of ChlPISCES is also well reproduced by the SVR. The percent 408 

variances are close (Table 3) as well as their spatio-temporal variability in the four oceanic basins 409 

(Figure Supp 4). The high correlations between the first two modes of ChlPISCES vs. ChlSvr-PISCES 410 

highlight the SVR ability to relatively well reproduce the ChlPISCES low-frequency variability.  411 

4 Application to satellite radiometric observations 412 

4.1 SVR statistical performances and sensitivity tests 413 

In this section, the SVR uses the same physical predictors from NEMO-DFS5.2 as in 414 

Section 3, but it is trained on satellite radiometric observations (e.g., ChlOC-CCI). The same 415 

procedure is followed (See Figure Supp 5A-B). A first validation is performed for 20% of 9% of 416 

the full data set and over the 1998-2010 training period showing a high determination coefficient 417 

of 0.87 and RMSE of 0.37 between ChlOC-CCI and ChlSvr-CCI (Figure Supp 5C). 418 

As expected, the regression lines of ChlOC-CCI vs. ChlSvr-CCI for each oceanic basin and at 419 

global scale are farther away from the 1:1 line than for the synthetic study over the training period, 420 

but still remain close (higher slope than 0.8, except in the Austral Ocean; Figure 7). The SVR 421 

trained on NEMO-DFS5.2 predictors vs. satellite Chl is expected to be less efficient than the SVR 422 

trained on the coherent NEMO-DFS5.2-PISCES physical-biogeochemical dataset. Some of the 423 

biological interactions/processes (such as the diversity of the prey-predator relationships, the 424 

complexity of photoacclimation phenomena) are not yet optimally formulated by model equations 425 

inducing that Chl derived from numerical modelling is oversimplified compared to the complexity 426 

of the real ocean. Not to mention that satellite Chl may itself be partially affected by other 427 

components that are not Chl, such as colored dissolved organic matter (CDOM; Morel and Gentili, 428 

2009) and suspended particulate matter (SPM). Phytoplankton can also adjust their intracellular 429 
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Chl according to light and nutrient availability (e.g., Laws and Bannister, 1980; Behrenfeld et al., 430 

2015). The induced Chl changes are no longer ascribed to changes in biomass. All these signatures 431 

on satellite Chl could explain ChlSvr-CCI underestimation. Nevertheless, correlations between 432 

ChlSvr-CCI and ChlOC-CCI remain high over the training time period (0.92, 0.94 and 0.93 for the 433 

Indian, Pacific and Atlantic Oceans, respectively, Figure 7).  434 

 435 

Figure 7 | Same as Figure 4 for ChlOC-CCI vs. ChlSvr-CCI normalized monthly anomalies over 1998-2010. 436 

 437 

The NRMSE between ChlOC-CCI vs. ChlSvr-CCI is lower than 20% over most of the global 438 

ocean (Figure 8A). Correlations higher than 0.9 (p<0.001) are evident over large subtropical areas 439 

in the Atlantic, Indian and Pacific Oceans as well as in the Equatorial Pacific (Figure 8B). 440 

Interestingly, the SVR generally does a better job at reconstructing the satellite Chl than the 441 

modeled one (Figure 5A-B vs. Figure 8). NRMSE are higher at high latitudes and along the 442 

oligotrophic area boundaries, although to a less extent than for ChlPISCES. Because ChlOC-CCI can 443 

only be retrieved under clear sky conditions, gaps in satellite observations (especially during 444 
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wintertime) likely alters the SVR learning and could explain such a degradation of ChlSvr-CCI as 445 

moving towards high latitudes.  446 

 447 

Figure 8 | A) NRMSE (in %) and B) correlation between ChlOC-CCI vs. ChlSvr-CCI over 1998-2010 after applying a 5 448 

month-running mean on both time-series. Contours on the NRMSE show the 1998-2010 ChlOC-CCI time average (every 0.1 mg.m-449 

3). Correlations <0.73 and 0.6 are significant with a p-value<0.001 and 0.01, respectively. 450 

 451 

4.2 Reconstruction of satellite Chl interannual to decadal variability and trends 452 

The SVR ability to replicate ChlOC-CCI interannual variability is now investigated over 453 

1998-2010 (Figure 9). In the Pacific Ocean, ChlOC-CCI and ChlSvr-CCI 1st EOFs are close (Figure 454 

9A vs. 9B), their PCs are highly correlated (r=0.89, p<0.001; Figure 9C), and their percent 455 

variance are similar (Table 4). As presented in Section 3.1, this mode of Chl variability can be 456 

attributed to ENSO, given their EOFs pattern as well as their PCs highly correlated with the MEI 457 

(rOC-CCI/MEI=0.71 and rSvr-CCI/MEI=0.91, with p=0.0015 and p<0.001, respectively). Interestingly, 458 

ChlSvr-CCI EOFs are closer to ChlOC-CCI than ChlPISCES in several areas such as in the north-western 459 

Pacific, the south-western Atlantic and the Indian Ocean from Madagascar to the western coast of 460 

Australia (Figures 9A-B vs. Figure 3B). Consistently, correlations between ChlOC-CCI and ChlSvr-461 

CCI PCs in the three basins and for the 1st two modes are higher than between ChlOC-CCI and 462 

ChlPISCES (Table 4).  463 
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Table 4 | Percent variance explained by the first two modes of the Empirical Orthogonal Function analysis performed on 464 

ChlOC-CCI, ChlSvr-CCI and ChlPISCES for each oceanic basin over 1998-2010. The correlation (r) between ChlOC-CCI vs. ChlSvr-CCI and 465 

between ChlOC-CCI vs. ChlPISCES is also reported with a significant level of P<0.001 (*) and P<0.02 (**). 466 

 
1st mode 2nd mode 

% of variance r Chl OC-CCI vs. % of variance r Chl OC-CCI vs. 

