
HAL Id: hal-02933285
https://imt-atlantique.hal.science/hal-02933285

Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memristive Computational Memory Using Memristor
Overwrite Logic (MOL)

Khaled Alhaj Ali, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet, Jalal
Jomaah, Naoya Onizawa, Takahiro Hanyu

To cite this version:
Khaled Alhaj Ali, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet, Jalal Jomaah, et al.. Mem-
ristive Computational Memory Using Memristor Overwrite Logic (MOL). IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2020, 28 (11), pp.2370-2382. �10.1109/TVLSI.2020.3011522�.
�hal-02933285�

https://imt-atlantique.hal.science/hal-02933285
https://hal.archives-ouvertes.fr

1

Memristive Computational Memory Using Memristor
Overwrite Logic (MOL)

Khaled Alhaj Ali, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet,
Jalal Jomaah, Naoya Onizawa, Takahiro Hanyu

Abstract—In this paper, we present a novel logic design style,
namely memristor overwrite logic (MOL), associated with an
original MOL-based computational memory. MOL relies on a fully
digital representation of memristor and can operate with differ-
ent memristive device technologies. Its integration in memristive
crossbar arrays and computational memories allows the execution
of bit and vector-level primitive logic operations in two compu-
tational steps at most. Promising features and performances are
demonstrated through the implementation of N -bit full addition
using the proposed MOL-based computational memory.

Index Terms—Memristor, Memristor Overwrite Logic (MOL),
In-memory computation, Crossbar array, Logic design.

I. INTRODUCTION

MEMRISTOR has been predicted theoretically by Leon Chua
[1] in 1971. Chua hypothesized that memristor which is

the fourth passive device should exist and hold a relationship
between magnetic flux and charge. The first fabrication of a
memristor device has been developed by a research team at
Hewlett-Packard (HP) Labs [2] in 2008. The device structure is
comprised of a stoichiometric (TiO2) and an oxygen deficient
(TiO2−x) layer sandwiched between two platinum electrodes.
The obtained two-terminal nano-device exhibits a dynamic
resistance that can be modulated between two bounds. These
bounds correspond to the low and high resistance states, and
are referred to as RON and ROFF respectively. Memristor
possesses the ability to retain the last attained resistance value
in a non-volatile manner.

Given the nanoscale dimensions of memristors and their
unique properties, several innovative applications have emerged.
One of the most promising applications is the use of memristors
to implement arithmetic blocks, such as full adders [3][4][5].
Compared to pure CMOS implementations, these blocks are of
relatively high density and could be packed into small chip area.
Other applications involve using memristor-based memories
to allow processing within the storage cells. This approach,
referred to as in-memory computing, is being explored recently
to alleviate time and energy cost of data movement encountered

K. Alhaj Ali and A. Baghdadi are with IMT Atlantique, CNRS Lab-STICC
laboratory, Brest, France. M. Rizk is with IMT Atlantique and the School of
Engineering, International University of Beirut, Lebanon. J. Diguet is with
CNRS Lab-STICC laboratory, Université de Bretagne-Sud, Lorient, France.
J. Jomaah and M. Rizk are with Physics Department, Faculty of Sciences,
Lebanese University, Beirut, Lebanon. N. Onizawa and T. Hanyu are with
the Research Institute of Electrical Communication, Tohoku University, Sendai,
Japan. (e-mail: khaled.alhaj-ali@imt-atlantique.fr)

This work is an extension of the following publication: khaled Alhaj Ali et al.,
Crossbar Memory Architecture Performing Memristor Overwrite Logic, 26th
IEEE International Conference on Electronics, Circuits and Systems (ICECS),
November 2019, Genoa, Italy.

in conventional von Neumann architecture and aggravated by
the recent growth in data-centric applications [6]. The con-
cept is different from, yet can be complementary to, that of
near-memory computing which dates to the 1990s [7]. Near-
memory computing approach aims to place the processing units
physically closer to the memory, for example through advanced
die stacking technologies or three-dimensional (3D) integration.
Despite the reduction in time and distance to memory access,
there still exists a physical separation between the memory and
the compute units [8]. For in-memory computing, instead of
sending large amount of data to the processing cores, part of
the tasks are computed in place inside the memory itself [9].
Depending on the application, this can reduce the computational
complexity of these tasks and/or the amount of data being
accessed, leading to significant performance improvement [6].

In this context, several recent contributions have been pro-
posed to enable computation within memristive memory arrays
and can be classified in two categories. The first category
involves using the memristor as single-level cell (SLC) [10–
16]. The second category includes work that uses the memristor
as multi-level cell (MLC) or analog cell [17–19]. MLC-based
computing is promising when targeting applications with in-
tensive multiply-accumulate operations, such as convolutional
neural networks (CNN) [19]. However, a number of challenges
remain in terms of manufacturability and computational ac-
curacy regarding device variability, pattern-dependent current
leakage and the area overhead of peripheral circuits [20]. Major
semiconductor foundries have not included MLC technology
in their development roadmaps in the near future [19]. In
contrast, SLC cells have a larger readout margin that makes
them tolerant against process variation and resistance drift
effects. Based on SLCs, different logic design styles have been
introduced together with different realizations on memristive
crossbar arrays. The Material Implication (IMPLY) [10] and the
Memristor Aided loGIC (MAGIC) [21] have been introduced to
enable in-memory logic operations. Although promising results
are demonstrated, MAGIC and IMPLY techniques still impose
specific technology and design constraints. For instance, in
order to attain acceptable performance in these techniques, the
ratio ROFF /RON of the adopted memristive devices should
be relatively high. Moreover, authors of [22] have reported
that IMPLY does not ensure binary resistance switching of
memristors in some cases. More recently, other in-memory com-
puting techniques have emerged as alternatives. Among these,
the memristor-based majority (MAJ) [23] has been introduced
to overcome the aforementioned limitations. However, other

2

downsides arise at the architectural level. MAJ design style is
relatively complex in terms of peripheral circuits as well as
excessive in-out data movement which in turn impacts latency.

In this work, we introduce a novel logic design style, namely
memristor overwrite logic (MOL), associated with an original
MOL-based computational memory. MOL combines the sim-
plicity of MAGIC/IMPLY techniques and the accuracy of MAJ.
MOL can operate with different memristive device technologies
and allows for significant reduction in the number of required
memristors and computational steps.

The rest of the paper is organized as follows. Section II
provides a brief survey on existing memristor based logic
design styles. Section III presents our proposed MOL approach.
Section IV discusses the integration of MOL into the conven-
tional memory configurations. Section V presents our proposed
configurable MOL-based computational memory architecture.
The design and its configuration methodology are demonstrated
by a case study of a N-bit full addition in Section VI. Sim-
ulations and performance analysis are illustrated in Section
VII. Comparison with available implementations is presented
in Section VIII. Finally, Section IX concludes the paper.

Although memristive devices encompass memristors, it is
possible to use the term memristor for other memristor devices
[24]. In this paper, we use the terms memristor and memristive
device interchangeably for simplicity.

II. MEMRISTIVE DEVICES AS COMPUTATIONAL ELEMENTS

The versatile nature of memristors allows them to be used
as computational elements in addition to their storage role.
Implementing Boolean logic with memristors has been widely
explored. Several memristor-based logic design styles have been
introduced in the literature. Each is adapted for a specific type
of applications and surrounded with specific limitations.

A. Logic design styles

The Memristor Ratioed Logic (MRL) has been proposed
in [3]. MRL integrates memristors with CMOS transistors to
implement combinational functional blocks. These blocks are
relatively dense compared to those implemented with pure
CMOS transistors. The Memristive Threshold Logic (MTL) has
been studied in [25]. The gate uses the configurable conductance
of memristors to represent weights during operation. However,
these weights are very sensitive to state drift, which can be a
critical issue [25]. It is considered simple, but still in preliminary
stages of fabrication. IMPLY [10] and MAGIC [21] are intended
for in-memory computing. In these design styles, a memristor
serves as a memory element as well as a part of a computational
gate inside the memory. MAD gate, or Memristors-As-Drivers
gate has been presented in [26]. MAD has been introduced to
overcome the long delays of the IMPLY operations as well
as signal degradation and buffering issues in MRL; however,
each MAD gate requires a complex driving circuitry and is
thus considered unsuitable for integration inside a memristive
memory. MAJ has been proposed in [23]. The authors demon-
strated that a single memristor is capable of performing a 3-
variable majority function. Using additional inversion function

(INV), a Boolean expression is represented using majority-
inverter graph (MIG). MIGs are then realized sequentially in
conventional memristive crossbar arrays. The complementary
resistive switches (CRS) logic has been presented in [27]. CRS
logic is capable of realizing two primitive operations denoted
as reverse implication (RIMP) and inverse implication (NIMP).
This logic design style can be considered as a special case of
MAJ (see Section III-B).

In this paper, our target application concerns in-memory
computing, so some logic design styles such as MRL, MAD
and MTL are excluded.

B. Limitations

MAGIC and IMPLY logic families are widely explored
in the literature. Authors of [12][28–31] have presented sev-
eral approaches where logic functions are broken down into
several MAGIC or IMPLY operations. These operations are
then performed sequentially inside memristive crossbar arrays.
However, these approaches have several design constraints:
• The analysis in [22] reveals that IMPLY cannot achieve the

full resistance switching of the output memristor in case
both input memristors of the IMPLY gate are in the ROFF

resistance state. Hence, the corresponding state of the output
memristor is not fully digital.

