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Interfacing biology, category theory and mathematical statistics

Motivated by the concept of degeneracy in biology [3], we establish a first connection between the Multiplicity Principle [4, 5] and mathematical statistics. Specifically, we exhibit two families of tests that satisfy this principle to achieve the detection of a signal in noise.

Introduction

In [START_REF] Gerald | Degeneracy and complexity in biological systems[END_REF], Edelman & Gally pointed out degeneracy as the fundamental property allowing for living systems to evolve through natural selection towards more complexity in fluctuating environments. Degeneracy is defined [START_REF] Gerald | Degeneracy and complexity in biological systems[END_REF] as " . . . the ability of elements that are structurally different to perform the same function or yield the same output". Degeneracy is a crucial feature of immune systems and neural networks, at all organization levels.

The Multiplicity Principle (MP) [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF][START_REF] Ehresmann | MES: A Mathematical Model for the Revival of Natural Philosophy[END_REF], introduced by Ehresmann & Vanbremeersch, is a mathematical formalization of degeneracy in Categorical terms. The consequences of this principle, as treated in [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF][START_REF] Ehresmann | MES: A Mathematical Model for the Revival of Natural Philosophy[END_REF], underpin Edelman & Gally's conjecture according to which "complexity and degeneracy go hand in hand" [START_REF] Gerald | Degeneracy and complexity in biological systems[END_REF].

Another property of many biological and social systems is their resilience: (i) they can perform in degraded mode, with some performance loss, but without collapsing; (ii) they can recover their initial performance level when nominal conditions are satisfied again; (iii) they can perform corrections and auto-adaption so as to maintain essential tasks for their survival. In addition, resilience of social or biological systems is achieved via agents with different skills. For instance, cells are simply reactive organisms, whereas social agents have some cognitive properties. Thence the idea that resilience may derive from fundamental properties satisfied by agents, interactions and organizations. Could this fundamental property be a possible consequence of degeneracy [5, Section 3.1, p. 15]?

The notion of resilience remains, however, somewhat elusive, mathematically speaking. In contrast, the notion of robustness has a long history and track record in mathematical statistics [START_REF] Hampel | Robust Statistics: the Approach based on Influence Functions[END_REF]. By and large, a statistical method is robust if its performance is not unduly altered in case of outliers or fluctuations around the model for which it is designed. Can we fathom the links between resilience and robustness?

As an attempt to embrace the questions raised above from a comprehensive outlook, the original question addressed in this work is the possible connection between MP and robustness to account for emergence of resilience in complex systems. As a first step in our study aimed at casting the notions of robustness, resilience and degeneracy within the same theoretical framework based on the MP, we hereafter establish that statistical tests do satisfy the MP. The task to perform by the tests is the fundamental problem of detecting a signal in noise. However, to ease the reading of a paper at the interface between category theory and mathematical statistics, we consider a simplified version of this problem.

The paper is organized as follows. We begin by specifying notation and notions in mathematical statistics. In Section 2, we state the MP in categorical words on the basis of [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF] and consider the particular case of preorders, which will be sufficient at the present time to establish that statistical tests satisfy the MP for detecting signals in noise. In Section 3, we set out the statistical detection problem. We will then introduce, in Section 4, a preorder that makes it possible to exhibit two types of "structurally different" tests, namely, the Neyman-Pearson tests (Section 5) and the RDT tests (Section 6). Section 7 concludes the paper by establishing that these two types of tests achieve the MP for the detection problem under consideration. For space considerations, we limit proofs to the minimum making it possible to follow the approach without too much undue effort.

Summary of main results

Because this paper lies at the interface between different mathematical specialties, the present section summarizes its contents in straight text. To begin with, the MP is a property that a category may satisfy when it involves structurally different diagrams sharing the same cocones. To state our main results, it will not be necessary to consider the general MP though. In fact, the particular case of preordered sets will suffice, in which case the MP reduces to Proposition 1.

Second, in statistical hypothesis testing, a hypothesis can be seen as a predicate, of which we can aim at determining the truth value by using statistical decisions. There exist many optimality criteria to devise a decision to test a given hypothesis. In non-Bayesian approaches, which will be our focus below, such criteria are specified through the notions of size and power.