ChlOC-CCI ChlSvr-CCI ChlPISCES ChlSvr-CCI ChlPISCES ChlOC-CCI ChlSvr-CCI ChlPISCES ChlSvr-CCI ChlPISCES 

Pacific 16.6 23.7 21.1 0.89* 0.89* 10.7 12.5 13.6 0.81* 0.52** 

Indian 16.9 16.6 17.3 0.57** 0.13 11.8 12.2 15.1 0.48 0.36 

Atlantic 14 17.9 19.4 0.85* 0.77* 10.7 9.1 12.5 0.82* 0.59** 

 467 

 468 
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Figure 9: 1st mode of basin-scale EOFs of interannual A) ChlOC-CCI and B) ChlSvr-CCI and their associated PCs over 1998-469 

2010 in the C) Pacific, D) Indian and E) Atlantic Oceans as the black and blue lines, respectively (left y-axis). The climate indices 470 

are reported in red on the right y-axis. 471 

 472 

ChlOC-CCI linear trends over 1998-2010 exhibit large areas of increase or decrease (red and 473 

blue areas in Figure 10A, respectively). Productive regions at high latitudes and along the 474 

equatorial and upwelling areas generally exhibit positive ChlOC-CCI trends, albeit many underlying 475 

regional nuances. Contrastingly, trends are generally negative in the center of the gyres. These 476 

regional trends are consistent with those extracted from the first 13 years of the SeaWiFS record 477 

and discussed by Siegel et al. (2013) (see their Figures 5b and 8b). The negative trends in the 478 

oligotrophic gyres were also reported by Signorini et al. (2015) who attributed this behavior to 479 

MLD shallowing trends. Surface water density variability induced by changes in temperature and 480 

salinity, combined with wind stirring, are effective drivers of vertical mixing, which in turn control 481 

the renewal of nutrients from the rich-deep layers toward the euphotic zone. Thus, shallower MLD 482 

would decrease nutrient uplift and phytoplankton growth in the oligotrophic areas. 483 

ChlSvr-CCI trends agree qualitatively well with those of ChlOC-CCI at global scale (Figures 484 

10B vs. 10A, respectively). Indeed, decline of ChlSvr-CCI can be observed in the center of the gyres, 485 

while outside ChlSvr-CCI generally increases in a similar way to ChlOC-CCI. ChlSvr-CCI accurately 486 

captures the largest ChlOC-CCI increase observed in the Southern Ocean along the Antarctic 487 

Circumpolar Current. While Gregg and Casey (2004) reported a substantial negative bias in the 488 

SeaWiFS data for this region when compared to in situ observations, which could hamper the 489 

reliability of satellite trends discussed in this area (e.g. Siegel et al., 2013), the SVR remains able 490 

to reproduce the positive observed trend. Despite qualitative spatial agreements, it is noteworthy 491 
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that the SVR underestimates by half the magnitude of the satellite trend (see scales in Figure 10A 492 

vs. 10B).  493 

Interestingly, trends in ChlPISCES generally differs from ChlOC-CCI (Figure 10C). This is 494 

striking for the North Pacific and Atlantic high latitudes, but also in the equatorial Atlantic and 495 

Arabian Sea with opposite trends when compared with ChlOC-CCI and ChlSvr-CCI, and in a more 496 

mitigated manner in the Austral Ocean.  497 

 498 

Figure 10 | Linear trends (in % year −1 ) calculated over 1998-2010 from the monthly A) ln(ChlOC-CCI), B) ln(ChlSvr-CCI), 499 

C) ln(ChlPISCES). Note that the scale is divided by 2 for ln(ChlSvr-CCI).  500 

 501 
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ChlSvr-CCI is also compared with the only historical consistent dataset built by Antoine et 502 

al. (2005) who reanalyzed ocean color time series from CZCS (1979–1983) and SeaWiFS (1998–503 

2002). A 22% global mean increase of Chl between the two era was reported. It was mainly due 504 

to large increases in the intertropical areas and to a lesser extent in higher latitudes, while 505 

oligotrophic gyres displayed declining concentrations (Figure 11A). SST from the SODA 506 

reanalysis was used as a proxy of ocean stratification and opposite Chl and SST changes over 60% 507 

of the ocean between 50°S and 50°N was reported (light blue and yellow in Figure 11B, adapted 508 

from Martinez et al., 2009). This inverse relationship was used to hypothesized that multidecadal 509 

changes in global phytoplankton abundances were related to basin-scale oscillations of the ocean 510 

dynamics. Briefly, SST changes were related to a regime shift of the PDO (although the use of the 511 

basin-scale IPO would have been more appropriate) from a warm to a cold phase in the Pacific 512 

and Indian Oceans leading to an increase of Chl, and inversely in the Atlantic Ocean with a regime 513 

shift from a cold to a warm phase of the AMO leading to a Chl decrease. 514 

Observed Chl changes over the last decades are accurately reproduced by ChlSvr-CCI, 515 

including a Chl increase in the equatorial Pacific and the southern tropical Indian Oceans, as well 516 

as a Chl decline in both the Atlantic and Pacific oligotrophic gyres (Figure 11C). However, the 517 

magnitude of the SVR reconstructed Chl is underestimated (note that the Chl ratio is multiplied by 518 

2 in Figure 11C to allow the comparison with Figure 11A). On average, the inverse relationship 519 

between ChlSvr-CCI and SSTNEMO (Figure Supp 4) occurs over 69.4% of the global ocean between 520 

50°S and 50°N in a similar way to that reported by Martinez et al. (2009), especially in the Pacific 521 