• Output memristors in IMPLY and MAGIC may be subjected
to state drift [10][12].

• The performance of these design styles is highly dependent
on the technology of the adopted memristive device (e.g.
requirement of memristive devices with high ROFF /RON

ratio) [10][12].
• The corresponding basis functions provided by IMPLY and

MAGIC are not diverse enough to allow fast logic mapping
with minimum computational cycles.
MAJ-based logic design has been recently explored by sev-

eral authors [23][15]. MAJ relies on a digital representation of
memristors, so the limitations faced in IMPLY and MAGIC
can be overcome. However, at the architecture level, other
downsides arise:
• In-memory computing architectures based on MAJ, which are

available in the literature, require additional load operations,
which read data bits outside the memory. This induces the
overheads in terms of total critical path, number of cycles
and the complexity of the dedicated control unit.

• Architectures based on MAJ involve significant modifications
in the peripheral circuitry of the memory. The write operations
are performed on bit-lines (BLs) as well as word-lines (WLs)
instead of BLs only.

These limitations hold also for CRS logic design approach [27]
as it can be considered as a special case of MAJ.

III. PROPOSED MOL LOGIC

In this section we introduce a new memristor-based logic
design style namely Memristor Overwrite Logic (MOL). MOL
approach is highly adapted for computing within memristive
crossbar arrays and avoids the limitations encountered by pre-
existing logic design styles.

3

A. Digital representation of memristive devices

The nonvolatile internal resistance state of memristor could
be changed according to the magnitude and duration of the
applied bias across its terminals [32]. However, a non sufficient
magnitude or duration leads to an intermediate resistance state
R where RON < R < ROFF . In this case, the state of the
memristor can not be considered as binary, which in turn leads
to more sophisticated modeling of the internal state of memris-
tive devices in the analog domain. However, in a digital design,
we could think about the memristor as a two-state element
where its resistance R ∈ {RON , ROFF } and ignoring any
other intermediate states if we succeed to guarantee a sufficient
magnitude and duration of the bias across its terminals. Based
on this understanding, the internal state of a memristor is defined
in the digital domain. Let Qn be the current internal state of
a memristor while Qn+1 is the next state after applying a
new external bias represented by A and B as shown in Fig.
1(a). Hence, Qn+1 will a be function of the logical states at
the terminals A and B and the previous internal state Qn. By
considering all the possible combinations of A, B and Qn as
shown in Fig. 1(b), the state equation of a memristive device is
expressed as follows:

Qn+1 = QnA+QnB +AB = M3(A,B,Qn) (1)

where M3 represents the 3-variable majority function, which
is defined in [33]. This expression demonstrates that a majority
function is an intrinsic feature of memristive devices [23]. Based

𝑄𝑛 𝐴 𝐵 𝑄𝑛 + 1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

A

B

𝑄𝑛+1 𝑄𝑛

(a) (b)

Fig. 1. Memristor: (a) internal state after applying external bias represented by
A and B; (b) truth table

on the Boolean expression presented in (1), the equivalent latch
circuit of a memristive device is shown in Fig. 2 where Q is the
internal state of the memristor. To translate the Boolean value
of Q into a resistance between the terminals of the memristor,
an analog multiplexer is added. It selects either one of the two
resistors, which resistances are RON or ROFF where Q =
0 and Q = 1 are mapped to RON and ROFF respectively.
Note that this schematic is valid and useful from the digital
perspective, so it cannot be used for simulation in the analog
domain.

B. MOL logic procedure

The state representation of memristor expressed in (1) clar-
ifies its computational capability and simplifies its integration
in the digital domain. Six possible cases can be derived from
(1) and are listed in (2). Fig. 3 is an illustration of these cases.

A

B

Ron Roff

Q Equivalent

A

B

Q

Resistive ports Memristor latch

Fig. 2. Equivalent latch circuit of memristor with binary resistive ports

They are split into two groups. The first group includes the
cases from 1 to 4, which correspond to MOL. In these 4 cases,
a memristor acts as logic accumulator. The previously stored
bit Qn is subjected to OR/AND with the new input A/B while
the other terminal of the memristor is set to logic "0" or logic
"1" depending on the desired function. The obtained output is
simultaneously saved in the form of new internal state Qn+1.
The remaining cases (i.e. 5 and 6) are achieved by initializing
the memristor to a known state (logic "0" or logic "1"). The
inputs A and B are sent to the memristor ports simultaneously.
The output is saved as the new internal state (Qn+1) of the
memristor. In fact, these two cases correspond to CRS logic
operations that are explored in the literature [16][23][27].

Although MOL operations are special cases of the 3-variable
majority, working with MOL is much simpler. MOL highly
resembles the conventional write operation. One end of each
memristor is reserved for the input operands, while the other
end is employed for selection. In contrast, MAJ employs both
terminals of the memristor for the input operands. This makes
MOL more adapted to crossbar memory arrays.

Qn+1 =



Qn +A , B = 0, case : 1 (MOL)

QnA , B = 1, case : 2 (MOL)

Qn +B , A = 0, case : 3 (MOL)

QnB , A = 1, case : 4 (MOL)

AB , Qn = 0, case : 5 (CRS)

A+B , Qn = 1, case : 6 (CRS)

(2)

The same concept applies to a vector of bits. Fig. 4 illustrates
that two consecutive steps are enough for achieving MOL
operations on an N -bit vector. In step 1, which is presented in
Fig. 4(a), the input vector I = [IN−1 IN−2... I1 I0] is written
into the N memristors by mapping logic "0" and logic "1" to
the normalized voltage levels −1V and 1V respectively while
the common horizontal line is set to 0V . At the end of this step,
the resulting state of a given memristor Mk is Qk = Ik. In step
2, the same N memristors are overwritten with the input vector
A = [AN−1 AN−2... A1 A0]. However, the input voltage level
on the common horizontal line is set to 0V or 1V depending on
the desired operation. For the case of MOL-OR (Fig. 4(b)), B

4

A=0

B

𝑄𝑛 + 1 = 𝑄𝑛 + ത𝐵

A=1

B

𝑄𝑛 + 1 = 𝑄𝑛
ത𝐵

(3)

(4)

(MOL-OR-NOT)

(MOL-AND-NOT)

A

B

𝑄𝑛 + 1 = 𝐴 ത𝐵
(𝑄𝑛 = 0)

A

B

𝑄𝑛 + 1 = 𝐴 + ത𝐵
(𝑄𝑛 = 1)

(5)

(6)

(AND-NOT)

(OR-NOT)

A

B=0

A

B=1

𝑄𝑛 + 1 = 𝑄𝑛𝐴

(1)

(2)

(MOL-OR)

(MOL-AND)

𝑄𝑛 + 1 = 𝑄𝑛 + 𝐴

Fig. 3. Six possible logic cases performed by a memristor

is set to 0V and the result, which is stored in a given memristor
Mk, is Q′k = Ak+Ik. For the case of MOL-AND (Fig. 4(c)), B
is set to 1V and the result, which is stored in a given memristor
Mk, is Q′k = AkIk.

Step1:
Write

I0I1I2IN-1

B=0

Ik ∈ {-1v , 1v}
k ∈[0,N-1]

M0M1M2MN-1

(a)

Step2:
Overwrite (Case: OR)

Ak ∈ {0v , 1v}
k ∈[0,N-1]

B=0

A0A1A2AN-1

M0M1M2MN-1

(b)

Step2:
Overwrite (Case: AND)

Ak ∈ {0v , 1v}
k ∈[0,N-1]

A0A1A2AN-1

M0M1M2MN-1

(c)

B=1

Fig. 4. Performing MOL on a vector of bits; (a) writing N -bits into memritsors;
(b) overwrite step for MOL-OR; (c) overwrite step for MOL-AND

C. Performing MOL inside memristive crossbars

The proposed MOL can be performed in memristive crossbar
arrays. The input data bits to the crossbar can be either written
or combined logically with the currently stored bits inside the
crossbar. This can be simply achieved by choosing the appropri-
ate normalized voltage levels for representing the arriving bits
(i.e. -1/1 for write and 0/1 for MOL). Fig. 5(a) illustrates that
a single or multiple rows of the crossbar could be selected for
either MOL-OR or MOL-AND operations with the incoming
data bits I = [IN−1 IN−2... I1 I0] being applied on the
columns. Similarly, Fig. 5(b) shows that a single or multiple
columns of the crossbar could be selected for either MOL-OR-
NOT or MOL-AND-NOT operations with the incoming data
bits of the vector I applied on the rows.

