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Motivated by the concept of degeneracy in biology [3], we establish a first connec-
tion between the Multiplicity Principle [4, 5] and mathematical statistics. Specifi-
cally, we exhibit two families of tests that satisfy this principle to achieve the detec-
tion of a signal in noise.

1 Introduction

In [3], Edelman & Gally pointed out degeneracy as the fundamental property allowing
for living systems to evolve through natural selection towards more complexity in fluc-
tuating environments. Degeneracy is defined [3] as “ . . . the ability of elements that are
structurally different to perform the same function or yield the same output”. Degeneracy
is a crucial feature of immune systems and neural networks, at all organization levels.

The Multiplicity Principle (MP) [4, 5], introduced by Ehresmann & Vanbremeersch,
is a mathematical formalization of degeneracy in Categorical terms. The consequences
of this principle, as treated in [4, 5], underpin Edelman & Gally’s conjecture according
to which “complexity and degeneracy go hand in hand” [3].

Another property of many biological and social systems is their resilience: (i) they
can perform in degraded mode, with some performance loss, but without collapsing; (ii)
they can recover their initial performance level when nominal conditions are satisfied
again; (iii) they can perform corrections and auto-adaption so as to maintain essential
tasks for their survival. In addition, resilience of social or biological systems is achieved
via agents with different skills. For instance, cells are simply reactive organisms, whereas
social agents have some cognitive properties. Thence the idea that resilience may derive
from fundamental properties satisfied by agents, interactions and organizations. Could
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2 Interfacing biology, CT and statistics

this fundamental property be a possible consequence of degeneracy [5, Section 3.1, p.
15]?

The notion of resilience remains, however, somewhat elusive, mathematically speak-
ing. In contrast, the notion of robustness has a long history and track record in math-
ematical statistics [6]. By and large, a statistical method is robust if its performance is
not unduly altered in case of outliers or fluctuations around the model for which it is
designed. Can we fathom the links between resilience and robustness?

As an attempt to embrace the questions raised above from a comprehensive outlook,
the original question addressed in this work is the possible connection between MP and
robustness to account for emergence of resilience in complex systems. As a first step in
our study aimed at casting the notions of robustness, resilience and degeneracy within
the same theoretical framework based on the MP, we hereafter establish that statistical
tests do satisfy the MP. The task to perform by the tests is the fundamental problem
of detecting a signal in noise. However, to ease the reading of a paper at the interface
between category theory and mathematical statistics, we consider a simplified version of
this problem.

The paper is organized as follows. We begin by specifying notation and notions in
mathematical statistics. In Section 2, we state the MP in categorical words on the basis
of [4] and consider the particular case of preorders, which will be sufficient at the present
time to establish that statistical tests satisfy the MP for detecting signals in noise. In
Section 3, we set out the statistical detection problem. We will then introduce, in Section
4, a preorder that makes it possible to exhibit two types of "structurally different" tests,
namely, the Neyman-Pearson tests (Section 5) and the RDT tests (Section 6). Section 7
concludes the paper by establishing that these two types of tests achieve the MP for the
detection problem under consideration. For space considerations, we limit proofs to the
minimum making it possible to follow the approach without too much undue effort.

Summary of main results

Because this paper lies at the interface between different mathematical specialties, the
present section summarizes its contents in straight text. To begin with, the MP is a prop-
erty that a category may satisfy when it involves structurally different diagrams sharing
the same cocones. To state our main results, it will not be necessary to consider the gen-
eral MP though. In fact, the particular case of preordered sets will suffice, in which case
the MP reduces to Proposition 1.

Second, in statistical hypothesis testing, a hypothesis can be seen as a predicate, of
which we can aim at determining the truth value by using statistical decisions. There
exist many optimality criteria to devise a decision to test a given hypothesis. In non-
Bayesian approaches, which will be our focus below, such criteria are specified through
the notions of size and power.

The size is the least upper bound for the probability of rejecting the hypothesis when
this one is actually true. We generally want this size to remain below a certain value
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called level, because the hypothesis to test mostly represents the standard situation. For
instance, planes in the sky are rare events, after all, and the standard hypothesis is "there
is no plane", which represents the nominal situation. A too large level may result in an
intolerable cluttering of a radar screen.

We do not want to be bothered by too many alarms. In contrast, when the hypothesis
is false, we want to reject it with the highest possible confidence. The probability that a
decision rejects the hypothesis when this one is actually false is called the power of the
decision. For a given testing problem, we thus look for decisions with maximal power
within the set of those decisions that have a size less than or equal to a a specified level.
This defines a preorder. A maximal element in this preorder is said to be optimal.

Different hypotheses to test may thus require different criteria, specified through dif-
ferent notions of size and different notions of power. This is what we exploit below to
exhibit two sets of "structurally different" decisions that satisfy the MP.