The size is the least upper bound for the probability of rejecting the hypothesis when this one is actually true. We generally want this size to remain below a certain value called level, because the hypothesis to test mostly represents the standard situation. For instance, planes in the sky are rare events, after all, and the standard hypothesis is "there is no plane", which represents the nominal situation. A too large level may result in an intolerable cluttering of a radar screen.

We do not want to be bothered by too many alarms. In contrast, when the hypothesis is false, we want to reject it with the highest possible confidence. The probability that a decision rejects the hypothesis when this one is actually false is called the power of the decision. For a given testing problem, we thus look for decisions with maximal power within the set of those decisions that have a size less than or equal to a a specified level. This defines a preorder. A maximal element in this preorder is said to be optimal.

Different hypotheses to test may thus require different criteria, specified through different notions of size and different notions of power. This is what we exploit below to exhibit two sets of "structurally different" decisions that satisfy the MP.

To carry out this construction, we consider the detection of a signal in independent standard gaussian noise, a classical problem in many applications. This is an hypothesis testing problem for which there exists an optimality criterion where the size is the socalled probability of false alarm and the power is the so-called probability of detection. This criterion has a solution, the Neyman-Pearson (NP) decision, which is thus the maximal element of a certain preorder. We can consider a second class of decisions, namely, the RDT decisions. These decisions are aimed at detecting deviations of a signal with respect to a known deterministic model in presence of independent standard gaussian noise. This problem is rotationally invariant and the RDT decisions are optimal with respect to a specific criterion defined through suitable notions of size and power. They are maximal elements of another preordered set. Although not dedicated to signal detection, these decisions can be used as surrogates to NP decisions to detect a signal. It turns out that the family of RDT decisions and that of NP decisions satisfy the MP as stated in Theorem 4. This is because the more data we have, the closer to perfection both decisions are.

Notation

Random variables. Given two measurable spaces E and F , M (E , F ) denotes the set of all measurable functions defined on E and valued in F . The two σ -algebra involved are omitted in the notation because, in the sequel, they will always be obvious from the context. In particular, we will throughout consider a probability space (Ω, B, P) and systematically endow R with the Borel σ -algebra, which will not be recalled. Therefore, M (Ω, R) designates the set of all real random variables and M (Ω, R n ) is the set of n-dimensional real random vectors.

Given q ∈ [0, ∞[, B ∞ (q) is the set of all real random variables ∆ ∈ M (Ω, R) such that |∆| ∞ q. As usual, we write X ∼ N (0, 1) to mean that X ∈ M (Ω, R) is standard normal. Given a sequence (X n ) n∈N ∈ M (Ω, R) N of real random variables, we write X 1 , X 2 , . . . iid ∼ N (0, 1) to mean that X 1 , X 2 , . . . are independent and identically distributed with common distribution N (0, 1). Decisions et Observations. Throughout, M {0, 1}×Ω, 0, 1 designates the set of all measurable functions D : 0, 1 × Ω → 0, 1 . Any element of M {0, 1}×Ω, 0, 1 is called a decision for obvious reasons given below. If D ∈ M {0, 1}×Ω, 0, 1 then, for any ε ∈ 0, 1 , D(ε) denotes the Bernoulli-distributed random variable D(ε) : Ω → 0, 1 defined for any given ω ∈ Ω by D(ε)(ω) = D(ε, ω). An n-dimensional test is hereafter any measurable function f : R n → {0, 1} and M (R n , {0, 1}) stands for the set of all n-dimensional tests. A measurable function

X : {0, 1} × Ω → R n is hereafter called an observation and M ({0, 1} × Ω, R n ) denotes the set of all these observations. Given a test f ∈ M (R n , {0, 1}) and X ∈ M ({0, 1} × Ω, R n ), D = f (X) is trivially a de- cision: D ∈ M {0, 1}×Ω, 0, 1 . If X ∈ M ({0, 1} × Ω, R n ) then, for any ε ∈ {0, 1}, X(ε) = X(ε, •) ∈ M (Ω, R n ) is defined for every ω ∈ Ω by X(ε)(ω) = X(ε, ω).
Empirical means. We define the empirical mean of a given sequence y = (y n ) n∈N of real values as the sequence ( y n ) n∈N of real values such that, ∀n ∈ N,