I0 I1 I2 IN-1

B0=0

B1=1

B0=0 B1=1

I0

I1

I2

IN-1

(a) (b)

Fig. 5. MOL inside memristive crossbar: (a) MOL-OR or/and MOL-AND; (b)
MOL-OR-NOT or/and MOL-AND-NOT

IV. MEMORY ARCHITECTURE WITH MOL CAPABILITIES

Crossbars constitute the core element of emerging memris-
tive memories (e.g. RRAMs and MRAMs). Integrating MOL
with crossbar-memory architectures can lead to promising en-
hancements and provides additional computational capabilities
to these memories. However, this imposes updating memory
peripheral drivers to cope with MOL operations in addition
to its main storage function. Fig. 6(a) presents the proposed
memory architecture which is capable of performing MOL. As
illustrated in Section III, write and overwrite operations could
be performed along the rows as well as the columns of the
crossbar. However, in a conventional memory architecture, the
flow of the incoming data bits is along bit-lines only while the
word-lines are reserved for addressing. Thus, MOL operation,
which is similar to a write operation, could be only performed
along BLs. In this case, MOL-OR and MOL-AND are the only
supported logic operations in the proposed memory architecture.
The architecture shown in Fig. 6(a) can be configured in four
different modes:

1- Write mode: The input N -bit vector I =
[IN−1 IN−2... I1 I0] is first mapped via bit-line driver
(BLD) into the normalized voltage levels of −1V and 1V
corresponding for logic "0" and "1" respectively. Fig. 7(a)
presents the schematic of BLD at the transistor level. The
respective voltage levels (−1V and 1V) are then provided to
the BLs of the memristive crossbar through the Isolation Block
(ISO), which acts in this mode as a connecting switch. Fig.
7(b) illustrates the internal structure of ISO. Simultaneously,
the enabled addressing decoder selects a single WL. The
selected WL is supplied with a voltage VSEL, which is already
shared to the input of each transmission gate corresponding to
every WL. The shared voltage VSEL is set to the normalized
voltage level of 0V . The unselected WLs remain floating in
the high impedance state (Z).

2- Overwrite mode: In this mode, the function of the memory
is switched to perform MOL among its memristive crossbar. As
stated above, both MOL-OR and MOL-AND have to be sup-
ported. For the case of MOL-OR, the input data bits are mapped
to the normalized voltage levels of 0V and 1V corresponding
for logic "0" and logic "1" respectively. The addressing decoder
performs its normal selection function for a single WL. ISO is

5

kept at the connecting state. The level of VSEL is also set to 0V
as in the case of write mode. The resulting bits of the MOL-OR
operation are simultaneously stored in the selected WL. MOL-
AND is performed similarly but VSEL is switched to the high
voltage level (i.e. VSEL = 1V).

3- Read mode: In this mode, a single WL is selected to sense
the corresponding states of its allocated memristors individually.
BLD is isolated using the ISO block, which acts in this
case as an open switch. The selection voltage VSEL is set
to 0.5V (normalized). The sensing current generated through
each memristor have to guarantee a stability of its internal
state (no state drift). A sensing amplifier (SA) circuitry, whose
architecture is illustrated in Fig. 7(c), is used to measure the
voltages across the reference resistors of respective resistances
R. R is chosen to be the mid value between RON and ROFF

(i.e. R = (RON +ROFF)/2). By considering RON < ROFF ,
the voltage across a reference resistor, which is in series to the
sensed memristor, would be either in the neighborhood of 0V
or 0.5V . Depending on the state of the sensed memristor, the
three cascaded inverters magnify this difference leading to −1V
or 1V at the output.

4- Idle mode: In this mode, the memory is not active. The
memristive crossbar is totally isolated to preserve its internal
state. The IB block is in the isolation mode. Hence, all BLs are
in the high impedance state (Z). Moreover, the address decoder
is disabled. Thus, none of the WLs is selected, keeping them
in the Z state.

BLD

SA

VSEL

Write/Overwrite

D
E
C
O
D
E
R

Isolate/Connect ISO

E

I0 I1 I2 IN-1

O0 O1 O2 ON-1

Read Read

BLD

ISO

SA

D
E
C
O
D
E
R

O0 O1 O2 ON-1

I0 I1 I2 IN-1

E

VSEL

Write/Overwrite

Isolate/Connect

(a) (b)

Fig. 6. Configurations of MOL memory architectures: (a) 1M; (b) 1T1M

The architecture presented in Fig. 6(a) adopts the 1-memristor
(1M) configuration for the structure of the crossbar. In other
words, each cell consists of one memristor which connects the
vertical and horizontal nano-wires of the crossbar. However,
the 1M crossbar configuration suffers from the sneak paths phe-
nomenon [34]. Sneak paths correspond to current paths through
unselected cells in a memristive array. These undesired paths
lead in some cases to a drift in the state of unselected memristive
cells during write or overwrite operations. Moreover, it gives
false estimation about the real logical state of a given selected
memristor during reading mode. This phenomenon degrades the
overall memory performance. Several efforts have been devoted
in the literature to overcome sneak path phenomenon [34] [35]

[36]. All proposed methods are limited to a certain crossbar size.
Thus, increasing the size of the memristive crossbar beyond
a certain limit will eventually lead to the sneak paths. A
possible solution to stop these paths is to use a selector in
series with each allocated memristive cell. This solution induces
overheads in terms of the total utilized area of the memory
which in turn loses the ultra high density attained in the 1M
case. In [37], a transistor is used as a selector. Thus, each cell

(a)

(c)

1

-1

0

(d)

(e)

(b)

0

R RR R

BLD

ISO

SA

INV

BSD

Fig. 7. Drivers architectures for the proposed MOL-memory approach

inside the memory consists of one transistor in series with one
memristive device (1T1M). The obtained crossbar architecture
for the 1T1M configuration is considered as sneak-path free.
Fig. 6(b) presents our proposed 1T1M memory architecture with
added MOL capabilities. The WL transmission gates, that have
been used in the 1M case are no longer used in the case, of
1T1M memory architecture. Normally, each transmission gate
is equivalent to two MOSFETs. Thus, for an N×M memristive
crossbar array, additional NM − 2N MOSFETs are used in
the 1T1M architecture compared to that in the 1M case. The
obtained 1T1M architecture has the same four control modes
previously introduced for the 1M case.

V. MOL-BASED COMPUTATIONAL MEMORY

In this section, a MOL-based computational memory ar-
chitecture is introduced. The architecture is able to perform
MOL operations between two stored word lines. The original
architecture, which is formed of two interconnected MOL
memory blocks, works in a complementary manner.

6

A. Architecture

The proposed MOL-memory architectures, which are pre-
sented in section IV, act as logic accumulators for the newly
arriving bits. In other words, computation in such memory
is restricted for logic accumulation. Accordingly, performing
general Boolean functions in this memory requires an additional
process to load the stored data bits outside the memory. These
additional load operations are at odds with the concept of com-
putation inside the memory. To overcome these load operations,
we propose the use of two coupled MOL memories (MOL-
memory-A and MOL-memory-B), that work in complementary
manner. At each time step, one of these memories acts as source
of input data-bits of the second memory. The second memory
performs MOL with the previously stored bits in its memristive
crossbar. Fig. 8 illustrates our proposed computational-memory
architecture. The architectures of MOL-memory-A and MOL-
memory-B are identical. A controlled inverting driver (INV)
is added after the sensing stages of the two memories. The
function of this driver is to achieve a complete logic, as the
OR and AND logic operations supported by the memories
are not universal. So, additional NOT operation is needed to
allow the description of any Boolean function. The architecture
of INV is illustrated in Fig. 7(d). A 1-bit barrel shift driver
(BSD) is added to enable bit-level operations in addition to
vector-level operations. The BSD is responsible for ensuring
switchable connections between the two memory blocks. It
can be reconfigured either to pass the data bits or to shift
them on the fly with no need for an additional cycle. The
architecture of the BSD is presented in Fig. 7(e). The proposed
MOL-memory architecture presented in Fig. 8 is capable of
performing numerous operations including logic computation
and storage. Table I lists the most important (not all) operations
that could be achieved. For each listed operation, a set of
appropriate commands are simultaneously sent to the blocks
constituting the architecture. A single operation requires one
computational step. As an example, the case 19 in Table I
corresponds to the arithmetic operation expressed in (3)

MB(n) = MB(n) AND MA(m) (3)

where MA(m) and MB(n), are the bit-vectors located at the
addresses m and n corresponding for MOL-memory-A and
MOL-memory-B respectively. For this case, MOL-memory-A
is set to the read mode. It reads the bit-vector MA(m), which
undergoes a bitwise inversion through INV block. The 1-bit
shifter is disabled. Simultaneously, MOL-memory-B, is set to
the overwrite mode to perform MOL-AND with the vector
MB(n). The result of the bitwise logic operation replaces the
previous vector MB(n). The process is performed during one
computational step.

B. Performing general arithmetic tasks

Generally, an arithmetic function (e.g. addition, subtraction,
compare, etc.) could be expressed in Boolean form. Accord-
ingly, breaking the Boolean form into several MOL operations
allows its execution inside the proposed computational memory.
Thus, the execution of an arbitrary Boolean function requires
several computational steps so MOL operations are executed

BSD

BLD

SA
INV

ISO

D
E
C
O
D
E
R

MOL-memory-B

BLD

SA
INV

ISO

BSD

D
E
C
O
D
E
R

I

O

C

m

n

MOL-memory-A

MOL-memory-B

Vw Vr Gnd

Vw Vr Gnd

Fig. 8. Computational Memory Architecture

MOL-Memory-A

MOL-Memory-B

Write in

Read out

Macro-Instruction

Control Unit
Processing area

Processing area

17 bit

9 bit

N bit

N bit

e.g. Add [MA(m), MB(n)]

8 bit

Micro-Instructions
e.g. MA(m) = MA(m) AND MB(n)

m

n

Fig. 9. Architecture diagram of MOL-based computational memory with its
dedicated control unit

iteratively to finalize the desired arithmetic task. For this
purpose, an external controller, which arranges these iterative
operations is needed. Fig. 9 shows the block diagram which

7

TABLE I
ENCODING TABLE

110 AND AND
101 Read Read
011 Write Write
011 OR OR
1 Enable Write Isolate Pass Enable Write Isolate Pass Select-out
0 Disable Overwrite Connect Invert Disable Overwrite Connect Invert Select-in