Ocean (see Figure 11D vs. Figure 11B). In the Indian Ocean, although Chl mainly increases in 522 

both studies, it is here associated with a SST decrease. Interestingly, this inverse Chl-SST 523 

relationship in the Indian Ocean (yellow area in Figure 11D) was reported in Behrenfeld et al. 524 
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(2006) over the SeaWiFS era, suggesting that the SST dataset used in Martinez et al. (2009) may 525 

have decadal discrepancies for this region. 526 

 527 
Figure 11 | Chl change from the CZCS (1979–1983) to the SeaWiFS (1998–2002) era, expressed as the logarithm of the 528 

ratio of the average values over the two time periods A) from satellite Chl adapted from Antoine et al. (2005), C) from ChlSvr-CCI. 529 

Note that this ratio is multiplied by 2 to fit the same color bar as in A. Maps of areas with concomitant parallel or opposite changes 530 

of Chl and SST B) from Chl satellite and SST from the SODA reanalysis adapted from Martinez et al. (2009) and D) from ChlSvr-531 

CCI and SSTNEMO. The respective SST zero differences are shown on the maps as a thick black curve. 532 

 533 

In their study, Martinez et al. (2009) analyzed two 5-year time periods apart each other by 534 

15 years. They suggested that averaging observations separately over the two time-periods may 535 

have dampen the effect of interannual variability and reveal the decadal one. Most of the changes 536 

observed between the time periods covered by the two satellites are here confirmed based on the 537 

reconstructed ChlSvr-CCI. However, the continuous 30-year time series of ChlSvr-CCI provides new 538 

insights on the observed regime shifts (Figure 12). In the Pacific Ocean, the 1st EOF of ChlSvr-CCI 539 

(Figure 12A) is close to the Chl spatial patterns obtained from the CZCS to SeaWiFS era (Figure 540 

11C) and the PC remains highly correlated with the IPO over 1979-2010 (r=0.94 with p<0.001, 541 

Figure 12B). The Chl increase in the Indian Ocean, north-east of Madagascar toward the west 542 
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coast of Australia, between the 1980’s and the 2000’s also appears on the ChlSvr-CCI EOF. These 543 

temporal changes might also be related to the IPO variability (correlation between the IPO index 544 

and ChlSvr-CCI PC =0.6, p<0.001; Figure 12C).  545 

In the Atlantic Ocean, CZCS-SeaWiFS Chl and ChlSvr-CCI 1st EOFs also share some 546 

similarities, including a decrease of Chl in the subtropical gyres and an increase in the 547 

equatorial/tropical regions. The associated PC (Figure 12E), exhibits a shift between 1979-1983 548 

and 1998-2002 consistently with Figure 2C of Martinez et al. (2009). In this latter study, this 549 

change is attributed to a regime shift of the AMO. However, the AMO index is not correlated with 550 

the 1st ChlSvr-CCI PC (r=0.03, p=0.43) but rather with the 2nd mode (r = 0.43 with p=0.003), likely 551 

explaining the spatial discrepancies in Figures 11A vs. 11C. Although the detailed analysis of Chl 552 

decadal variability is beyond the scope of the present study, these initial findings underscore the 553 

importance of continuous time series at regional/global scales to combine spatial and temporal 554 

information’s and properly investigate Chl long-term variability. 555 
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 556 

Figure 12 | A) 1st mode of basin-scale EOFs of interannual ChlSvr-CCI over 1979-2010 and their corresponding PCs in the 557 

B) Pacific (23.2% of the total variance), C) Indian (15.2% of the total variance), D) Atlantic (13.5% of the total variance) and E) 558 

Austral Oceans (11.4% of the total variance). IPO is reported in red (right y-axis). 559 

 560 
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5 Summary and conclusions 561 

In this paper, we assess the efficiency of a machine learning statistical approach based on 562 

support vector regression (SVR) to reconstruct surface Chl from oceanic and atmospheric 563 

variables. We first apply this strategy on self-consistent global dataset gathering physical 564 

predictors and Chl data simulated by a coupled physical-biogeochemical model simulation. Our 565 

results indicate that this nonlinear method accurately hindcasts interannual-to-decadal variations 566 

of the phytoplankton biomass simulated at global scale by the model, except at the boundaries of 567 

the subtropical gyres where the strong top-down control of zooplankton grazing in the numerical 568 

model is not accounted for by the SVR. Likewise, this statistical approach cannot yet reproduce 569 

Chl variability induced by nutrient inputs that are not directly related to our selected physical 570 

predictors, such as atmospheric iron deposit.  571 

The SVR was then trained on satellite Chl observations. It accurately reproduces observed 572 

interannual Chl variations in most regions, including El Niño signature in the tropical Pacific and 573 

Indian Ocean as well as the main modes of Atlantic Chl variability. Despite an amplitude 574 

underestimation by half, it also accurately captures spatial patterns of Chl trends over the satellite 575 

period, with a Chl increase in most extratropical regions and a Chl decrease in the center of the 576 

subtropical gyres, as well as their changes between the CZCS and SeaWiFS era, while the model 577 

simulation generally fails to capture these long-term trends. Interestingly, while ChlPISCES 578 

magnitude is closer to ChlOC-CCI than ChlSvr-CCI, interannual variability and spatial trends of 579 

ChlPISCES are farther than ChlSvr-CCI to ChlOC-CCI. Equations representing the processes that govern 580 

the evolution of biogeochemical variables in a biogeochemical model are obviously less complex 581 

than the ones at play in the real ocean. We thus anticipated the modeled Chl to be easier to 582 

reconstruct than the satellite one. Additional complications were also expected through the 583 
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reconstruction of satellite Chl from the model oceanic and atmospheric predictors, which may be 584 

less realistic than physical parameters derived from satellite measurements. As a consequence, the 585 

SVR is indeed slightly less efficient at reproducing the major satellite Chl patterns compared to 586 

the model ones but is surprisingly more efficient at capturing observed Chl temporal variations. 587 