y n := 1 n ∑ n i=1 y i . By extension, the empirical mean of a sequence Y = (Y n ) n∈N of random variables where each Y n ∈ M (Ω, R) is the sequence ( Y n ) n∈N of random variables where, for each n ∈ N, Y n ∈ M (Ω, R) is defined by Y n := 1 n ∑ n i=1 Y i . Therefore, for any ω ∈ Ω, Y n (ω) := Y (ω) n with Y (ω) = (Y n (ω)) n∈N . If Y = (Y n ) n∈N is a sequence of ob- servations (∀ n ∈ N, Y n ∈ M ({0, 1} × Ω, R)), we define the empirical mean of Y as the sequence ( Y n ) n∈N of observations such that, for ε ∈ {0, 1}, Y n ∈ M ({0, 1} × Ω, R) with Y n (ε) = Y (ε) n and Y (ε) = (Y n (ε)) n∈N .
Preordered sets. Given a preordered set (E, ) and A ⊂ E, the set of maximal elements of A is denoted by max (A, (E, )), the set of upper bounds of A is denoted by upper (A, (E, )) and the set of least upper bounds of A in (E, ) is denoted by sup (A, (E, )).

Multiplicity Principle

General case

The multiplicity principle (MP) comes from [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF]. It proposes a categorical approach to the biological degeneracy principle, which ensures a kind of flexible redundancy. Roughly, MP, in a category C , ensures the existence of structurally non isomorphic diagrams with same colimit. A formal definition relies on the notion of a cluster between diagrams in a category C .

Definition 1 (Cluster). Let D : D → C and E : E → C be two (small) diagrams. A cluster G : D → E is a maximal set G = { f : D(d) → E(e) | d ∈ D, e ∈ E , f ∈ C } such that: (i) for all d ∈ D there exist e ∈ E and g : D(d) → E(e) such that g ∈ G (ii) let G(d) be the subset of G consisting of arrows g : D(d) → E(e) associated to the same d; then G(d) is included in a connected component of the comma-category (D(d) | E) (iii) if g : D(d) → E(e) ∈ G(d) and ε : e → e ∈ E , then E(ε) • g ∈ G(d) (iv) if δ : d → d ∈ D and g : D(d) → E(e) ∈ G(d), then g • D(δ ) ∈ G(d )
For instance, a connected cone from c to D can be seen as a cluster from the constant functor ∆(c) to D; and any cocone from E to c is a cluster E → ∆(c).

Remark 1. Adjacent clusters can be composed: a cluster G : D → E 0 and a cluster G 0 : E 0 → E can be composed to a cluster G 0 • G. We can then consider a category of clusters of C , whose objects are the (small) diagrams D → C , and an arrow D → E is a cluster. This category is isomorphic to the free cocompletion of C [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF].

A cluster G : D → E defines a functor ΩG : Cocones (E) → Cocones (D) mapping a cocone α to the cocone α • G (composite of α, seen as a cluster, and G, which is a cluster).

Definition 2 (Multiplicity principle (MP)).

A category C satisfies the multiplicity principle (MP) if there exist two diagrams D : D → C and E : E → C such that:

(i) Cocones (D) ∼ = Cocones (E); (ii) There is no cluster G : D → E nor G : E → D such that ΩG is an isomorphism.
D and E having the same cocones translates the property of both systems to accomplish the same function. The absence of clusters between D and E that define an isomorphism, reflects the structural difference between D and E, which is key to robustness and adaptability: if the system described by E fails, then D may replace it.

Application to preorders

The main purpose of this paper is to find a meaningful instance of the MP in some preorder. In the following, we do not distinguish between a preorder and its associated category.

Proposition 1 (MP in a preorder). Let (E, ) be a preorder. If there are two disjoint subsets A, B ⊂ E such that the following conditions hold, then E verifies the MP: (i) A and B have the same sets of upper bounds (ii) There is an a ∈ A with no upper bounds in B (iii) There is a b ∈ B with no upper bounds in A Proof. Condition (i) ensures that A and B have isomorphic categories of cocones. Conditions (ii) and (iii) respectively ensure that there is no cluster i A → i B nor i B → i A where i A : A → E and i B : B → E are the inclusion functors.

Albeit trivial, the following lemma will be helpful.

Lemma 1. Given a preordered set (E, ), if A and B are two subsets of E such that A ×B ∩ = / 0 and sup (A, (E, )) = sup (B, (E, )), then E satisfies the MP.