Operation Binary Micro-Instruction EA BLDA ISOA ModeA INVA BSDA EB BLDB ISOB ModeB INVB BSDB Sel

0 00000 MA(m) = I 1 1 1 0 1 1 1 1 0 x 0 1 1 1 x 1 0
1 00001 MB(n) = I 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0
2 00010 O =MA(m) 1 x 0 1 0 1 1 1 0 0 1 1 1 1 1 1 x
3 00011 O =MB(m) 0 x 0 1 1 1 x 1 1 x 0 1 0 1 0 1 x
4 00100 O =MA(m) 1 x 0 1 0 1 1 1 0 0 1 1 1 1 0 1 x
5 00101 O =MB(m) 0 x 0 1 1 1 x 1 1 x 0 1 0 1 1 1 x
6 00110 MA(m) =MB(n) 1 1 1 0 1 1 x 1 1 x 0 1 0 1 0 1 1
7 00111 MB(n) =MA(m) 1 x 0 1 0 1 1 1 1 1 1 0 1 1 x 1 x
8 01000 MA(m) =MB(n) 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 1 1
9 01001 MB(n) =MA(m) 1 x 0 1 0 1 0 1 1 1 1 0 1 1 x 1 x
10 01010 MA(m) =MA(m) AND I 1 0 1 1 1 0 1 1 0 x 0 1 1 1 x 1 0
11 01011 MB(n) =MB(n) AND I 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0
12 01100 MA(m) =MB(n) OR I 1 0 1 0 1 1 1 1 0 x 0 1 1 1 x 1 0
13 01101 MB(n) =MB(m) OR I 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0
14 01110 MA(m) =MA(m) AND MB(n) 1 0 1 1 1 0 x 1 1 x 0 1 0 1 0 1 1
15 01111 MB(n) =MB(n) AND MA(n) 1 x 0 1 0 1 1 1 1 0 1 1 1 0 x 1 x
16 10000 MA(m) =MA(n) OR MB(n) 1 0 1 0 1 1 x 1 1 x 0 1 0 1 0 1 1
17 10001 MB(n) =MB(m) OR MA(n) 1 x 0 1 0 1 1 1 1 0 1 0 1 1 x 1 x
18 10010 MA(m) =MA(m) AND MB(n) 1 0 1 1 1 0 x 1 1 x 0 1 0 1 1 1 1
19 10011 MB(n) =MB(n) AND MA(n) 1 x 0 1 0 1 0 1 1 0 1 1 1 0 x 1 x
20 10100 MA(m) =MA(m) OR MB(n) 1 0 1 0 1 1 x 1 1 x 0 1 0 1 1 1 1
21 10101 MB(n) =MB(m) OR MA(n) 1 x 0 1 0 1 0 1 1 0 1 0 1 1 x 1 x
22 10110 MA(m) =MB(n) << 1 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 0 1
23 10111 MB(n) =MA(m) << 1 1 x 0 1 0 1 1 0 1 1 1 0 1 1 x 1 x
24 11000 MA(m) =MA(m) AND [MB(n) << 1] 1 0 1 1 1 0 x 1 1 x 0 1 0 1 0 0 1
25 11001 MB(n) =MB(n) AND [MA(n) << 1] 1 x 0 1 0 1 1 0 1 0 1 1 1 0 x 1 x
26 11010 MA(m) =MA(n) OR [MB(n) << 1] 1 0 1 0 1 1 x 1 1 x 0 1 0 1 0 0 1
27 11011 MB(n) =MB(m) OR [MA(n) << 1] 1 x 0 1 0 1 1 0 1 0 1 0 1 1 x 1 x
28 11100 MA(m) =MB(n) << 1 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 0 1
29 11101 MB(n) =MA(m) << 1 1 x 0 1 0 1 0 0 1 1 1 0 1 1 x 1 x

illustrates the general structure of the memory and the controller.
When the controller receives an instruction from the processor,
it decides the role of the memory whether for storage or
computation. Specifically, for the case of computation, the
controller breaks the received macro-instruction into several
iterative micro-instructions, which can be performed by the
proposed memory. In our case, micro-instructions correspond to
the set of operations listed in Table I. A processing area should
be reserved in each of MOL-memory-A and MOL-memory-
B in the proposed computational memory. The area could be
dynamically changed according to the need (such as the number
of required tasks). Moreover, the location of the processing
area could be also changed periodically. The reason for location
change is to attain better endurance for the memristive memory
cells that are subjected to continuous stress. The design of the
controller is beyond the scope of this paper.

VI. MOL BASED IN MEMORY N-BIT FULL ADDITION

In this section, an N-bit full addition is considered as a case
study to evaluate the functionality of our proposed computa-
tional memory architecture.

A. Proposed iterative N-bit full addition process dedicated for
computational MOL-memory

Generally, full adder is the basic digital building block for
several computational operations (i.e. addition, subtraction and
multiplication). Thus, implementing a full addition process in-
side the memory is the first step toward in-memory computing.
Equations (4) and (5) present the well known expressions of the
1-bit full addition.

S = A⊕B ⊕ Cin (4)

Cout = AB +BCin +ACin (5)

where A and B are the inputs, Cin is the input carry value, S is
the 1-bit adder output and Cout is the output carry. The operator
⊕ corresponds to the boolean XOR. Assume that all the inputs
are initially stored in the memory. The boolean functions of S
and Cout are written in the form of sum of products (SoP),
so that their expressions could be mapped into the proposed
computational memory using sequential MOL operations. The
inputs of a given MOL operation should be aligned on the
same columns (ie. same bit-lines) in the memory, otherwise,
a pre-shifting process is required to align the corresponding
inputs. Accordingly, the number of steps required to achieve
the computation of S and Cout is affected by the relative
positions of the input A, B and Cin inside the memory. In
order to minimize the number of computational steps as well
as reserve the minimum possible processing area, a dedicated
N-bit addition process is proposed. The process uses a specific
sequence of each operation listed in Table I. Consider the two
N-bit vectors AN and BN . The addition of AN and BN leads
to the vector sum SN+1. Normally, the additional 1-bit in SN+1

is reserved for the expected overflow in the addition process.
We propose to follow the procedure illustrated in Algorithm 1
to achieve a vector level addition of AN and BN :

• Stage 1: The vector sum S0 which is of length N + 1 is
initialized by the bitwise XOR of AN and BN . Similarly, the
vector carry C0 of length N + 1 is initialized by the bitwise
AND of AN and BN . The expressions of S0 and C0 are
presented in (6) and (7) respectively.

S0 = A⊕B (6)

C0 = AB (7)

• Stage 2: Each time, a new vector sum Si+1 and vector carry
Ci+1 are created based on their previous values Si and Ci

respectively. Equation (8) and (9) demonstrate the respective

8

expressions of Si+1 and Ci+1. This process is repeated N−1
times.

Si+1 = Si ⊕ (Ci << 1) (8)

Ci+1 = Si (Ci << 1) (9)

The operator "<< 1" stands for the 1-bit shift to the left. At
the end of this iterative process, the final obtained vector SN−1
corresponds to the sum of AN and BN while CN−1 will be a
zero vector.

Algorithm 1 N-bit addition dedicated for computation inside
MOL-memory

1: procedure ADD(A,B) . A and B are N-bit vectors
2: S0 ← A⊕B
3: C0 ← AB
4: for i← 0 to N − 2 do
5: Si+1 ← Si ⊕ (Ci << 1)
6: Ci+1 ← Si(Ci << 1)
7: end for
8: return SN−1 . The sum of A and B
9: end procedure

B. In-memory N-bit full addition procedure

The proposed iterative N-bit addition process can be mapped
into the computational MOL-memory using the operations listed
in Table I. Fig. 10 shows a space-time representation of the N-bit
full addition process, which is realized within MOL-memory-
A and MOL-memory-B. For each computational step, the new
contents of the memories are listed in a new single column in
Fig. 10. Assume the case where the two vectors AN and BN ,
that are subjected to addition, are initially stored inside MOL-
memory-A at the addresses m1 and m2 respectively. Additional
two word-lines have to be reserved inside MOL-memory-B to
attain the addition of AN and BN . The two stages that are
presented in section VI-A are realized as follows:

• Stage 1: Corresponds to the steps between 0 and 5 using the
six micro-operations that have the sequence order shown in
Fig. 10. At the end of this stage, the bitwise AND of A and
B (i.e. C0 = AB) is stored in MOL-memory-A while the
XNOR of A and B (i.e. S0 = A⊕B) is stored in MOL-
memory-B.

• Stage 2: In this stage, the steps between 6 and 11 are
repeated N-1 times. Their corresponding micro-instructions
have the sequence order shown in Fig. 10. Each time the
initial vector Ci is shifted to the left by one bit and the
resulting vector undergoes bitwise AND with the initial vector
Si. The obtained result is referred as Ci+1, which expression
is presented in (9). Simultaneously, the shifted version of
Ci undergoes bitwise XNOR with the initial vector Si to
obtain the new vector sum Si+1. At the end of this process,
the vector SN−1 is stored in MOL-memory-B. Thus, an
additional step is required to make a bitwise inversion of the
obtained vector. The resulting vector SN−1, which represents
the N-bit addition of the vectors A and B, is stored in MOL-
memory-A.