This results in a normalized root mean square error generally weaker when reconstructing satellite 588 

data compared to the model one, although the predictors used are identical. 589 

Machine learning techniques are powerful tools to statistically model non-linear processes. 590 

They require a significant amount of data to be trained and are well-suited to analyze remote 591 

sensing data. While several attempts have been made over the last decade to retrieve oceanic Chl 592 

content (Kwiatkowska and Fargion, 2003; Zhan et al., 2003; Camps-Valls et al., 2009; Jouini et 593 

al., 2013; Blix and Eltoft, 2018), the present work is one of the first attempt to use such machine 594 

learning techniques to reconstruct past time series of phytoplankton biomass at global scale. To 595 

our knowledge only Schollaert et al. (2017) tried to reconstruct the Chl multi-decadal variability 596 

in the tropical Pacific using a canonical correlation analysis built only from SST and SSH. Our 597 

SVR approach leads to higher correlations between reconstructed and satellite Chl in the tropical 598 

Pacific, highlighting the strength of such non-linear machine-learning methods with multiple 599 

predictors. These results emphasize deep learning approaches as promising tools to reconstruct 600 

multidecadal Chl time series in the global ocean, based on the knowledge of physical conditions. 601 

The successful use of surface variables only in reproducing Chl variability which is influenced by 602 

3D-processes is here clearly noteworthy, and investigation of variable importance in the Chl 603 

reconstruction will deserve some future insights.  604 

An obvious short-term perspective of the current study is to train a wider range of such 605 

statistical models with physical predictors derived from surface satellite observations but also 606 
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observations within the water column which could be derived from Argo data (i.e., mixed layer 607 

and thermocline depth). Including complementary variables such as satellite particulate 608 

backscattering coefficient (as a proxy of the Particulate Organic Carbon) in the 609 

training/reconstruction process should also be considered. It would allow to investigate the extent 610 

to which the Chl variability reflects changes in phytoplankton biomass vs. cellular changes in 611 

response to light (e.g., Siegel et al., 2005; Westberry et al., 2008; Behrenfeld et al., 2015). The use 612 

of longitude and latitude as predictors may limit the ability to capture long-term trends in the 613 

evolution of the biogeochemical province boundaries, such as the expansion of the oligotrophic 614 

areas (Irwin and Oliver, 2009; Polovina et al., 2008; Staten et al. 2018). Thus, exploring deep 615 

learning schemes which may not explicitly depend on longitude and latitude, especially 616 

convolutional representations (Lecun et al., 2015), are particularly appealing. Further efforts need 617 

also to be dedicated to alleviate the issue of the underestimation of the long-term Chl trends. For 618 

instance, it would be noteworthy to investigate secular trends such as the 30% Chl decrease 619 

reported at global scale over the last century by Boyce et al. (2010), which remains largely debated 620 

(Mackas, 2011; McQuatters-Gollop et al., 2011; Rykaczewski and Dunne, 2011). 621 

Whatever the methodology used (i.e. numerical models, satellite or in situ observations), 622 

they all have both advantages and drawbacks. In situ observations are considered as ground truth 623 

(with some errors/uncertainties depending for instance on the field measurement protocols), but 624 

are heterogeneous in time and space. Satellite Chl data provide a spatio-temporal synoptic view 625 

but they have their own measurements issues and uncertainties (e.g., sensor radiometric and 626 

spectral properties, atmospheric corrections, water constituents and their optical properties) and 627 

are limited to 20 years in their record length. Biogeochemical models are useful tools to (i) 628 

interpolate or extrapolate in time and space biogeochemical tracers such as Chl and to (ii) 629 
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investigate complex three-dimensional processes responsible for their variations. However, those 630 

models suffer from biases and are farther from in situ data than satellite observations. They are 631 

also not straightforward to run and require large computing resources. Thus, machine learning 632 

statistical schemes could be seen as a complementary tool to the “interpolate/extrapolate” use of 633 

biogeochemical models in providing a long-term synoptic surface view built from observations 634 

(being aware of the uncertainties associated with the variables used in the training schemes). Such 635 

methods, applied on observations only, will then provide an independent tool that may either 636 

question or enforce conclusions drawn from model simulations. Comparison between both 637 

methods and observations will also help to improve biogeochemical models with acute 638 

quantification of model biases and identification of the most meaningful predictors that may point 639 

to missing processes in biogeochemical models. As a conclusion, machine learning is a versatile 640 

tool that, associated with biogeochemical models and observations, may greatly enhance our view 641 

of global biogeochemistry. 642 

 643 

Acknowledgments, Samples, and Data  644 

This work was supported by CNES under contract n°160515/00 within the framework of 645 

the PhytoDev project. We thank the two reviewers who helped to improve this manuscript. 646 

Authors contribution 647 

EM led the project, analyzed results and wrote the 1st draft of the manuscript. TG provided 648 

physical model outputs. TG, ML provided support in the analysis and the writing of the 649 

manuscript. CF processed the machine learning approach with support from R. Sauzede. R. Fablet 650 

provided feedbacks on the statistical approach. All authors contributed to the development of the 651 

manuscript and provided feedbacks throughout its many stages of preparation. 652 

 653 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 39 

 654 

References 655 

Aguilar-Martinez, S., and Hsieh, W. W. (2009). Forecasts of tropical pacific sea surface 656 

temperatures by neural networks and support vector regression. Int. J. Oceanog., 13, 657 

doi:10.1155/2009/167239.  658 

Antoine, D., Morel, A. , Gordon, H. R., Banzon, V. F., and Evans, R. H. (2005). Bridging ocean 659 

color observations of the 1980s and 2000s in search of long-term trends. J. Geophys. Res. 660 