To carry out this construction, we consider the detection of a signal in independent
standard gaussian noise, a classical problem in many applications. This is an hypothesis
testing problem for which there exists an optimality criterion where the size is the so-
called probability of false alarm and the power is the so-called probability of detection.
This criterion has a solution, the Neyman-Pearson (NP) decision, which is thus the max-
imal element of a certain preorder. We can consider a second class of decisions, namely,
the RDT decisions. These decisions are aimed at detecting deviations of a signal with re-
spect to a known deterministic model in presence of independent standard gaussian noise.
This problem is rotationally invariant and the RDT decisions are optimal with respect to
a specific criterion defined through suitable notions of size and power. They are maximal
elements of another preordered set. Although not dedicated to signal detection, these
decisions can be used as surrogates to NP decisions to detect a signal. It turns out that the
family of RDT decisions and that of NP decisions satisfy the MP as stated in Theorem 4.
This is because the more data we have, the closer to perfection both decisions are.

Notation

Random variables. Given two measurable spaces E and F , M (E ,F ) denotes the set
of all measurable functions defined on E and valued in F . The two σ -algebra involved
are omitted in the notation because, in the sequel, they will always be obvious from the
context. In particular, we will throughout consider a probability space (Ω,B,P) and
systematically endow R with the Borel σ -algebra, which will not be recalled. Therefore,
M (Ω,R) designates the set of all real random variables and M (Ω,Rn) is the set of
n-dimensional real random vectors.

Given q ∈ [0,∞[, B∞(q) is the set of all real random variables ∆ ∈M (Ω,R) such
that |∆|

∞
6 q. As usual, we write X ∼ N (0,1) to mean that X ∈M (Ω,R) is stan-

dard normal. Given a sequence (Xn)n∈N ∈M (Ω,R)N of real random variables, we write
X1,X2, . . .

iid∼ N (0,1) to mean that X1,X2, . . . are independent and identically distributed
with common distribution N (0,1).
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Decisions et Observations. Throughout, M
(
{0,1}×Ω,

{
0,1
})

designates the set of all
measurable functions D :

{
0,1
}
×Ω→

{
0,1
}

. Any element of M
(
{0,1}×Ω,

{
0,1
})

is called a decision for obvious reasons given below. If D ∈M
(
{0,1}×Ω,

{
0,1
})

then,
for any ε ∈

{
0,1
}

, D(ε) denotes the Bernoulli-distributed random variable D(ε) : Ω→{
0,1
}

defined for any given ω ∈ Ω by D(ε)(ω) = D(ε,ω). An n-dimensional test is
hereafter any measurable function f : Rn → {0,1} and M (Rn,{0,1}) stands for the
set of all n-dimensional tests. A measurable function X : {0,1}×Ω→ Rn is hereafter
called an observation and M ({0,1}×Ω,Rn) denotes the set of all these observations.
Given a test f ∈M (Rn,{0,1}) and X ∈M ({0,1}×Ω,Rn), D = f (X) is trivially a de-
cision: D ∈M

(
{0,1}×Ω,

{
0,1
})

. If X ∈M ({0,1}×Ω,Rn) then, for any ε ∈ {0,1},
X(ε) = X(ε, ·) ∈M (Ω,Rn) is defined for every ω ∈Ω by X(ε)(ω) = X(ε,ω).

Empirical means. We define the empirical mean of a given sequence y = (yn)n∈N of real
values as the sequence (〈y〉n)n∈N of real values such that, ∀n ∈ N,〈y〉n := 1

n ∑
n
i=1 yi. By

extension, the empirical mean of a sequence Y = (Yn)n∈N of random variables where
each Yn ∈M (Ω,R) is the sequence (〈Y 〉n)n∈N of random variables where, for each
n ∈ N, 〈Y 〉n ∈M (Ω,R) is defined by 〈Y 〉n := 1

n ∑
n
i=1Yi. Therefore, for any ω ∈ Ω,

〈Y 〉n(ω) := 〈Y (ω)〉n with Y (ω) = (Yn(ω))n∈N. If Y = (Yn)n∈N is a sequence of ob-
servations (∀n ∈ N, Yn ∈M ({0,1}×Ω,R)), we define the empirical mean of Y as the
sequence (〈Y 〉n)n∈N of observations such that, for ε ∈ {0,1}, 〈Y 〉n ∈M ({0,1}×Ω,R)
with 〈Y 〉n(ε) = 〈Y (ε)〉n and Y (ε) = (Yn(ε))n∈N.

Preordered sets. Given a preordered set (E,�) and A ⊂ E, the set of maximal el-
ements of A is denoted by max(A,(E,�)), the set of upper bounds of A is denoted
by upper(A,(E,�)) and the set of least upper bounds of A in (E,�) is denoted by
sup(A,(E,�)).

2 Multiplicity Principle

2.1 General case

The multiplicity principle (MP) comes from [4]. It proposes a categorical approach to the
biological degeneracy principle, which ensures a kind of flexible redundancy. Roughly,
MP, in a category C , ensures the existence of structurally non isomorphic diagrams with
same colimit. A formal definition relies on the notion of a cluster between diagrams in a
category C .