C. Space-time analysis of the N-bit addition process

The total number of computational steps required to complete
the N-bit addition is 6N+1 steps as shown in Fig. 10. The total
number of memristors reserved for the execution of the N-bit
addition is 4N memristors corresponding to four rows of the
MOL-memory architecture. These rows include the initial loca-
tions of A and B, although the initial bits of the vectors A and
B are lost. However, in some cases, the destruction of the input
vectors is undesired, especially when these inputs are required
for another computational tasks. In order to avoid this case,
pre-copy operations of the two input vectors A and B could be
performed to reserve safe versions of these vectors. Thus, two
additional computational steps are required for this case and
the new total number of computational steps becomes 6N + 3.
The considered operation sequence in Fig. 10 corresponds to
the case where A and B are both located in MOL-memory-A.
However, another two cases should be considered also: (i) If
A and B belong to different MOL-memories, one additional
pre-copy operation could be performed to drag the input vector
contained in MOL-memory-B to MOL-memory-A. (ii) If A and
B are both contained in MOL-memory-B, two additional pre-
copy operations are needed to drag them to MOL-memory-A.
These pre-copy operations are performed to maintain the same
operation sequence, which is presented in Fig. 10. Pre-copy
operations can be avoided with different sequences (one for
each case, with common parts).

VII. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we study the performance of the proposed
computational memory architecture which is implemented using
a realistic model of Magnetic Tunnel Junction (MTJ) device and
a CMOS 65nm technology node. The study includes timing
analysis, energy consumption and robustness against device
variability.

A. Adopted memristive device

Several memristive devices have been explored in the lit-
erature. In fact, MOL technique could apply to all types of
bipolar memristive devices holding two resistance states RON

and ROFF . Among these devices, memristors such as HfOx

[38] and TiO2 [32] exhibit promising characteristics with their
high switching speed (sub-ns) and their high ROFF /RON

ratio (> 100). However, current memristor technologies suffer
from endurance limitations. Although several efforts have been
carried out to enhance endurance [38], the allowed number of
switchings per memristor is still limited in the range of 106 to
1012 for the best case. This value is relatively low for targeting
intensive computations inside memristive crossbars. The Spin
Transfer Torque Magnetic Memory (STT-MRAM) [39], which
have been redescribed in terms of memristive systems [40], is
considered as one of the most promising nonvolatile memories
(NVM). STT-MRAM is eligible for high reliability applications
[41] due to its high endurance (> 1015) [32]. As illustrated in
Fig. 11, an MTJ cell is mainly composed of two ferromagnetic
layers sandwiching an ultra-thin tunnel barrier. The resistance
of the MTJ cell depends on the relative orientation of magneti-
zation in the free and reference layers. The low resistance state

9

𝑆𝑁−1 X

X X

𝐶𝑁−1 𝑆𝑁−1

X X

- 6N

- 8

𝐵 𝐵 𝐵 𝐵 𝐴𝐵 𝐴𝐵 𝐴𝐵 𝐶0 𝐶0 𝐶0 ≪ 1 𝐶0 ≪ 1 𝑆0(𝐶0 ≪ 1) 𝑆0(𝐶0 ≪ 1) 𝑆0(𝐶0 ≪ 1) 𝐶1

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 X X X 𝑆0 𝑆0 𝑆0 𝑆0 X

X X 𝐵 𝐵 𝐵 𝐴 𝐵 𝐴 ⊕ 𝐵 𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 X

X 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 X 𝐶0 ≪ 1 𝐶0 ≪ 1 𝐶0 ≪ 1 𝐶0 ≪ 1 𝑆0 𝐶0 ≪ 1 𝑆0⊕ (𝐶0 ≪ 1) 𝑆1

M
O
L-

M
e
m
o
ry
-B

M
O
L-

M
e
m
o
ry
-A

- 0 1 2 3 4 5 - 6 7 8 9 10 11 -

- 9 9 8 18 19 17 - 29 8 8 18 19 17 -

Step

Operation

Repeat N-1 times

SUM

Fig. 10. Operations sequence for an in-memory N-bit addition process using MOL-memory

(logic ’0’) of the MTJ corresponds to the parallel configuration
(P) with resistance RP , while its high resistance state (logic
’1’) is reached in the case of anti-parallel configuration (AP)
with resistance RAP . The magnitude of the applied current I
must exceed a critical value noted as IC0 to allow switching. In

AP state

P state

Resistance

Magnetic field

Free layer

Tunnel barrier

Reference layer

I>IC0

I>IC0

(a) (b)

Fig. 11. Typical MTJ: (a) Core structure, (b) Resistance variation

contrast to memristors, MTJs are characterized by a relatively
low margin between RP and RAP . The corresponding margin
is commonly evaluated as the Tunnel Magnetoresistance (TMR)
ratio, whose expression is presented in (10):

TMR =
∆R

RP
=
RAP −RP

RP
(10)

However, such a low margin has no effect on switching an MTJ
cell but on the corresponding sensing mechanism of the state
of this cell. This requires a more complicated sensing driver to
estimate and decide the corresponding state of a given selected
row inside the memory. In this work, we have used MTJs with
perpendicular magnetic anisotropy (PMA). The adopted PMA
MTJ is formed of CoFeB/MgO/CoFeB layers. The physical
model describing the static, dynamic and stochastic behaviors
of the STT-PMA-MTJ is presented in [42] and [43]. In order
to fit with experimental results in the literature, the technology
parameters corresponding to the material composition are kept
at their default values. Other parameters which depend on
the designers’ choice are presented in Table II with their
corresponding values. It is worth highlighting that the low TMR
value of the adopted STT-PMA-MTJ device usually lead to a
high complexity of SAs when the memory data needs to be
read out. However, in our case, the proposed simple design
comprised of three cascaded inverters and a reference resistor
was verified to be sufficient when combined with the designed
INV and BSD blocks (Fig. 7). In fact, these two CMOS based
blocks are leveraged in order to perfectly regenerate the voltage
levels corresponding to the amplified output of the cascaded

inverters. Fig. 12 shows the switching behavior of an MTJ
device when it is fed with a square signal of amplitude 1.2V .
τAP−P and τP−AP correspond to the switching delays from AP to
P state and the reverse case respectively. In fact, switching delay
varies according to the applied voltage level. Fig. 13 illustrates
the variation of τAP−P and τP−AP with respect to the applied
voltage level. The graph indicates that switching delay decreases
with the increase of the voltage while switching from P to AP
state is faster than the reverse operation (i.e. τAP−P < τP−AP).

The choice of the memristive device type is not constrained
by a specified MOL requirement. It can be observed from the
mechanism of MOL technique that it involves direct access to
the terminals of memristive devices which highly resembles
conventional write operation. During the operation of MOL,
the potential difference between the terminals of the memristive
device always attains a binary level. Accordingly, MOL can be
implemented in a wide range of memristive memories without
specifying particular device features. In contrast, the structure
of pre-existing logic design styles either establishes a series
connection of a resistor (e.g. IMPLY) or series connection of
the memristive devices (e.g. MAGIC) for normal operation. This
undoubtedly prevents direct access to the memristive device
terminals and consequently imposes specific device constraints,
such as the requirement of sufficient HRS/LRS ratio and/or
operated with thresholds type devices only.

TABLE II
ADOPTED VARIABLES AND PARAMETERS FOR PMA MTJ DEVICE

Parameter Value Description
tox 0.85nm Thickness of oxide barrier
TMR(0) 70% TMR ratio with 0 stress voltage
Area π × 20nm× 20nm MTJ surface
tsl 1.3nm Thickness of free layer

B. Performance analysis

Transient simulation has been conducted for the proposed
design of the MOL-memory architecture. Based on the adopted
STT-PMA-MTJ device and the CMOS 65nm process, simula-
tions have been carried out using Cadence Virtuoso toolset. In
order to evaluate the performance of the architecture, the N-bit
addition process described in Section VI is performed. The size
of the crossbar is chosen to be 8 × 8 for MOL-memory-A as
well as MOL-memory-B. The size N is chosen to be 8 bits for

10

τP-AP τAP-P

V(applied)

I(current)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

V
(V

)

300

250

200

150

100

50

0.0

-50

-100

-150

-200

-250

-300

-350

350

I(
u

A
)

Time (ns)

Q(internal state)

Fig. 12. Switching behavior of MTJ device when fed with square signal

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

Delay 1 to 0

Delay 0 to 1

Applied voltage (V)

Sw
it

ch
in

g
d

el
ay

 (
n

s)

τP-AP

τAP-P

Fig. 13. Switching delay of an MTJ cell as function of applied voltage level

both numbers A and B. The corresponding operating voltage is
set to 1.2V for logic ’1’ and −1.2V for logic ’0’. Based on the
obtained transient results, total latency is evaluated as well as
the total energy consumption. As an example, Fig. 14 presents
the corresponding internal states of the 4 word-lines that are
reserved for the 8-bit addition process, which is performed on
the two arbitrary vectors A=[01011011] and B=[00111111].
The control signals of the MOL-memory architecture follow
the operation sequence presented in of Fig. 10.

1) Timing analysis: The first two steps correspond to the
initialization of vectors A and B inside MOL-memory-A. The
corresponding sum S=[10011010] is evaluated after 6N + 1
computational steps which is equal to 49 for N = 8. In fact,
the max delay is noticed to be τMax = 1.7ns which is greater
than the max switching delay of MTJ devices operating at
1.2V . This is due to the voltage drop noticed along CMOS
drivers. The actual voltage supplied to MTJ devices is 0.9V
(could be interpreted from Fig. 13). This significant voltage drop
(25%) is due to the adoption of low values of RP and RAP .
Moreover, the width W of MOSFETs has a direct effect on the
voltage drop percentage. This voltage drop could be mitigated
by increasing W , but this induces overheads on the total area
of CMOS drivers.