Oceans 110, C06009.  661 

Aumont, O., and Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization 662 

studies. Global Biogeochemical Cycles, 20, GB2017, doi:10.1029/2005GB002591, 2006. 663 

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M. (2015). PISCES-v2: an ocean 664 

biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev., 8, 2465–2513, 665 

2015, doi:10.5194/gmd-8-2465-2015. 666 

Ayata, S. D., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J., Tagliabue, A., and Bernard, 667 

O. (2013). Phytoplankton growth formulation in marine ecosystem models: should we take 668 

into account photoacclimation and variable stoichiometry in oligotrophic areas? J. Marine 669 

Syst., 125, 29–40, doi:10.1016/j.jmarsys.2012.12.010, 2013. 1433. 670 

Banse, K., and English, D.C. (2000). Geographical differences in seasonality of CZCS-derived 671 

phytoplankton pigment in the Arabian Sea for 1978-1986. Deep-Sea Res. II, 47: 1623-1677. 672 

Beaulieu, C., Henson, S. A., Sarmiento, J. L., Dunne, J. P., Doney, S. C., Rykaczewski, R. R., and 673 

Bopp, L. (2013). Factors challenging our ability to detect long-term trends in ocean 674 

chlorophyll. Biogeosciences, 10(4), 2711-2724. 675 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 40 

Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S. O., Tucker, C. J., et 676 

al. (2001). Biospheric primary production during an ENSO transition. Science, 291(5513), 677 

2594-2597. 678 

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L. et al. (2006). 679 

Climate driven trends in contemporary ocean productivity. Nature, 444(7120), 752–755.  680 

Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., et al. 681 

(2015). Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 6, 682 

323–330. doi:10.1038/nclimate2838. 683 

Belo Couto, A., Brotas, V., Mélin, F., Groom, S., and Sathyendranath, S. (2016). Inter-comparison 684 

of OC-CCI chlorophyll-a estimates with precursor data sets. International Journal of Remote 685 

Sensing, 37(18), 4337-4355. 686 

Blix, K., and Eltoft, T. (2018). Machine Learning Automatic Model Selection Algorithm for 687 

Oceanic Chlorophyll-a Content Retrieval. Remote Sensing, 10(5), 775. 688 

Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M. (2005). Response of diatoms 689 

distribution to global warming and potential implications: A global model study. Geophys. 690 

Res. Lett., 32(19). 691 

Boyce, D. G., Lewis, M. R., and Worm, B. (2010). Global phytoplankton decline over the past 692 

century. Nature, 466(7306), 591-596. 693 

Campbell, J. W., and Aarup, T. (1992). New production in the North Atlantic derived from 694 

seasonal patterns of surface chlorophyll. Deep-Sea Res. Prt A., 39(10), 1669-1694. 695 

Camps-Valls, G., Muñoz-Marí, J. L., Gómez-Chova, K. R., and Calpe-Maravilla, J. (2009). 696 

Biophysical Parameter Estimation With a Semisupervised Support Vector Machine. IEEE 697 

Geoscience and Remote Sensing Letters, 6 (2), 248 – 252. 698 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 41 

Chavez, F. P., Strutton, P. G., Friederich, G. E., Feely, R. A., Feldman, G. C., Foley, D. G., and 699 

McPhaden, M. J. (1999). Biological and chemical response of the equatorial Pacific Ocean to 700 

the 1997-98 El Niño. Science, 286(5447), 2126-2131. 701 

Chavez, F. P., Messié, M., and Pennington, J. T. (2011). Marine primary production in relation to 702 

climate variability and change. Annu. Rev. Mar. Sci., 3, 227–260, 703 

doi:10.1146/annurev.marine.010908.163917. 704 

Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D., Aumont, O., Naqvi, S. W. A., and Maury, O. 705 

(2013). Indian Ocean dipole and El Nino/southern oscillation impacts on regional chlorophyll 706 

anomalies in the Indian Ocean. Biogeosciences, 10(10), 6677-6698. 707 

Dandonneau, Y., Deschamps, P. Y., Nicolas, J. M., Loisel, H., Blanchot, J., Montel, Y., et al. 708 

(2004). Seasonal and interannual variability of ocean color and composition of phytoplankton 709 

communities in the North Atlantic, equatorial Pacific and South Pacific. Deep-Sea Res. Prt II, 710 

51(1-3), 303-318. 711 

Descloux, E., Mangeas, M., Menkes, C. E., Lengaigne, M., Leroy, A., Tehei, T., et al. (2012). 712 

Climate-Based Models for Understanding and Forecasting Dengue Epidemics. PLoS 713 

Neglected Tropical Diseases, 6(2), e1470. doi:10.1371/journal.pntd.0001470.  714 

Dierssen, H. M., and Smith, R. C. (2000). Bio-optical properties and remote sensing ocean color 715 

algorithms for Antarctic Peninsula waters. J. Geophys. Res. Oceans, 105, 26301–26312, 716 

doi:10.1029/1999JC000296, 2000. 1434, 1497. 717 

D'Ortenzio, F., Antoine, D., Martinez, E., and Ribera d’Alcalà, M. (2012). Phenological changes 718 

of oceanic phytoplankton in the 1980s and 2000s as revealed by ocean-color remote-sensing 719 

observations. Global Biogeochem. Cycles, Vol. 26, GB4003.  720 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 42 

Dussin, R., Barnier, B., Brodeau, L., and Molines, J. M. (2014). The making of Drakkar forcing 721 

set DFS5, DRAKKAR/MyOcean Rep. 722 

Dutheil, C., Aumont, O., Gorguès, T., Lorrain, A., Bonnet, S., Rodier, M., et al. (2018). Modelling 723 

the processes driving Trichodesmium sp. spatial distribution and biogeochemical impact in 724 

the tropical Pacific Ocean. Biogeosciences Discussions, 1–34. https://doi.org/10.5194/bg-725 