Definition 1 (Cluster). Let D : D→C and E : E →C be two (small) diagrams. A cluster
G : D→ E is a maximal set G = { f : D(d)→ E(e) | d ∈D ,e ∈ E , f ∈ C } such that:

(i) for all d ∈D there exist e ∈ E and g : D(d)→ E(e) such that g ∈ G
(ii) let G(d) be the subset of G consisting of arrows g : D(d)→ E(e) associated to the

same d; then G(d) is included in a connected component of the comma-category
(D(d) | E)
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(iii) if g : D(d)→ E(e) ∈ G(d) and ε : e→ e′ ∈ E , then E(ε)◦g ∈ G(d)
(iv) if δ : d′→ d ∈D and g : D(d)→ E(e) ∈ G(d), then g◦D(δ ) ∈ G(d′)

For instance, a connected cone from c to D can be seen as a cluster from the constant
functor ∆(c) to D; and any cocone from E to c is a cluster E→ ∆(c).

Remark 1. Adjacent clusters can be composed: a cluster G : D→ E0 and a cluster
G0 : E0→ E can be composed to a cluster G0 ◦G. We can then consider a category of
clusters of C , whose objects are the (small) diagrams D → C , and an arrow D→ E is a
cluster. This category is isomorphic to the free cocompletion of C [4].

A cluster G : D→ E defines a functor ΩG : Cocones(E)→ Cocones(D) mapping
a cocone α to the cocone α ◦G (composite of α , seen as a cluster, and G, which is a
cluster).

Definition 2 (Multiplicity principle (MP)). A category C satisfies the multiplicity prin-
ciple (MP) if there exist two diagrams D : D → C and E : E → C such that:

(i) Cocones(D)∼= Cocones(E);
(ii) There is no cluster G : D→ E nor G : E→ D such that ΩG is an isomorphism.

D and E having the same cocones translates the property of both systems to accom-
plish the same function. The absence of clusters between D and E that define an isomor-
phism, reflects the structural difference between D and E, which is key to robustness and
adaptability: if the system described by E fails, then D may replace it.

2.2 Application to preorders

The main purpose of this paper is to find a meaningful instance of the MP in some pre-
order. In the following, we do not distinguish between a preorder and its associated
category.

Proposition 1 (MP in a preorder). Let (E,6) be a preorder. If there are two disjoint
subsets A,B⊂ E such that the following conditions hold, then E verifies the MP:

(i) A and B have the same sets of upper bounds
(ii) There is an a ∈ A with no upper bounds in B

(iii) There is a b ∈ B with no upper bounds in A

Proof. Condition (i) ensures that A and B have isomorphic categories of cocones. Con-
ditions (ii) and (iii) respectively ensure that there is no cluster iA→ iB nor iB→ iA where
iA : A ↪→ E and iB : B ↪→ E are the inclusion functors.

Albeit trivial, the following lemma will be helpful.

Lemma 1. Given a preordered set (E,�), if A and B are two subsets of E such that
A×B ∩ �= /0 and sup(A,(E,�)) = sup(B,(E,�)), then E satisfies the MP.
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3 Statistical detection of a signal in noise

3.1 Problem statement

Let ε ∈ {0,1} be the unknown indicator value on whether a certain physical phenomenon
has occurred (ε = 1) or not (ε = 0). We aim at determining this value. It is desirable to
resort to something more evolved than tossing a coin to estimate ε . However, whatever
D, the decision is erroneous for any ω ∈ Ω such that D(ε,ω) 6= ε . We thus have two
distinct cases.

False alarm probability: If ε = 0 and D(0,ω) = 1, we commit a false alarm or error of
the 1st kind, since we have erroneously decided that the phenomenon has occurred while
nothing actually happened. We thus define the false alarm probability (aka size, aka error
probability of the 1st kind) of D as:

PFA [D]
def
= P

[
D(0) = 1

]
(1)

Detection probability: If ε = 1 and D(1,ω) = 0, we commit an error of the 2nd kind,
also called missed detection since, in this case, we have missed the occurrence of the
phenomenon. As often in the literature on the topic, we prefer to use the probability of
correctly detecting the phenomenon and we define the detection probability as:

PDET [D]
def
= P

[
D(1) = 1

]
(2)

3.2 Decision with level γ ∈ (0,1) and oracles

Among all possible decisions, the omniscient oracle D∗ ∈M
(
{0,1}×Ω,

{
0,1
})

is de-
fined for any pair (ε,ω) ∈

{
0,1
}
×Ω by setting D∗(ε,ω) = ε . Its probability of false

alarm is 0 and its probability of detection is 1: PFA [D∗] = 0 et PDET [D∗] = 1. This omni-
scient oracle has no practical interest since it knows ε . That’s not really fair! Since it is
not possible in practice to guarantee a null false alarm probability, we focus on decisions
whose false alarm probabilities are upper-bounded by a real number γ ∈ (0,1) called
level. We state the following definition.