Therefore, the duration (T) of each computational step must
be greater than τMax. The variability in τMax due to the stochastic
switching behavior of MTJs should also be considered. Thus,
an additional guard interval (τg) is introduced to guarantee the
switching of the MTJs. The resulting step duration for the

proposed MOL-memory architecture is T = τMax+τg = 1.7+τg.
We set τg at 100 ps which corresponds to 6% of τMax, so the
duration T is equal to 1.8ns. The minimum time required for
finalizing the addition operation (neglecting the 2 initialization
steps) is evaluated as 49× 1.8ns = 88.2ns.

M
A
(1

)
M

A
(2

)
M

B
(6

)
M

B
(7

)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130

1
1
1
1
1
1
0
0

1
1
0
1
1
0
1
0

0
1
0
1
1
0
0
1

Time (ns)

Sum

Fig. 14. Transient simulation for the in-memory 8-bit addition process

2) Robustness against resistance variability: Due to the limit
of the manufacturing technology, the actual thickness of oxide
layer and free layer of MTJ devices cannot be fixed at a constant
value. They typically vary in a small range, but can lead to a
relatively important variation in the values of LRS and HRS of
MTJ. Therefore, we have examined the effect of MTJ resistance
variability on the performance of our proposed MOL-based
computational memory architecture. Simulations are conducted
by performing the 8-bit addition. The adopted MTJ parameters
TMR, tsl and tox are kept as presented in Table II while
subjecting them to a random process. The parameters are chosen
to follow either uniform or Gaussian distribution. In Gaussian
distribution, no error has been detected even when reaching
a variation percentage of 21% for TMR, tsl and tox. As for
uniform distribution, the tolerated variation reaches 7%. This
demonstrates the robustness of the proposed design against the
resistance variability of MTJ devices.

3) Energy estimation: Energy consumption differs according
to the operation: read, write or performing computation. In this
section we will focus on the energy consumed by the memris-
tive crossbar of the MOL-memory architecture neglecting the
consumed energy by the peripheral drivers.

(i) Write-energy: Consider a single MTJ device located
inside MOL-memory architecture. The energy consumed when
a single bit is written into this MTJ device mainly depends on
its previous resistance state (RP or RAP) and its final one.

11

Hence, the 4 cases for write-energy are considered in (11).

Ew0/0
=

Vw
2

R
′
AP

T

Ew0/1
=

Vw
2

R
′
AP

τAP−P +
Vw

2

R
′
P

(T − τAP−P)

Ew1/0
=
Vw

2

R
′
P

τP−AP +
Vw

2

R
′
AP

(T − τP−AP)

Ew1/1
=
Vw

2

R
′
P

T

(11)

where Ewi/j
corresponds to the write-energy needed to put the

MTJ device in state i ∈ {0, 1}, after it was in the previous state
j ∈ {0, 1}; Vw and T are the write voltage and write duration
respectively; R

′

AP and R
′

P represent the resistance states of
1T1M cell. R

′

AP = RAP + RMOS and R
′

P = RP + RMOS .
Generally, the values of i and j are not deterministic, but the
4 cases presented in (11) are considered as equiprobable, since
there is no pre-knowledge about the data bits inside the memory
as well as the bits that would be written. Thus, the average write-
energy is estimated as the average sum of the 4 write-energy
cases as presented in (12).

Ew =
1

4

∑
i,j

Ewi/j
=

Vw
2

R
′
AP

(
T

2
− ∆τ

4

)
+
Vw

2

R
′
P

(
T

2
+

∆τ

4

)
(12)

where ∆τ = τP−AP − τAP−P . Assuming that the term
∆τ

4
is

almost negligible compared to
T

2
, the overall expression in (12)

is simplified in (13).

Ew ≈
Vw

2

2Rw
T with Rw =

R
′

PR
′

AP

R
′
P +R

′
AP

(13)

Rw represents the equivalent resistance of two MTJs having
opposite states and connected in parallel.

(ii) Read-energy: Reading a single MTJ device requires a
sensing voltage Vr and a reference resistor RRef connected in
series with a MOSFET. The total resistance of this 1T1R cell
is R

′

Ref . The corresponding state of the sensed MTJ device is
assumed to be stable. The two possible cases for read-energy
are presented in (14).

Er0 =
Vr

2

R
′
AP +R

′
Ref

T

Er1 =
Vr

2

R
′
P +R

′
Ref

T

(14)

where Er0 and Er1 represents the required energy consumption
for sensing AP and P states respectively during a period T . The
corresponding average read-energy is expressed in (15).

Er =
Vr

2

2Rr
T with Rr =

(R
′

P +R
′

Ref)(R
′

AP +R
′

Ref)

(R
′
P +R

′
Ref) + (R

′
AP +R

′
Ref)

(15)
(iii) Computation-energy: Computational operations that are

performed inside MOL-memory architecture are classified into
MOL or copy operations. Table III summarizes the energy
consumed by each type of operation. Using the specifications

of the adopted MTJ which are listed in Table IV, the average
energy consumed by a MOL operation could be expressed as
EMOL = Ew/2 + Er = 0.196 pj whereas that consumed by a
copy operation is calculated as ECOPY = Ew+Er = 0.333 pj.

Normally, computation inside MOL-memory architecture is
performed on N bits simultaneously. For the N -bit addition
process which is performed within 6N + 1 cycles, 3N cycles
corresponds to MOL operations while 3N + 1 cycles corre-
sponds to copy operations. Thus, the overall consumed energy
(ET) could be expressed as in (16).

ET = (3N)(N EMOL) + (3N + 1)(N ECOPY) (16)

By substituting the corresponding values of EMOL and ECOPY

presented in Table III, the expression of the total energy
becomes ET = 1.587N2 + 0.333N . Specifically, for the 8-
bit addition process, ET is equal to 104.2 pJ . The value of the
energy consumption extracted by simulation is 124.43 pJ .

TABLE III
ENERGY CONSUMED BY A COMPUTATIONAL OPERATION

In1 In2 MOL-AND MOL-OR Copy
0 0 Ew0/0

+ Er0 Er0 Ew0/0
+ Er0

0 1 Er0 Ew1/0
+ Er0 Ew1/0

+ Er0

1 0 Ew0/1
+ Er1 Er1 Ew0/1

+ Er1

1 1 Er1 Ew1/1
+ Er1 Ew1/1

+ Er1

TABLE IV
SPECIFICATIONS

Specification Value
RAP 6K
RP 3.97K
RMOS 0.5K
RRef 4.8K
Vw 0.588V
Vr 0.9V
τAP−P 1.4ns
τP−AP 1.7ns
T 1.8ns

VIII. COMPARISON

In this section, the proposed MOL-memory architecture has
been compared with recently published relevant designs (listed
in Table V) targeting in-memory computing. The comparison
has been carried out based on the performance of N-bit addition
in terms of latency, energy consumption and utilized area. Note
that the considered area incorporates only the memristors in-
volved in the computation regardless of the size of the crossbar.

1) MOL vs IMPLY and MAGIC:
• Except for the parallel approach in [10], our proposed design,

which uses only 6N + 1 steps to perform addition, outper-
forms all IMPLY and MAGIC based designs listed in Table V
in terms of number of computational steps. In fact, [10] uses
the parallel approach which is intended to increase the level of
parallelism in computation. However this approach requires
significant modifications in the crossbar structure by adding
connections between its rows. This leads to an increased area
compared to the conventional crossbar structure.

• The step delay in our proposed design is 1.8ns. Although
the designs presented in [12], [30] and [13] adopt memristive

12

TABLE V
COMPARISON OF DIFFERENT LOGIC FAMILIES FOR N-BIT ADDITION IN TERMS OF AREA, LATENCY AND ENERGY CONSUMPTION

Reference Method # Steps Step delay Latency (ns) Area (# memristive cells) Energy (pJ)
(This work) MOL 6N + 1 1.8ns 10.8N + 1.8 4N 1.587N2 + 0.333N
[10] IMPLY Serial 29N - - 2 ∼ 9.5N
[10] IMPLY Parallel 5N + 18 - - 6N − 1 ∼ 9.5N
[11] IMPLY 89N - - 4 -
[12] MAGIC Area optimized 15N 1.3ns 19.5N 5 ∼ 3.365N
[12] MAGIC Latency optimized 12N + 1 1.3ns 15.6N + 1.3 11N − 1 ∼ 3.365N
[12] MAGIC Transpose I 15N + 1 1.3ns 19.5N + 1.3 22N − 3 ∼ 6.53N
[12] MAGIC Transpose II 10N + 3 1.3ns 13N + 3.9 13N − 3 ∼ 4.72N
[13] MAGIC 12N + 1 1.12ns 13.44N + 1.12 14N + 1 0.684N
[30] MAGIC (Naive mapping) 12N 1.43ns 17.6N 15N 0.684N
[30] MAGIC (Compact mapping) 16N 1.43ns 22.8N 24N 0.894N
[14] MAGIC 20N + 15 1.89ns 37.8N + 28.35 12 0.3N
[15] MAJ (Naive) ∼ 22N - - ∼ 4N -
[15] MAJ (MIG rewriting) ∼ 16N - - ∼ 3N -
[15] MAJ (Rewriting and compilation) ∼ 15N - - ∼ 2N -
[16] CRS (PC-Adder) 2N + 4 - - 2N + 1 -
[16] CRS (TC-Adder) 4N + 5 - - N + 2 -

devices that provide better step delay (1.12ns to 1.43ns),
the total latency in our proposed design is still the minimum
(10.8N+1.8 ns). The best case achieved with the competitor
designs is recorded in [12] with 13N + 3.9ns (i.e. ∼20%
more latency).