3 Statistical detection of a signal in noise

Problem statement

Let ε ∈ {0, 1} be the unknown indicator value on whether a certain physical phenomenon has occurred (ε = 1) or not (ε = 0). We aim at determining this value. It is desirable to resort to something more evolved than tossing a coin to estimate ε. However, whatever D, the decision is erroneous for any ω ∈ Ω such that D(ε, ω) = ε. We thus have two distinct cases.

False alarm probability: If ε = 0 and D(0, ω) = 1, we commit a false alarm or error of the 1 st kind, since we have erroneously decided that the phenomenon has occurred while nothing actually happened. We thus define the false alarm probability (aka size, aka error probability of the 1 st kind) of D as:

P FA [D] def = P D(0) = 1 (1)
Detection probability: If ε = 1 and D(1, ω) = 0, we commit an error of the 2 nd kind, also called missed detection since, in this case, we have missed the occurrence of the phenomenon. As often in the literature on the topic, we prefer to use the probability of correctly detecting the phenomenon and we define the detection probability as:

P DET [D] def = P D(1) = 1 (2) 
3.2 Decision with level γ ∈ (0, 1) and oracles Among all possible decisions, the omniscient oracle D * ∈ M {0, 1}×Ω, 0, 1 is defined for any pair (ε, ω) ∈ 0, 1 × Ω by setting D * (ε, ω) = ε. Its probability of false alarm is 0 and its probability of detection is 1:

P FA [D * ] = 0 et P DET [D * ] = 1.
This omniscient oracle has no practical interest since it knows ε. That's not really fair! Since it is not possible in practice to guarantee a null false alarm probability, we focus on decisions whose false alarm probabilities are upper-bounded by a real number γ ∈ (0, 1) called level. We state the following definition.

Definition 3 (Level). Given γ ∈]0, 1[, we say that D ∈ M {0, 1}×Ω, 0, 1 has level γ if P FA [D] γ.
The set of all decisions with level γ ∈]0, 1[ is denoted by Dec γ .

We can easily prove the existence of an infinite number of elements in Dec γ that all have a detection probability equal to 1. Whence the following definition. Oracles with level γ have no practical interest either since they require prior knowledge of ε! Therefore, we restrict our attention to decisions in Dec γ that "approximate" at best the oracles with level γ, without prior knowledge of ε, of course. To this end, we must preorder decisions.

Lemma-Definition 1 (Total preorder (Dec γ , )). For any given γ ∈ (0, 1) and any pair (D, D ) ∈ Dec γ × Dec γ , we define a preorder (Dec γ , ) by setting:

D D if P DET [D] P DET D . (3) 
We write D ∼ = D if D D and D D.

Observations

In practice, observations help us decide whether the phenomenon has occurred or not. By collecting a certain number of them, we can expect to make a decision. Hereafter, observations are assumed to be elements of M ({0, 1} × Ω, R) and corrupted versions of ε. We suppose that we have a sequence (Y n ) n∈N of such random variables. As a first standard model, we could assume that, for any n ∈ N and any ). In this additive model, X n models noise on the nth observation. We could make this model more complicated and realistic by considering random vectors instead of variables. However, with respect to our purpose, the significant improvement we can bring to the model is elsewhere. Indeed, we have assumed above that the signal, regardless of noise, is ε. However, from a practical point of view, it is more realistic to assume that the nth observation Y n captures ε in presence of some interference ∆ n , independent of X n . In practice, the probability distribution of ∆ n will hardly be known and, as a means to compensate for this lack of knowledge, we assume the existence of a uniform bound on the amplitude of all possible interferences. Therefore, we assume that, for all (ε, ω) ∈ {0, 1} × Ω, Y n (ε, ω) = ε + X n (ω) + ∆ n (ω) and the existence of q ∈ [0, ∞) such that ∆ n ∈ B ∞ (q). After all, this model is standard in time series analysis: ε plays the role of a trend, ∆ n is the seasonal variation and X n is the measurement noise.