Definition 3 (Level). Given γ ∈]0,1[, we say that D ∈M
(
{0,1}×Ω,

{
0,1
})

has level γ

if PFA [D]6 γ . The set of all decisions with level γ ∈]0,1[ is denoted by Decγ .

We can easily prove the existence of an infinite number of elements in Decγ that all
have a detection probability equal to 1. Whence the following definition.

Definition 4. Given γ ∈ (0,1), an oracle with level γ is any decision D ∈ Decγ such that
PDET [D] = 1. The set of all the oracles with level γ is denoted by Oγ .

Oracles with level γ have no practical interest either since they require prior knowl-
edge of ε! Therefore, we restrict our attention to decisions in Decγ that "approximate"
at best the oracles with level γ , without prior knowledge of ε , of course. To this end, we
must preorder decisions.
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Lemma-Definition 1 (Total preorder (Decγ , � )). For any given γ ∈ (0,1) and any pair
(D,D′) ∈ Decγ ×Decγ , we define a preorder (Decγ , � ) by setting:

D� D′ if PDET [D]6 PDET

[
D′
]
. (3)

We write D∼= D′ if D� D′ and D′ � D.

3.3 Observations

In practice, observations help us decide whether the phenomenon has occurred or not.
By collecting a certain number of them, we can expect to make a decision. Hereafter,
observations are assumed to be elements of M ({0,1}×Ω,R) and corrupted versions
of ε . We suppose that we have a sequence (Yn)n∈N of such random variables. As a
first standard model, we could assume that, for any n ∈ N and any (ε,ω) ∈ {0,1}×Ω,
Yn(ε,ω) = ε +Xn(ω) with X1,X2, . . . ,Xn, . . .

iid∼ N (0,1). In this additive model, Xn mod-
els noise on the nth observation. We could make this model more complicated and re-
alistic by considering random vectors instead of variables. However, with respect to our
purpose, the significant improvement we can bring to the model is elsewhere. Indeed, we
have assumed above that the signal, regardless of noise, is ε . However, from a practical
point of view, it is more realistic to assume that the nth observation Yn captures ε in pres-
ence of some interference ∆n, independent of Xn. In practice, the probability distribution
of ∆n will hardly be known and, as a means to compensate for this lack of knowledge, we
assume the existence of a uniform bound on the amplitude of all possible interferences.
Therefore, we assume that, for all (ε,ω) ∈ {0,1}×Ω, Yn(ε,ω) = ε +Xn(ω)+∆n(ω)
and the existence of q ∈ [0,∞) such that ∆n ∈B∞(q). After all, this model is standard in
time series analysis: ε plays the role of a trend, ∆n is the seasonal variation and Xn is the
measurement noise.

For each q ∈ [0,∞), Seqq henceforth designates the set of all the sequences Y =

(Yn)n∈N ∈M
(
{0,1}×Ω,

{
0,1
})N such that, ∀n∈N and ∀(ε,ω)∈{0,1}×Ω, Yn(ε,ω)=

ε +∆n(ω)+Xn(ω), where ∆n ∈B∞(q) and Xn ∼ N (0,1) are independant. Therefore,
for all n ∈ N and all ε ∈ {0,1}, Yn(ε) = ε +∆n +Xn, with X1,X2, . . . ,Xn, . . .

iid∼ N (0,1).

4 Selectivity, landscapes of tests and preordering

For any sequence Y = (Yn)n∈N ∈M
(
{0,1}×Ω,

{
0,1
})

, we henceforth set:

YYYn =
(
Y1,Y2, . . . ,Yn

)
(4)

In other words, YYYn is the truncated version of the original sequence Y at the nth term.

Definition 5 (Selectivity of a test). Given any n ∈N and any test f ∈M (Rn,{0,1}), the
selectivity of f at given level γ ∈ (0,1) is defined as the set:

Selγ ( f ) :=
{

q ∈ [0,1/2) : ∀Y ∈ Seqq, f (YYYn) ∈ Decγ

}
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The relevance of the interval [0,1/2) in the definition above will pop up in Section 6.2.

Definition 6 (Landscapes of tests). Given any n ∈ N and any test f ∈M (Rn,{0,1}),
the landscape of f at given level γ ∈ (0,1) is the subset of Decγ defined by:

Lndγ ( f ) :=
⋃

q∈Selγ ( f )

{
f (YYYn) : Y ∈ Seqq

}
(5)

The total landscape covered by all the tests f ∈M (Rn,{0,1}) is defined by setting:

Lndscpγ :=
⋃

n∈N

{
Lndγ ( f ) : f ∈M (Rn,{0,1})

}
(6)

This notion of landscape makes it possible to compare tests via the following pre-
order. The proofs that the following definition is consistent and that the next lemma
holds true are left to the reader.