• In the proposed design, 4N memristors participate in the
execution of the N-bit addition. This number ranges from
11N − 1 to 24N for the majority of the designs based
on MAGIC, so our proposed design exhibits ×1.75 to ×5
area reduction. On the other hand, the IMPLY based serial
approach [10], MAGIC based area optimized design [12] and
the design presented in [11] use a fixed number of memristors
to perform addition operation. In other words, the required
number of memristors is independent of the size N of the
addition operation. This area optimization comes at the cost
of high number of computational steps (×2.5 to ×18.8).

• The average energy consumed in pJ for the memristive
crossbar in our design is 1.5867N2 +0.333N . This quadratic
expression indicates a significant energy consumption in the
order of ×N as compared to the linear energy expressions
for the other designs listed in the table. The reason for this
energy gap is that for each step the same bitwise operation
is performed on the whole word-line (size N). However, the
other approaches from the literature perform 1 bit operation
in each step. Although our methodology induces overheads
on the total energy consumption, working on the vector
level rather than bit level greatly simplifies the corresponding
control unit and reduces its complexity.
2) MOL vs MAJ and CRS:

• Logic representation using MIGs has experimentally shown
promising results in logic optimization [44]. Memristive
devices can efficiently execute the intrinsic resistive MAJ
operation. The authors of [23][15] present a programmable
in-memory computing system namely Programmable Logic-
in-Memory (PLiM). The instruction set for the PLiM archi-
tecture is based on the MAJ operation. As investigated in
[15], the number of required memristors for the addition
is ∼ 2N , which is equal to 50% of that in our approach.
However, the execution of an N-bit addition inside PLiM
requires 15N cycles for the best case, which is ×2.5 the
number of cycles required in our proposed design. This high

number of computational steps is related to the repeated
read out operations of intermediate results, which impacts in
addition the step delay and energy consumption (not evaluated
in [15]).

• The number of computational steps achieved in [16], which
uses the CRS approach, is less than that of our proposed
computational memory. However, other parameters such as
the step delay which is not investigated by the authors is ex-
pected to be greater. This is due to the fact that the presented
architecture, based on two separated memory blocks, uses
an intermediate control unit which reads data bits from one
memory block and redistribute them along BLs and WLs of
the other memory block. This process increases significantly
the overall critical path and consequently the step delay.
The number of memristive cells required in [16] is also less
than that in our proposed design. However, it is clear that
based on this approach, the reserved area corresponds to a
fixed location inside the memory, as the input bits cannot be
shared to all WLs especially for large memory sizes. This
affects the endurance of memristive cells participating in the
computation which are subjected to continuous stress.
As explained in Section V-B, the proposed memristive com-

putational memory is able to perform any general arithmetic
function by breaking it into a netlist of iterative MOL opera-
tions. As MOL is based on the primitive AND/OR operations,
the ABC tool [45], which has been employed for existing logic
design styles [30][31], could be also leveraged in order to realize
the synthesis task. This will be considered in our future work.

IX. CONCLUSION

In this paper, the MOL design style is introduced together
with an original architecture for MOL-based computational
memory. This novel logic design style is inspired from a digital
representation of memristors. Unlike existing approaches, MOL
can operate with different memristor technologies, regardless
of LRS-HRS margin and with linear as well as threshold-
type memristive devices. Furthermore, the proposed original
computational memory architecture, with appropriate drivers
and control sequences, allows the execution of numerous logic
operations, at bit or vector-level, in one or two computational
steps at most. In order to illustrate the benefits of the proposed

13

approach and to evaluate its performances, the implementation
of an N -bit full addition using the proposed MOL-based com-
putational memory has been detailed. The design is simulated
in Cadence Virtuoso environment using CMOS 65nm process
and realistic model parameters for STT-PMA-MTJ device. Re-
sults comparison with existing recent approaches demonstrates
significant reductions in terms of latency and area.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. on circuit
theory, vol. 18, no. 5, pp. 507–519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, p. 80, 2008.

[3] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G.
Friedman, “MRL—memristor ratioed logic,” in proc. of the Int. Workshop
on Cellular Nanoscale Networks and their Applications, 2012.

[4] J. Chowdhury, K. Das, and K. Rout, “Implementation of 24T memristor
based adder architecture with improved performance,” Int. Journal of
Electrical, Electronics and Data Communication, vol. 3, no. 6, 2015.

[5] K. A. Ali, M. Rizk, A. Baghdadi, J.-P. Diguet, and J. Jomaah, “MRL
crossbar-based full adder design,” in proc. of the IEEE Int. Conf. on
Electronics, Circuits and Systems (ICECS), 2019.

[6] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, pp. 1–16, 2020.

[7] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17,
no. 2, pp. 34–44, 1997.

[8] S. Khoram, Y. Zha, J. Zhang, and J. Li, “Challenges and opportunities:
from near-memory computing to in-memory computing,” in Proc. of the
ACM on International Symposium on Physical Design, 2017, pp. 43–46.

[9] S. Hamdioui et al., “Applications of Computation-In-Memory Architec-
tures based on Memristive Devices,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019, pp. 486–491.

[10] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (IMPLY) logic: Design
principles and methodologies,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, 2014.

[11] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in proc. of the IEEE Int. Symp. on Nanoscale Architectures, 2009.

[12] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using Memristor-Aided logic (MAGIC),” IEEE
Trans. on Nanotechnology, vol. 15, no. 4, pp. 635–650, 2016.

[13] P. Thangkhiew, R. Gharpinde, D. N. Yadav, K. Datta, and I. Sengupta,
“Efficient implementation of adder circuits in memristive crossbar array,”
in proc. of the IEEE Region 10 Conf. (TENCON), 2017.

[14] P. L. Thangkhiew, R. Gharpinde, P. V. Chowdhary, K. Datta, and
I. Sengupta, “Area efficient implementation of ripple carry adder using
memristor crossbar arrays,” in proc. of the Int. Design & Test Symp. (IDT),
2016.

[15] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, Logic
Synthesis for Majority Based In-Memory Computing, Chapter in Advances
in memristors, memristive devices and systems. Springer, 2017.

[16] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE journal on emerging
and selected topics in circuits and systems, vol. 5, no. 1, pp. 64–74, 2015.

[17] C.-X. Xue et al., “A 1Mb multibit ReRAM computing-in-memory macro
with 14.6 ns parallel MAC computing time for CNN based AI edge
processors,” in proc. of the IEEE Int. Solid-State Circuits Conference-
(ISSCC), 2019.

[18] W.-H. Chen et al., “A 16Mb dual-mode ReRAM macro with sub-
14ns computing-in-memory and memory functions enabled by self-write
termination scheme,” in proc. of the IEEE Int. Electron Devices Meeting
(IEDM), 2017.

[19] C.-X. Xue et al., “A 22nm 2Mb ReRAM compute-in-memory macro with
121-28TOPS/W for multibit MAC computing for tiny AI edge devices,”
in proc. of the IEEE Int. Solid-State Circuits Conference-(ISSCC), 2020.

[20] W.-H. Chen et al., “CMOS-integrated memristive non-volatile computing-
in-memory for AI edge processors,” Nature Electronics, vol. 2, no. 9, pp.
420–428, 2019.

[21] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE Trans.
Circuits Syst. II: Exp. Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[22] X. Fang and Y. Tang, “Circuit analysis of the memristive stateful impli-
cation gate,” Electronics Letters, vol. 49, no. 20, pp. 1282–1283, 2013.

[23] P.-E. Gaillardon et al., “The programmable logic-in-memory (PLiM) com-
puter,” in proc. of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2016.

[24] D. Biolek, Z. Biolek, and V. Biolkova, “Pinched hysteretic loops of ideal
memristors, memcapacitors and meminductors must be ‘self-crossing’,”
Electronics letters, vol. 47, no. 25, pp. 1385–1387, 2011.

[25] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “An energy-efficient
memristive threshold logic circuit,” IEEE Trans. on Computers, vol. 61,
no. 4, pp. 474–487, 2012.

[26] L. Guckert and E. E. Swartzlander, “MAD gates—memristor logic design
using driver circuitry,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 64,
no. 2, pp. 171–175, 2016.

[27] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Beyond
von Neumann—logic operations in passive crossbar arrays alongside
memory operations,” Nanotechnology, vol. 23, no. 30, p. 305205, 2012.

[28] K. C. Rahman, D. Hammerstrom, Y. Li, H. Castagnaro, and M. A.
Perkowski, “Methodology and design of a massively parallel memristive
stateful IMPLY logic-based reconfigurable architecture,” IEEE Trans. on
Nanotechnology, vol. 15, no. 4, pp. 675–686, 2016.

[29] R. B. Hur and S. Kvatinsky, “Memristive memory processing unit (MPU)
controller for in-memory processing,” in proc. of the Int. Conf. on the
Science of Electrical Engineering (ICSEE), 2016.

[30] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta, “A scalable in-
memory logic synthesis approach using memristor crossbar,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 2, pp. 355–366, 2018.