2017-559. 726 

Dutkiewicz, S., Follows, M., Marshall, J., and Gregg, W.W (2001). Interannual variability of 727 

phytoplankton abundances in the North Atlantic. Deep Sea Res. II, Volume 48, Pages 2323-728 

2344.  729 

Dutkiewicz, S., Follows, M. J., and Parekh, P. (2005). Interactions of the iron and phosphorus 730 

cycles: a three-dimensional model study. Global Biogeochem. Cycles, 19, GB1021, 731 

doi:10.1029/2004GB002342, 2005. 1412, 1430, 1433. 732 

Elbisy, M. S. (2015). Sea Wave Parameters Prediction by Support Vector Machine Using a Genetic 733 

Algorithm. J. Coastal Res., 31, 4, 892 –899.  734 

Emery, W., and Thomson, R. (1997). Data Analysis in Physical Oceanography , 634 pp., 735 

Pergamon, New York. 736 

Enfield, D. B., Mestas Nunez, A. M., and Trimble, P. J. (2001). The Atlantic multidecadal 737 

oscillation and its relation to rainfall and river flows in thecontinental U.S. Geophys. Res. 738 

Lett., 28, 2077–2080. 739 

Feng, J., Durant, J. M., Stige, L. C., Hessen, D. O., Hjermann, D. Ø., Zhu, L., et al. (2015). 740 

Contrasting correlation patterns between environmental factors and chlorophyll levels in the 741 

global ocean. Global Biogeochem. Cycles, 29, doi:10.1002/2015GB005216.  742 

https://doi.org/10.5194/bg-2017-559
https://doi.org/10.5194/bg-2017-559


Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 43 

Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I. (2006). World Ocean Atlas 2005, 743 

Volume 4: Nutrients (phosphate, nitrate, silicate). S. Levitus, Ed. NOAA Atlas NESDIS 64, 744 

U.S. Government Printing Office, Washington, D.C., 396 pp. 745 

Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O. (2006). 746 

Reconciling surface ocean productivity, export fluxes and sediment composition in a global 747 

biogeochemical ocean model. Biogeosciences, European Geosciences Union, 2006, 3 (4), 748 

pp.521-537. hal-00330316 749 

Gnanadesikan, A., Slater, R. J., Gruber, N., and Sarmiento, J. L. (2002). Oceanic vertical exchange 750 

and new production: a comparison between models and observations. Deep-Sea Res. Pt. II, 751 

49, 363–401, 2002. 1433. 752 

Gregg, W. W., and Rousseaux, C. S. (2014). Decadal trends in global pelagic ocean chlorophyll: 753 

A new assessment integrating multiple satellites, in situ data, and models. J. Geophys. Res. 754 

Oceans, 119(9), 5921-5933. 755 

Gregg, W. W., and Casey, N. W. (2004). Global and regional evaluation of the SeaWiFS 756 

chlorophyll data set. Remote Sensing of Environment, 93(4), 463-479. 757 

Gregg, W. W., and Conkright, M. E. (2002). Decadal changes in global ocean chlorophyll. 758 

Geophys. Res. Lett., 29(15), 20-1. 759 

Henson, S. A., Dunne, J. P., and Sarmiento, J. L. (2009a). Decadal variability in North Atlantic 760 

phytoplankton blooms. J. Geophys. Res. Oceans, 114, C04013. 761 

Henson, S. A., Raitsos, D., Dunne, J. P., and McQuatters-Gollop, A. (2009b). Decadal variability 762 

in biogeochemical models: Comparison with a 50-year ocean colour dataset. Geophys. Res. 763 

Lett.,, 36, L21061. 764 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 44 

Henson, S. A., Beaulieu, C. and Lampitt, R. (2016). Observing climate change trends in ocean 765 

biogeochemistry: when and where. Glob Change Biol, 22: 1561-1571. 766 

doi:10.1111/gcb.13152. 767 

Hood, R. R., Kohler, K. E., McCreary, J. P., and Smith, S. L. (2003). A four- dimensional 768 

validation of a coupled physical-biological model of the Arabian Sea. Deep-Sea Res. Pt. II, 769 

50, 2917–2945. 770 

Hovis, W. A., Clark, D. K., Anderson, F., Austin, R. W., Wilson, W. H., Baker, E. T., et al. (1980). 771 

Nimbus-7 Coastal Zone Color Scanner: system description and initial 772 

imagery. Science, 210(4465), 60-63. 773 

Hu, S., Liu, H., Zhao, W., Shi, T., Hu, Z., Li, Q., and Wu, G. (2018). Comparison of machine 774 

learning techniques in inferring phytoplankton size classes. Remote Sensing, 10(3), 191. 775 

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, et al. (2017). 776 

Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, 777 

and intercomparisons. Journal of Climate, 30(20), 8179-8205. 778 

Irwin, A. J., and Oliver, M. J. (2009). Are ocean deserts getting larger? Geophys. Res. Lett., 36, 779 

L18609, doi:10.1029/2009GL039883. 780 

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Berga- metti, G., Brooks, N., et al. (2005). 781 

Global iron connections between desert dust, ocean biogeochemistry, and climate. Nature, 782 

308, 67–71, doi:10.1126/science.1105959.  783 

Jouini, M., Lévy, M., Crépon, M., and Thiria, S. (2013). Reconstruction of satellite chlorophyll 784 

images under heavy cloud coverage using a neural classification method. Remote Sens. 785 

Environ., 131, 232-246.  786 

https://doi.org/10.1111/gcb.13152


Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 45 

Kahru, M. and Mitchell, B. G. (2010). Blending of ocean colour algorithms applied to the Southern 787 