Definition 7 (Preorder (2Decγ , �∗ )). Given any level γ ∈ (0,1), we define the preorder
(2Decγ , �∗ ) via the following three properties:

(P1) ∀n ∈ N, ∀( f ,g) ∈M (Rn,{0,1})×M (Rn,{0,1}), Lndγ ( f ) �∗ Lndγ (g) if:

Selγ ( f ) = Selγ (g) and ∀q ∈ Selγ ( f ) ,∀Y ∈ Seqq, f (YYYn) � g(YYYn)

(P2) ∀(L,L′) ∈
(

Lndscpγ ∪2Oγ

)
×2Oγ , L�∗ L′

(P3) ∀L ∈ 2Decγ \
(

Lndscpγ ∪2Oγ

)
, L �∗ L

Lemma 2. ∀(L,L′) ∈
(

Lndscpγ ∪2Oγ

)
×
(

Lndscpγ ∪2Oγ

)
, L�∗ L′⇒ L×L′ ⊂ � .

With this material, we can state our first result that will prove useful in applications
to statistical decisions below.

Theorem 1 (Approximation of oracles in (2Decγ ,�∗ )). Given γ ∈ (0,1), if a set Xγ and
a family of tests

(
fξ ,n
)

ξ∈Xγ ,n∈N
satisfy:

(i) ∀(ξ ,n) ∈ Xγ ×N, fξ ,n ∈M (Rn,{0,1});

(ii) ∃Qγ ⊂ [0,∞), ∀(ξ ,n) ∈ Xγ ×N, Selγ
(

fξ ,n
)
= Qγ ;

(iii) ∀(ξ ,q) ∈ Xγ ×Qγ , ∀Y ∈ Seqq, lim
n→∞

PDET

[
fξ ,n (YYYn)

]
= 1;

then, by setting Lndscp′γ =
{

Lndγ

(
fξ ,n
)

: n ∈ N,ξ ∈ Xγ

}
, we have:

2Oγ = upper
(

Lndscp′γ ,
(
2Decγ , �∗

))
= sup

(
Lndscp′γ ,

(
2Decγ , �∗

))
(7)

Proof. For any (ξ ,n) ∈ Xγ ×N and any L ∈ 2Oγ , (P2) in Definition 7 straightforwardly
implies that Lndγ

(
fξ ,n
)
�∗ L. As a consequence:

2Oγ ⊂ upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
(8)
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To prove the converse inclusion, consider some L∈ upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
. We

thus have ∀(ξ ,n)∈N×Xγ , Lndγ

(
fξ ,n
)
�∗ L. According to Lemma 2, we have ∀(ξ ,n)∈

Xγ×N, Lndγ

(
fξ ,n
)
×L⊂ � . Therefore, ∀(ξ ,n)∈N×Xγ , ∀q∈ Selγ

(
fξ ,n
)
, ∀Y ∈ Seqq

and ∀D∈L, fξ ,n (YYYn) � L. It follows from the definition of � and assumption (ii) above
that:

∀(ξ ,n) ∈ N×Xγ ,∀q ∈Qγ ,∀Y ∈ Seqq,∀D ∈ L,PDET

[
fξ ,n (YYYn)

]
6 PDET [D]

We derive from assumption (iii) that PDET [D] = 1 and thus that D ∈ Oγ . It follows that

L ∈ 2Oγ . We thus obtain that upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
⊂ 2Oγ and therefore, from

(8), 2Oγ = upper
(

Lndscpγ
′ ,
(
2Decγ , �∗

))
. The second equality in (7) is straightforward

since the elements of 2Oγ are isomorphic in the sense of �∗ .

For later use, given J ⊂ [0,∞), n ∈ N and F⊂M (Rn,{0,1}), we hereafter set:

LndscpsJ
γ (F) :=

{
Lndγ ( f ) ∈ Lndscpγ : f ∈ F , Selγ ( f ) = J

}
(9)

5 The Neyman-Pearson (NP) solution

When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint a
maximal element in each (Lndscps{0}γ (F), � ) with F= M (Rn,{0,1}). These maximal
elements are hereafter called NP decisions. Specifically, we have the following result.

Lemma 3 (Maximality of the NP decisions). For any γ ∈ (0,1) and any n ∈ N,

Lndγ

(
f NP(γ)
n

)
= max

(
Lndscps{0}γ (M (Rn,{0,1})) , �∗

)
(10)

where f NP(γ)
n ∈M (Rn,{0,1}) is the n-dimensional NP test with size γ defined by:

∀(y1,y2, . . . ,yn) ∈ Rn, f NP(γ)
n (y1,y2, . . . ,yn) =

{
1 if ∑

n
i=1 yi >

√
nΦ−1(1− γ)

0 otherwise
(11)

and satisfies, ∀Y ∈ Seq0,
PFA

[
f NP(γ)
n (YYYn)

]
= γ

PDET

[
f NP(γ)
n (YYYn)

]
= 1−Φ

(
Φ−1(1− γ)−

√
n
)

Proof. A direct application of the Neyman-Pearson Lemma [8, Theorem 3.2.1, page 60],
followed by some standard algebra to obtain PDET

[
f NP(γ)
n (YYYn)

]
.