[31] P. L. Thangkhiew, R. Gharpinde, and K. Datta, “Efficient mapping of
Boolean functions to memristor crossbar using MAGIC NOR gates,” IEEE
Trans. Circuits Syst. I: Reg. Papers, no. 99, pp. 1–11, 2018.

[32] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnology, vol. 8, no. 1, p. 13, 2013.

[33] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819, 2015.

[34] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectronics Journal, vol. 44, no. 2, pp. 176–183, 2013.

[35] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in proc. of the IEEE Int. Symp. on Information
Theory (ISIT), 2013.

[36] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive devices
array: Data-dependent statistical model and self-adaptable sense resistance
for RRAMs,” Proc. of the IEEE, vol. 100, no. 6, 2012.

[37] Y. Huai et al., “Spin-transfer torque MRAM (STT-MRAM): Challenges
and prospects,” AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[38] H. Lee et al., “Evidence and solution of over-reset problem for HfOx

based resistive memory with sub-ns switching speed and high endurance,”
in proc. of the Int. Electron Devices Meeting, 2010.

[39] S. Ikeda et al., “A perpendicular-anisotropy CoFeB–MgO magnetic tunnel
junction,” Nature materials, vol. 9, no. 9, p. 721, 2010.

[40] X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, “Spintronic memristor
through spin-torque-induced magnetization motion,” IEEE electron device
letters, vol. 30, no. 3, pp. 294–297, 2009.

[41] T. Hanyu et al., “Standby-power-free integrated circuits using MTJ-based
VLSI computing,” Proc. of the IEEE, vol. 104, no. 10, 2016.

[42] Y. Wang, Y. Zhang, E. Deng, J.-O. Klein, L. A. Naviner, and W. Zhao,
“Compact model of magnetic tunnel junction with stochastic spin transfer
torque switching for reliability analyses,” Microelectronics Reliability,
vol. 54, no. 9-10, pp. 1774–1778, 2014.

[43] Y. Wang et al., “Compact thermal modeling of spin transfer torque
magnetic tunnel junction,” Microelectronics Reliability, vol. 55, no. 9-10,
pp. 1649–1653, 2015.

[44] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,” in
proc. of the IEEE Design Automation Conference (DAC), 2014.

[45] Berkeley Logic Synthesis and Verification Group. (2005). ABC — a
system for sequential synthesis and verification. [Online]. Available:
https://people.eecs.berkeley.edu/ alanmi/abc/

14

Khaled Alhaj Ali received his master degree in Sig-
nal, Telecommunications, Image and speech (STIP), in
2016, from the Lebanese University, Beirut, Lebanon.
He is pursuing a PhD program at the Electronics
department of IMT Atlantique, Brest, France. His cur-
rent research is focused on the design of circuits and
architectures using emerging memristor technologies.

Mostafa Rizk received his Maitrise-es degree in
Electronics, M.Sc in Biomedical Physics, and M.Sc
in Signal, Telecom, Image, and Speech from the
Lebanese University in 2007, 2008 and 2010 respec-
tively. Furthermore, he received his Ph.D. degree in
Sciences and Technologies of Information and Com-
munication from Telecom Bretagne, France in 2014
and a Ph.D degree in Electronics and Communication
from the Lebanese University in 2015. Dr. Rizk was a
post-doctoral researcher at UBS University (France)
and Lab-STICC laboratory CNRS, Lorient, France.

Currently, Dr. Rizk is an assistant professor at International University of
Beirut, Lebanon and associate researcher at IMT-Atlantique, France. His general
research interests include both algorithm development for digital baseband
components and corresponding hardware/software implementations and digital
circuit design; network-on-chip design and new MPSoC architectures based on
emerging non-volatile memory technologies. His recent research activities target
mainly the information and communication technologies (ICT) in systems of
drones.

Amer Baghdadi is a Professor at IMT
Atlantique/Lab-STICC laboratory. He received
his Engineering degree in 1998, Master of Science
degree in the same year and PhD degree in 2002, all
from Grenoble INP (Institut National Polytechnique),
France. Furthermore, he received the accreditation
to supervise research (HDR) in Sciences and
Technologies of Information and Communication
in 2012 from the University of Southern Brittany
(UBS), France. Prof. Baghdadi general technical
area concerns both algorithm development for digital

baseband components and corresponding hardware/software implementations
and digital circuit design. His research activities target mainly digital
communication applications, in addition to other application domains, and
more particularly the design of flexible digital physical layer for future wireless
communication standards. Prof. Baghdadi is IEEE Senior Member. He serves
on the technical program committee for several international conferences. He
co-authored more than 100 papers on scientific journals and proceedings of
international conferences.

Jean-Philippe Diguet is a CNRS director of research
at Lab-STICC, Lorient/Brest, France. He received the
Ph.D. degree from Rennes University (France) in
1996. In 1997, he has been a visitor researcher at
IMEC (Belgium). He has been an associate professor
at UBS University (France) until 2002. In 2003, he
co-funded the dixip company in the domain of wire-
less embedded systems. Since 2004 he is a CNRS
researcher at Lab-STICC, where he has been heading
the MOCS team until 2016. He has been a visitor
researcher at the University of Queensland, Australia

in 2010 and an invited Prof. at Tohoku University, Japan in Nov. 2014 and
May 2019, and at Univ. of São Paulo, Brazil, in Nov. 2016. His current work
focuses on various aspects of embedded system design: Designs and Tools
for NoC-based MPSoC architectures including memory-based computing, Self-
adaptivity for uncertain environments as autonomous vehicles and Design of
dedicated hardware accelerators.

Jalal Jomaah was born in Lebanon, in 1967. He
graduated from the Institut National Polytechnique
de Grenoble (Grenoble INP), France, in 1992. He
received the MS and Ph.D. degrees in electronics from
the same University, in 1992 and 1995, respectively.
In 2002, he obtained the Habilitation diploma from the
INPG authorizing him to supervise PhD. Dissertations.
He joined the Laboratoire de Physique des Com-
posants à Semiconducteurs (LPCS), INP Grenoble, in
1992, where he has been involved in research on the
characterization, modeling, and simulation of Silicon-

On-Insulator MOS transistors, RF characterization, Microwave SC devices
and Electromagnetic modeling. He became Maître de Conférences (Associate
Professor) at Grenoble INP in 1996 where he continued his research activities at
IMEP (Institute of Microelectronics, Electromagnetism and Photonics, Grenoble
INP/CNRS/UJF). He is now Professor at the Lebanese University where he cre-
ated a Master of Science in Microwave Engineering and a research laboratorie
(LEMT). His main research activities were and are in the field MOS/SOI device
physics, fluctuations and low and high frequencies noise, radio-frequencies
applications, EM modeling, Microwave detection. He has supervised more than
20 Ph.D. and was involved in several national and international research projects
on the low and high frequencies noise, reliability, modeling and characterization
of SOI devices for RF applications and low-temperature physics. Dr Jomaah
has co-authored over 50 publications in international scientific journals, 150
communications at international conferences (16 invited papers and review
articles). He has held visiting professorships at Mc Master University of
Canada, Osaka University of Japan, Seoul University of South Korea, Athens
University of Greece, Ain Shams University of Egypt, and United Arab Emirates
University. He obtained in 2017 from CNRS Lebanon the “Research Excellence
Award” and in 2018 the “Career in Science Excellence Award” from Lebanese
Association for the Advancement of Science (LAAS).

Naoya Onizawa (M’09) received the B.E., M.E.,
and D.E. degrees in electrical and communication
engineering from Tohoku University, Japan, in 2004,
2006, and 2009, respectively. He was a PostDoctoral
Fellow with the University of Waterloo, Canada, in
2011, and McGill University, Canada, from 2011 to
2013. In 2015, he was a Visiting Associate Professor
with the University of Southern Brittany, France. He
is currently an Assistant Professor with the Research
Institute of Electrical Communication, Tohoku Univer-
sity. He is also a Researcher with JST PRESTO, Japan.

His main interests and activities are in the energy-efficient VLSI design based on
the asynchronous circuits and probabilistic computation and their applications,
such as brain-like computers. Dr. Onizawa received the Best Paper Award at
the 2010 IEEE ISVLSI, the Best Paper Finalist at the 2014 IEEE ASYNC, and
the Kenneth C. Smith Early Career Award for Microelectronics Research at the
2016 IEEE ISMVL.

Takahiro Hanyu (S’87–M’89–SM’12) received the
B.E., M.E., and D.E. degrees in electronic engineering
from Tohoku University, Sendai, Japan, in 1984, 1986,
and 1989, respectively. He is currently a Professor
with the Research Institute of Electrical Communica-
tion, Tohoku University. His general research interests
include nonvolatile logic circuits and their applications
to ultra-low-power and/or highly dependable VLSI
processors, and post-binary computing and its applica-
tion to brain-inspired VLSI systems. Dr. Hanyu was
a recipient of the Sakai Memorial Award from the

Information Processing Society of Japan in 2000, the Judge’s Special Award
at the 9th LSI Design of the Year from the Semiconductor Industry News of
Japan in 2002, the Special Feature Award at the University LSI Design Contest
from ASP-DAC in 2007, the APEX Paper Award of Japan Society of Applied
Physics in 2009, the Excellent Paper Award of IEICE, Japan, in 2010, Ichimura
Academic Award in 2010, the Best Paper Award of IEEE ISVLSI 2010, the
Paper Award of SSDM 2012, the Best Paper Finalist of IEEE ASYNC 2014,
and the Commendation for Science and Technology by MEXT, Japan in 2015.