(ε, ω) ∈ {0, 1} × Ω, Y n (ε, ω) = ε + X n (ω) with X 1 , X 2 , . . . , X n , . . . iid ∼ N (0, 1 
For each q ∈ [0, ∞), Seq q henceforth designates the set of all the sequences Y =

(Y n ) n∈N ∈ M {0, 1}×Ω, 0, 1 N such that, ∀n ∈ N and ∀(ε, ω) ∈ {0, 1}×Ω, Y n (ε, ω) = ε + ∆ n (ω) + X n (ω)
, where ∆ n ∈ B ∞ (q) and X n ∼ N (0, 1) are independant. Therefore, for all n ∈ N and all ε ∈ {0, 1}, Y n (ε) = ε + ∆ n + X n , with X 1 , X 2 , . . . , X n , . . . iid ∼ N (0, 1).

Selectivity, landscapes of tests and preordering

For any sequence Y = (Y n ) n∈N ∈ M {0, 1}×Ω, 0, 1 , we henceforth set:

Y Y Y n = Y 1 ,Y 2 , . . . ,Y n (4) 
In other words, Y Y Y n is the truncated version of the original sequence Y at the nth term.

Definition 5 (Selectivity of a test). Given any n ∈ N and any test f ∈ M (R n , {0, 1}), the selectivity of f at given level γ ∈ (0, 1) is defined as the set:

Sel γ ( f ) := q ∈ [0, 1/2) : ∀Y ∈ Seq q , f (Y Y Y n ) ∈ Dec γ
The relevance of the interval [0, 1/2) in the definition above will pop up in Section 6.2.

Definition 6 (Landscapes of tests). Given any n ∈ N and any test f ∈ M (R n , {0, 1}), the landscape of f at given level γ ∈ (0, 1) is the subset of Dec γ defined by:

Lnd γ ( f ) := q∈Sel γ ( f ) f (Y Y Y n ) : Y ∈ Seq q (5)
The total landscape covered by all the tests f ∈ M (R n , {0, 1}) is defined by setting:

Lndscp γ := n∈N Lnd γ ( f ) : f ∈ M (R n , {0, 1}) (6) 
This notion of landscape makes it possible to compare tests via the following preorder. The proofs that the following definition is consistent and that the next lemma holds true are left to the reader. Definition 7 (Preorder (2 Dec γ , * )). Given any level γ ∈ (0, 1), we define the preorder (2 Dec γ , * ) via the following three properties:

(P1) ∀n ∈ N, ∀( f , g) ∈ M (R n , {0, 1}) × M (R n , {0, 1}), Lnd γ ( f ) * Lnd γ (g) if: Sel γ ( f ) = Sel γ (g) and ∀ q ∈ Sel γ ( f ) , ∀Y ∈ Seq q , f (Y Y Y n ) g (Y Y Y n ) (P2) ∀ (L, L ) ∈ Lndscp γ ∪ 2 O γ × 2 O γ , L * L (P3) ∀ L ∈ 2 Dec γ \ Lndscp γ ∪ 2 O γ , L * L Lemma 2. ∀ (L, L ) ∈ Lndscp γ ∪ 2 O γ × Lndscp γ ∪ 2 O γ , L * L ⇒ L × L ⊂ .
With this material, we can state our first result that will prove useful in applications to statistical decisions below.

Theorem 1 (Approximation of oracles in (2 Dec γ , * )). Given γ ∈ (0, 1), if a set X γ and a family of tests f ξ ,n ξ ∈X γ ,n∈N satisfy:

(i) ∀(ξ , n) ∈ X γ × N, f ξ ,n ∈ M (R n , {0, 1}); (ii) ∃Q γ ⊂ [0, ∞), ∀(ξ , n) ∈ X γ × N, Sel γ f ξ ,n = Q γ ; (iii) ∀(ξ , q) ∈ X γ × Q γ , ∀Y ∈ Seq q , lim n→∞ P DET f ξ ,n (Y Y Y n ) = 1;
then, by setting Lndscp γ = Lnd γ f ξ ,n : n ∈ N, ξ ∈ X γ , we have:

2 O γ = upper Lndscp γ , 2 Dec γ , * = sup Lndscp γ , 2 Dec γ , * (7) 
Proof. For any (ξ , n) ∈ X γ × N and any L ∈ 2 O γ , (P2) in Definition 7 straightforwardly implies that Lnd γ f ξ ,n * L. As a consequence:

2 O γ ⊂ upper Lndscp γ , 2 Dec γ , * (8) 
To prove the converse inclusion, consider some L ∈ upper Lndscp γ , 2 Dec γ , * . We

thus have ∀ (ξ , n) ∈ N×X γ , Lnd γ f ξ ,n * L. According to Lemma 2, we have ∀ (ξ , n) ∈ X γ ×N, Lnd γ f ξ ,n ×L ⊂ . Therefore, ∀ (ξ , n) ∈ N ×X γ , ∀ q ∈ Sel γ f ξ ,n , ∀Y ∈ Seq q and ∀ D ∈ L, f ξ ,n (Y Y Y n ) L.
It follows from the definition of and assumption (ii) above that:

∀ (ξ , n) ∈ N × X γ , ∀ q ∈ Q γ , ∀Y ∈ Seq q , ∀ D ∈ L, P DET f ξ ,n (Y Y Y n ) P DET [D]
We derive from assumption (iii) that For later use, given J ⊂ [0, ∞), n ∈ N and F ⊂ M (R n , {0, 1}), we hereafter set:

Lndscps J γ (F) := Lnd γ ( f ) ∈ Lndscp γ : f ∈ F , Sel γ ( f ) = J (9)
5 The Neyman-Pearson (NP) solution

When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint a maximal element in each (Lndscps

{0} γ (F), ) with F = M (R n , {0, 1}
). These maximal elements are hereafter called NP decisions. Specifically, we have the following result.

Lemma 3 (Maximality of the NP decisions). For any γ ∈ (0, 1) and any n ∈ N,

Lnd γ f NP(γ ) n = max Lndscps {0} γ (M (R n , {0, 1})) , * (10) 
where f

NP(γ ) n ∈ M (R n , {0, 1}
) is the n-dimensional NP test with size γ defined by:

∀(y 1 , y 2 , . . . , y n ) ∈ R n , f NP(γ ) n (y 1 , y 2 , . . . , y n ) = 1 if ∑ n i=1 y i > √ n Φ -1 (1 -γ) 0 otherwise (11) 
and satisfies, ∀Y ∈ Seq 0 ,

     P FA f NP(γ ) n (Y Y Y n ) = γ P DET f NP(γ ) n (Y Y Y n ) = 1 -Φ Φ -1 (1 -γ) - √ n
Proof. A direct application of the Neyman-Pearson Lemma [8, Theorem 3.2.1, page 60], followed by some standard algebra to obtain P DET f

NP(γ ) n (Y Y Y n ) .
The next result states that it suffices to increase the number of observations to approximate oracles with level γ by NP decisions.

Interfacing biology, CT and statistics

Theorem 2 (Approximation of oracles with level γ by NP decisions in (2 Dec γ , * )).

Setting Lnd NP(γ) := Lnd γ f NP(γ ) n : n ∈ N for any γ ∈ (0, 1), we have:

2 O γ = upper Lnd NP(γ) , 2 Dec γ , * = sup Lnd NP(γ) , 2 Dec γ , * Proof. Given γ ∈ (0, 1), set X γ = {0} and, ∀ n ∈ N, f 0,n = f NP(γ ) n . According to Lemma 3, lim n→∞ P DET f NP(γ ) n (Y Y Y n ) = 1.
Thence the result as a consequence of Theorem 1.

6 The RDT solution

An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details in [START_REF] Pastor | Random Distortion Testing and Optimality of Thresholding Tests[END_REF][START_REF] Pastor | Random distortion testing with linear measurements[END_REF].

To ease the reading of the present paper, we directly focus on the particular RDT problem that can be used in connection with the detection problem at stake. In this respect, suppose that

Z = Θ + W ∈ M (Ω, R n ),
where Θ and W are independent elements of M (Ω, R n ). In the sequel, we assume that W ∼ N (0, I n ), I n being the n × n identity matrix, and consider the mean testing problem of deciding on whether

| Θ n (ω)| τ (null hypothesis H 0 ) or | Θ n (ω)| > τ (alternative hypothesis H 1 )
, when we are given Z(ω) = Θ(ω) +W (ω), for ω ∈ Ω. The idea is that Θ oscillates uncontrollably around 0 and that only sufficient large deviations of the norm should be detected. This is a particular Block-RDT problem, following the terminology and definition given in [START_REF] Pastor | Random distortion testing with linear measurements[END_REF]. This problem is summarized by dropping ω, as usual, and writing:

       Observation: Z = Θ +W ∈ M (Ω, R n ) with Θ ∈ M (Ω, R n ),W ∼ N (0, I N ), Θ and W are independent, H 0 : | Θ n | τ, H 1 : | Θ n | > τ.
(12) Standard likelihood theory [START_REF] Lehmann | Testing statistical hypotheses[END_REF][START_REF] Borovkov | Mathematical statistics[END_REF][START_REF] Eaton | Multivariate statistics. A vector space approach[END_REF] does not make it possible to solve this problem. Fortunately, this problem can be solved as follows via the Random Distortion Testing (RDT) framework.