Ocean. Remote Sensing Letters, 1, 119–124. 1434. 788 

Kahru, M., Gille, S. T., Murtugudde, R., Strutton, P. G., Manzano‐Sarabia, M., Wang, H., and 789 

Mitchell, B. G. (2010). Global correlations between winds and ocean chlorophyll. J. Geophys. 790 

Res. Oceans 115, C12040, doi:10.1029/2010JC006500. 791 

Keerthi, M.G., Lengaigne, M., Levy, M., Vialard, J., and de Boyer Montegut, C. (2017). Physical 792 

control of interannual variations of the winter chlorophyll bloom in the northern Arabian Sea. 793 

Biogeosciences, 14(15), 3615, doi:10.5194/bg-14-3615-2017. 794 

Kim, Y. H., Im, J., Ha, H. K., Choi, J. K., and Ha, S. (2014). Machine learning approaches to 795 

coastal water quality monitoring using GOCI satellite data. GIScience & Remote 796 

Sensing, 51(2), 158-174. 797 

Kwiatkowska, E.J., and Fargion, G.S. (2003). Application of Machine-Learning Techniques 798 

Toward the Creation of a Consistent and Calibrated Global Chlorophyll Concentration 799 

Baseline Dataset Using Remotely Sensed Ocean Color Data. IEEE Transactions on 800 

Geoscience and Remote Sensing, 41 (12), 2844 – 2860. 801 

Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., et al. (2015). 802 

Drivers and uncertainties of future global marine primary production in marine ecosystem 803 

models. Biogeosciences, 12, 6955-6984, https://doi.org/10.5194/bg-12-6955-2015. 804 

Launois, T., Belviso, S., Bopp, L., Fichot, C. G., and Peylin, P. (2015). A new model for the global 805 

biogeochemical cycle of carbonyl sulfide–Part 1: Assessment of direct marine emissions with 806 

an oceanic general circulation and biogeochemistry model. Atmospheric Chemistry and 807 

Physics, 15(5), 2295-2312. 808 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 46 

Laws, E. A., and Bannister, T. T. (1980). Nutrient‐and light‐limited growth of Thalassiosira 809 

fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. 810 

Limnology and Oceanography, 25(3), 457-473. 811 

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature 521, 436–444, 812 

https://doi.org/10.1038/nature14539. 813 

Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., André, J.-M., and Madec, G. 814 

(2007). Influence of the oceanic biology on the tropical Pacific climate in a Coupled General 815 

Circulation Model. Climate Dynamics, 28: 503-516, doi:10.1007/s00382-006-0200-2. 816 

Lewandowska, A. M., Hillebrand, H., Lengfellner, K., and Sommer, U. (2014). Temperature 817 

effects on phytoplankton diversity—The zooplankton link. J. Sea Res., 85, 359-364. 818 

Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C. (1995). An estimate of global 819 

primary production in the ocean from satellite radiometer data. J. Plankton Res., 17(6), 1245-820 

1271. 821 

Mackas, D. L. (2011). Does blending of chlorophyll data bias temporal trend? Nature, 472(7342), 822 

E4-E5. 823 

Madec, G. (2008). NEMO reference manual, ocean dynamics component: NEMO-OPA. 824 

Preliminary version. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), 825 

France, (27), 1288-161. 826 

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C. (1997). A Pacific 827 

Interdecadal Climate Oscillation with Impacts on Salmon Production. B. Amer. Meteo. Soc., 828 

78, 1069.  829 

Martinez, E., Antoine, D., D'Ortenzio, F., and Gentili, B. (2009). Climate-driven basin-scale 830 

decadal oscillations of oceanic phytoplankton. Science, 36, 1253-1256.  831 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 47 

Martinez, E., Antoine, D., D’Ortenzio, F., and de Boyer Montégut, C. (2011). Phytoplankton 832 

spring and fall blooms in the North Atlantic in the 1980s and 2000s. J. Geophys. Res. Oceans, 833 

116, C11029.  834 

Martinez, E., Raitsos, D., and Antoine, D. (2016). Warmer, deeper and greener mixed layers in the 835 

north Atlantic subpolar gyre over the last 50 years. Global Change Biology, 22, 604–612, doi: 836 

10.1111/gcb.13100. 837 

McClain, C. R., Christian, J. R., Signorini, S. R., Lewis, M. R., Asanuma, I., Turk, D., and Dupouy-838 

Douchement, C. (2002). Satellite ocean-color observations of the tropical Pacific 839 

Ocean. Deep-Sea Res. Pt. II: Topical Studies in Oceanography, 49(13-14), 2533-2560. 840 

McClain, C. R., Feldman, G., and Hooker, S. (2004). An overview of the SeaWiFS project and 841 

strategies for producing a climate research quality global ocean bio‐optical time series, Deep 842 

Sea Res. Part II, 51, 5–42, doi:10.1016/j.dsr2.2003.11.001. 843 

McQuatters-Gollop, A., Reid, P. C., Edwards, M., Burkill, P. H., Castellani, C., Batten, S., et al. 844 

(2011). Is there a decline in marine phytoplankton? Nature, 472(7342), E6-E7. 845 

Messié, M., and Chavez, F. P. (2012). A global analysis of ENSO synchrony: The oceans’ 846 

biological response to physical forcing. J. Geophys. Res. Oceans, 117, C09001, 847 

doi:10.1029/2012JC007938. 848 

Messié, M., and Chavez, F. P. (2015). Seasonal regulation of primary production in eastern 849 

boundary upwelling systems. Progress in Oceanography, 134, 1-18. 850 

Morel, A., and Gentili, B. (2009). The dissolved yellow substance and the shades of blue in the 851 

Mediterranean Sea. Biogeosciences, 6(11). 852 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 48 

Murtugudde, R. G., Signorini, S. R., Christian, J. R., Busalacchi, A. J., McClain, C. R., and Picaut, 853 