The next result states that it suffices to increase the number of observations to ap-
proximate oracles with level γ by NP decisions.
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Theorem 2 (Approximation of oracles with level γ by NP decisions in (2Decγ ,�∗ )).

Setting LndNP(γ) :=
{

Lndγ

(
f NP(γ)
n

)
: n ∈ N

}
for any γ ∈ (0,1), we have:

2Oγ = upper
(

LndNP(γ) ,
(
2Decγ , �∗

))
= sup

(
LndNP(γ) ,

(
2Decγ , �∗

))
Proof. Given γ ∈ (0,1), set Xγ = {0} and, ∀n ∈ N, f0,n = f NP(γ)

n . According to Lemma

3, lim
n→∞

PDET

[
f NP(γ)
n (YYYn)

]
= 1. Thence the result as a consequence of Theorem 1.

6 The RDT solution

6.1 An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details in [9, 10].
To ease the reading of the present paper, we directly focus on the particular RDT problem
that can be used in connection with the detection problem at stake.

In this respect, suppose that Z = Θ+W ∈M (Ω,Rn), where Θ and W are indepen-
dent elements of M (Ω,Rn). In the sequel, we assume that W ∼ N (0,In), In being the
n× n identity matrix, and consider the mean testing problem of deciding on whether
|〈Θ〉n(ω)|6 τ (null hypothesis H0) or |〈Θ〉n(ω)|> τ (alternative hypothesis H1), when
we are given Z(ω) = Θ(ω)+W (ω), for ω ∈Ω. The idea is that Θ oscillates uncontrol-
lably around 0 and that only sufficient large deviations of the norm should be detected.
This is a particular Block-RDT problem, following the terminology and definition given
in [10]. This problem is summarized by dropping ω , as usual, and writing:


Observation:Z = Θ+W ∈M (Ω,Rn) with

{
Θ ∈M (Ω,Rn),W ∼ N (0,IN),
Θ and W are independent,

H0 : |〈Θ〉n|6 τ,
H1 : |〈Θ〉n|> τ.

(12)
Standard likelihood theory [8, 1, 2] does not make it possible to solve this problem.

Fortunately, this problem can be solved as follows via the Random Distortion Testing
(RDT) framework.

Size and power of tests for mean testing. We seek tests with guaranteed size and
optimal power, in the sense specified below.

Definition 8 (Size for the mean testing problem). The size of f ∈M (Rn,{0,1}) for
testing the empirical mean of the signals Θ ∈M (Ω,Rn) such that P

[
|〈Θ〉n| 6 τ

]
6= 0,

given Z = Θ+W ∈M (Ω,Rn) with W independent of Θ, is defined by:

α
[n]( f ) = sup

Θ∈M (Ω,Rn) :P [ |〈Θ〉n|6τ ]6=0
P
[

f (Z) = 1
∣∣ |〈Θ〉n|6 τ

]
(13)
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We say that f ∈M (Rn,{0,1}) has level (resp. size) γ if α [n]( f )6 γ (resp. α [n]( f ) = γ).
The class of all the tests with level γ is denoted by Tests[n]γ :

Tests[n]γ =
{

f ∈M (Rn,{0,1}) : α
[n]( f )6 γ

}
Definition 9 (Power for the mean testing problem). The power of f ∈M (Rn,{0,1}) for
testing the empirical mean of Θ ∈M (Ω,Rn) such that P

[
|〈Θ〉n|> τ

]
6= 0 when we are

given Z = Θ+W ∈M (Ω,Rn), with W independent of Θ, is defined by:

β
[n]
Θ
( f ) = P

[
f (Z) = 1

∣∣ |〈Θ〉n|> τ
]

(14)

The RDT solution. With the same notation as above, we can easily construct a preorder(
Tests[n]γ , ��

)
by setting:

∀( f , f ′) ∈ Tests[n]γ ×Tests[n]γ ,

f �� f ′ if ∀ Θ ∈M (Ω,Rn),P
[
|〈Θ〉n|> τ

]
6= 0⇒ β

[n]
Θ
( f )6 β

[n]
Θ
( f ′)

No maximal element exists in
(

Tests[n]γ , ��
)

. However, we can exhibit C[n]
γ ⊂ Tests[n]γ

whose elements satisfy suitable invariance properties with respect to the mean testing
problem and prove the existence of a maximal element in

(
C
[n]
γ , ��

)
.

Set S =
{

id,−id
}

where id is the identity of R. Endowed with the usual composition
law ◦ of functions, (S ,◦) is a group. Let A be the group action that associates to
each given s ∈S the map As : Rn → Rn defined for every x = (x1,x2, . . . ,xn) ∈ Rn by
As(x) = (s(x1),s(x2), . . . ,s(xn)). Readily, the mean testing problem is invariant under
the action of A in that As(Z) = As(Θ)+W ′ where W ′ = (W ′1,W

′
2, . . . ,W

′
n) ∼ N (0,In)

is independent of As(Θ). Therefore, As(Z) satisfies the same hypotheses as Z. We
also have |〈As(Θ)〉n|= |〈Θ〉n|. Hence, the mean testing problem remains unchanged by
substituting As(Θ) for Θ and W ′ for W . It is thus natural to seek A -invariant tests, that
is, tests f ∈M (Rn,{0,1}) such that f (As(x)) = f (x) for any s ∈S and any x ∈ Rn.

On the other hand, since we can reduce the noise variance by averaging observations,
we consider A -invariant integrator tests, that is, A -invariant tests f ∈M (Rn,{0,1})
for which exists f ∈M

(
R1,{0,1}

)
, henceforth called the reduced form of f , such that

f (xxx) = f (〈xxx〉n) for any xxx ∈ Rn. Reduced forms of A -invariant integrator tests are also
A -invariant: ∀x ∈ R, ∀s ∈A , f (s(x)) = f (x). We thus define C

[n]
γ ⊂ Tests[n]γ as the class

of all A -invariant integrator tests with level γ . We thus have f ∈ C
[n]
γ if:

[Size]: α [n]( f )6 γ;

[A -invariance]: ∀(s,x) ∈S ×Rn, f (As(x)) = f (x);

[Integration]: ∃ f ∈M
(
R1,{0,1}

)
, ∀x ∈ Rn, f (x) = f (〈x〉n).

The following result derives from the foregoing and [9, 10].
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Proposition 2 (Maximal element of
(
C
[n]
γ , ��

)
). For any γ ∈ (0,1) and any n ∈ N,{

f RDT(γ,τ)
n

}
= max

(
C
[n]
γ , ��

)
(15)

where f RDT(γ,τ)
n ∈M (Rn,{0,1}) is defined by setting

∀(y1,y2, . . . ,yn) ∈ Rn, f RDT(γ,τ)
n (y1,y2, . . . ,yn) =

{
1 if |∑n

i=1 yi|6
√

nλγ(τ
√

n)

0 otherwise

and λγ(τ
√

n) is the unique solution in x to the equation

2−Φ(x− τ
√

n)−Φ(x+ τ
√

n) = γ

where Φ is the cumulative distribution function (cdf) of the N (0,1) law.

RDT and NP tests are structurally different because dedicated to two different testing
problems and optimal with respect to two different criteria. This structural difference
will be enhanced by coming back to our initial detection problem.

6.2 Application to Detection

Consider again the problem of estimating ε ∈ {0,1}, when we have a sequence Y ∈ Seqq
of observations such that:

∀n ∈ N,∀(ε,ω) ∈
{

0,1
}
×Ω,Yn(ε,ω) = ε +∆n(ω)+Xn(ω) (16)

where X1,X2, . . .
iid∼N (0,1) and ∀n∈N, ∆n ∈B∞(q) with q∈ [0,∞). The empirical mean

of Y satisfies: ∀n ∈ N,〈Y〉n(ε) = 〈Y(ε)〉n = ε + 〈∆〉n + 〈X〉n. We thus have |〈∆〉n|6 q (a-
s). Set Θn = ε +∆n for every n ∈ N. In the sequel, we assume q < 1/2 because, in this
case, we straightforwardly verify that{

ε = 0 ⇔ |〈Θ〉n|6 q
ε = 1 ⇔ |〈Θ〉n|> 1−q

(17)

Therefore, when q ∈ [0,1/2), deciding on whether ε is zero or not when we are given
YYYn(ω) amounts to testing whether |〈Θ〉n(ω)| 6 τ or not for τ ∈ [q,1− q]. We thus can
use the decision f RDT(γ,τ)

n (YYYn), where f RDT(γ,τ)
n is given by Proposition 2.

We can calculate the false alarm probability (1) of f RDT(γ,τ)
n (YYYn) where YYYn is defined

by (4). The theoretical results in [9] yield that ∀τ ∈ [q,1− q],PFA

[
f RDT(γ,τ)
n (YYYn)

]
6 γ.

In the sequel, for the sake of simplifying notation, we assume that both τ and q are in
[0,1/2). In this case, we have:

∀τ ∈ [0,1/2) ,


Selγ

(
f RDT(γ,τ)
n

)
= [0,τ]

Lndγ

(
f RDT(γ,τ)
n

)
=

⋃
q∈[0,τ]

{
f RDT(γ,τ)
n (YYYn) : Y ∈ Seqq

} (18)
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We can then state the following lemma, which is the counterpart to Lemma 3.
Theorem 3 (Maximality of RDT decisions). For any γ ∈ (0,1), any n ∈ N and any
0 6 q 6 τ < 1/2, Lndγ

(
f RDT(γ,τ)
n

)
= max

(
Lndscps[0,τ]γ

(
C
[n]
γ

)
, �∗

)
.