J. (1999). Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS 854 

during 1997– 1998. J. Geophys. Res. Oceans, 104, 18351–18366. 855 

Neetu S., Lengaigne, M., M. Mangeas, J. Vialard, J. Leloup, C. Menkes, et al. (2020). Quantifying 856 

the benefits of non-linear methods for global statistical hindcasts of tropical cyclones intensity, 857 

Monthly Weather Review, doi:10.1175/WAF-D-19-0163.1  858 

Nidheesh, A. G., Lengaigne, M., Vialard, J., Izumo, T., Unnikrishnan, A. S., Meyssignac, B., et al. 859 

(2017). Robustness of observation‐based decadal sea level variability in the Indo‐Pacific 860 

Ocean. Geophys. Res. Lett, 44(14), 7391-7400. 861 

Parvathi, V., Suresh, I., Lengaigne, M., Ethé, C., Vialard, J., Levy, M., et al. (2017). Positive Indian 862 

Ocean Dipole events prevent anoxia along the west coast of India. Biogeosciences, 14: 1541-863 

1559, doi:10.5194/bg-14-1541-2017. 864 

Patara, L., Visbeck, M., Masina, S., Krahmann, G., and Vichi, M. (2011). Marine biogeochemical 865 

responses to the North Atlantic Oscillation in a coupled climate model, J. Geophys. Res. 866 

Oceans, 116, C07023.  867 

Polovina, J. J., Howell, E. A., and Abecassis, M. (2008). Ocean’s least productive waters are 868 

expanding. Geophys. Res. Lett., 35, L03618, doi:10.1029/2007GL031745. 869 

Radenac, M. H., Léger, F., Singh, A., and Delcroix, T. (2012). Sea surface chlorophyll signature 870 

in the tropical Pacific during eastern and central Pacific ENSO events. J. Geophys. Res. 871 

Oceans, 117(C4). 872 

Radenac, M. H., Messié, M., Léger, F., and Bosc, C. (2013). A very oligotrophic zone observed 873 

from space in the equatorial Pacific warm pool. Remote sensing of environment, 134, 224-874 

233. 875 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 49 

Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Kumar, D. (2011). Contribution 876 

of mesoscale processes to nutrient budgets in the Arabian Sea. J. Geophys. Res. Oceans, 877 

116(C11). 878 

Rykaczewski, R. R., and Dunne, J. P. (2011). A measured look at ocean chlorophyll trends. Nature, 879 

472(7342), E5-E6. 880 

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T. (1999). A dipole mode in 881 

the tropical Indian Ocean. Nature, 401(6751), 360. 882 

Sakamoto, T., Gitelson, A. A., Wardlow, B. D., Verma, S. B., and Suyker, A. E. (2011). Estimating 883 

daily gross primary production of maize based only on MODIS WDRVI and shortwave 884 

radiation data. Remote Sensing of Environment, 115(12), 3091-3101. 885 

Sauzède, R., Claustre, H., Jamet, C., Uitz, J., Ras, J., Mignot, A., and D’Ortenzio, F. (2015). 886 

Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton 887 

community composition from in situ fluorescence profiles: A method based on a neural 888 

network with potential for global-scale applications. J. Geophys. Res. Oceans, 120, 451–470, 889 

doi:10.1002/ 2014JC010355. 890 

Schneider, B., Bopp, L., Gehlen, M., Segschneider, J., Frölicher, T. L., Cadule, P., et al. (2008). 891 

Climate-induced interannual variability of marine primary and export production in three 892 

global coupled climate carbon cycle models. Biogeosciences, European Geosciences Union, 893 

2008, 5 (2), pp.597-614. hal-00330705 894 

Schollaert Uz, S., Busalacchi, A. J., Smith, T. M., Evans, M. N., Brown, C. W., Hackert, E. C., et 895 

al. (2017). Interannual and Decadal Variability in Tropical Pacific Chlorophyll from a 896 

Statistical Reconstruction: 1958–2008. J. Clim. 30, 7293–7315. doi:10.1175/JCLI-D-16-897 

0202.1. 898 



Confidential manuscript submitted to Frontiers in marine science in « Ocean Observations »  

 50 

Séférian, R., Bopp, L., Gehlen, M., Orr, J. C., Ethé, C., Cadule, P., et al. (2013). Skill assessment 899 

of three earth system models with common marine biogeochemistry. Clim. Dynam., 40, 2549–900 

2573, doi:10.1007/s00382-012-1362-8. 1379. 901 

Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D., Bailey, S. W., at al. 902 

(2013). Regional to global assessments of phytoplankton dynamics from the SeaWiFS 903 

mission. Remote Sensing of Environment, 135, 77-91. 904 

Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M. J. (2005). Independence and 905 

interdependencies among global ocean color properties: Reassessing the bio‐optical 906 

assumption. J. Geophys. Res. Oceans, 110(C7). 907 

Signorini, S. R., Franz, B. A., and McClain, C. R. (2015). Chlorophyll variability in the 908 

oligotrophic gyres: mechanisms, seasonality and trends. Frontiers in Marine Science, 2, 1. 909 

Signorini, S. R., and McClain, C. R. (2012). Subtropical gyre variability as seen from satellites. 910 

Remote Sensing Letters, 3(6), 471-479. 911 

Smith, T. M., Arkin, P. A., Ren, L., and Shen, S. S. (2012). Improved reconstruction of global 912 

precipitation since 1900. J. Atmosph. and Ocean. Tech., 29(10), 1505-1517. 913 

Staten, P. W., Lu, J., Grise, K. M., Davis, S. M., and Birner, T. (2018). Re-examining tropical 914 

expansion. Nature Climate Change, 8(9), 768-775. 915 

Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., et al. (2010). Projected 916 

21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7(3), 917 

979-1005. 918 
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