Proof. It results from Definition 6 that Lndγ ( f ) :=
{

f (YYYn) : Y ∈ Seqq,q ∈ [0,τ]
}

. Ac-
cording to (9), we also have:

Lndscps[0,τ]γ

(
C
[n]
γ

)
=
{

Lndγ ( f ) ∈ Lndscpγ : f ∈ C
[n]
γ , Selγ ( f ) = [0,τ]

}
Given q ∈ [0,τ] and Y ∈ Seqq, set:

Z = YYYn = (Y1,Y2, . . . ,Yn) (see (4))
W = (X1,X2, . . . ,Xn)∼ N (0,In)
Θ = (1+∆1,1+∆2, . . . ,1+∆n)

We basically have Z = Θ+W . Consider now the mean testing problem (12) with Θ, W
and Z defined as above. For any f ∈M (Rn,{0,1}), it follows from Eqs. (16) , (17), (2)
and (13) that:

β
[n]
Θ
( f ) = PDET [ f (YYYn)] (19)

Suppose now that f ∈ C
[n]
γ with Selγ ( f ) = [0,τ]. We derive from Proposition 2, (19) and

its application to f RDT(γ,τ)
n , that PDET [ f (YYYn)] 6 PDET

[
f RDT(γ,τ)
n (YYYn)

]
. Since q 6 τ < 1/2

implies that q ∈ Selγ ( f ) and since Selγ ( f ) = Selγ
(

f RDT(γ,τ)
n

)
= [0,τ], we can rewrite

the foregoing equality as f (YYYn) � f RDT(γ,τ)
n (YYYn). This holding true for any q ∈ Selγ ( f ),

any Y ∈ Seqq and since f and f RDT(γ,n)
q have same selectivity [0,τ], we derive from the

foregoing and Definition 7 that Lndγ ( f ) �∗ Lndγ

(
f RDT(γ,τ)
n

)
.

We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 4 (Approximation of oracles with γ by RDT decisions in (2Decγ , �∗ )).

Setting LndRDT(γ,τ) :=
{

Lndγ

(
f RDT(γ,τ)
n

)
: n ∈ N

}
for any given γ ∈ (0,1), we have:

2Oγ = upper
(

LndRDT(γ,τ) ,
(
2Decγ , �∗

))
= sup

(
LndRDT(γ,τ) ,

(
2Decγ , �∗

))
Proof. Given γ ∈ (0,1), it follows from (2) and [9, Theorem 2] that:

∀(q,τ) ∈ [0,1/2)× [0,1/2),∀n ∈ N,PDET

[
f RDT(γ,τ)
n (YYYn)

]
> Q1/2

(
(1−q)

√
n,λγ(τ

√
n)
)

Since τ < 1− q, [7, Eq. (3) and Lemma B.2] induce that lim
n→∞

PDET

[
f RDT(γ,τ)
n (YYYn)

]
= 1.

The set LndRDT(γ,τ) ⊂ Lndscpγ thus satisfies Theorem 1 conditions with Xγ = {τ} and

∀n ∈ N, fn,τ = f RDT(γ,τ)
n .
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7 Multiplicity Principle in (2Decγ , �∗ )

To state the MP in (2Decγ , �∗ ), we need the following lemma.

Lemma 5 (Selectivity of NP tests). ∀n ∈ N, Selγ
(

f NP(γ)
n

)
= {0}

Proof. A consequence of [9, Section B, p. 6.].

We have now all the material to state the main result.
Theorem 4 (Multiplicity Principle in (2Decγ , �∗ )). For any given τ ∈ (0,1/2), the MP
is satisfied in (2Decγ , �∗ ) by the pair

(
LndNP(γ),LndRDT(γ,τ)

)
.

Proof. According to Theorems 2 and 3, the subsets LndNP(γ) and LndRDT(γ,τ) of 2Decγ are
such that

sup
(

LndNP(γ) ,
(
2Decγ , �∗

))
= sup

(
LndRDT(γ,τ) ,

(
2Decγ , �∗

))
= 2Oγ

In addition, (18) and Lemma 5 imply that LndNP(γ)×LndRDT(γ,τ) ∩ �∗ = /0. The
conclusion follows from Lemma 1.

8 Conclusions and Perspectives

In this paper, via the framework provided by the Multiple Principle (MP), which is mo-
tivated by the concept of degeneracy in biology, and by introducing the notions of test
landscapes and selectivity, we have established that this principle is satisfied when we
consider the standard NP tests and the RDT tests applied to a detection problem. One
interest of this result is that it opens prospects on the construction of Memory Evolutive
Systems [4, 5] via tests.

More elaborated statistical decision problems should be considered beyond this pre-
liminary work. Sequential tests are particularly appealing because they collect informa-
tion till they can decide with guaranteed performance bounds. On the one hand, the
Sequential Probability Ratio Test (SPRT) established in [11] is proved to be optimal; on
the other hand, in [7], we have exhibited non-optimal tests with performance guaran-
tees in presence of interferences. In the same way as NP and RDT tests satisfy PM, we
conjecture that these two types of sequential tests satisfy MP as well.

From a pratical point of view, such results open new prospects for the design of
networks of sensors, where combining different types of sensors and tests satisfying the
MP could bring resilience to the overall system.
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