Size and power of tests for mean testing. We seek tests with guaranteed size and optimal power, in the sense specified below. Definition 8 (Size for the mean testing problem). The size of f ∈ M (R n , {0, 1}) for testing the empirical mean of the signals

Θ ∈ M (Ω, R n ) such that P | Θ n | τ = 0, given Z = Θ +W ∈ M (Ω, R n ) with W independent of Θ, is defined by: α [n] ( f ) = sup Θ∈M (Ω,R n ) : P [ | Θ n | τ ] =0 P f (Z) = 1 | Θ n | τ (13) We say that f ∈ M (R n , {0, 1}) has level (resp. size) γ if α [n] ( f ) γ (resp. α [n] ( f ) = γ).
The class of all the tests with level γ is denoted by Tests

[n] γ :

Tests [n] γ = f ∈ M (R n , {0, 1}) : α [n] ( f ) γ
Definition 9 (Power for the mean testing problem). The power of f ∈ M (R n , {0, 1}) for testing the empirical mean of

Θ ∈ M (Ω, R n ) such that P | Θ n | > τ = 0 when we are given Z = Θ +W ∈ M (Ω, R n ),
with W independent of Θ, is defined by:

β [n] Θ ( f ) = P f (Z) = 1 | Θ n | > τ (14) 
The RDT solution. With the same notation as above, we can easily construct a preorder Tests

[n] γ , by setting:

∀ ( f , f ) ∈ Tests [n] γ × Tests [n] γ , f f if ∀ Θ ∈ M (Ω, R n ), P | Θ n | > τ = 0 ⇒ β [n] Θ ( f ) β [n] Θ ( f )
No maximal element exists in Tests

[n] γ , . However, we can exhibit C

[n] γ ⊂ Tests

[n] γ whose elements satisfy suitable invariance properties with respect to the mean testing problem and prove the existence of a maximal element in C

[n] γ , .

Set S = id, -id where id is the identity of R. Endowed with the usual composition law • of functions, (S , •) is a group. Let A be the group action that associates to each given s ∈ S the map A s : R n → R n defined for every x = (x 1 , x 2 , . . . , x n ) ∈ R n by A s (x) = (s(x 1 ), s(x 2 ), . . . , s(x n )). Readily, the mean testing problem is invariant under the action of A in that A s (Z) = A s (Θ) + W where W = (W 1 ,W 2 , . . . ,W n ) ∼ N (0, I n ) is independent of A s (Θ). Therefore, A s (Z) satisfies the same hypotheses as Z. We also have | A s (Θ) n | = | Θ n |. Hence, the mean testing problem remains unchanged by substituting A s (Θ) for Θ and W for W . It is thus natural to seek A -invariant tests, that is, tests f ∈ M (R n , {0, 1}) such that f (A s (x)) = f (x) for any s ∈ S and any x ∈ R n .

On the other hand, since we can reduce the noise variance by averaging observations, we consider A -invariant integrator tests, that is,

A -invariant tests f ∈ M (R n , {0, 1}) for which exists f ∈ M R 1 , {0, 1} , henceforth called the reduced form of f , such that f (x x x) = f ( x x x n ) for any x x x ∈ R n . Reduced forms of A -invariant integrator tests are also A -invariant: ∀x ∈ R, ∀s ∈ A , f (s(x)) = f (x). We thus define C [n] γ ⊂ Tests [n]
γ as the class of all A -invariant integrator tests with level γ. We thus have f ∈ C

[n]

γ if: [Size]: α [n] ( f ) γ; [A -invariance]: ∀ (s, x) ∈ S × R n , f (A s (x)) = f (x); [Integration]: ∃ f ∈ M R 1 , {0, 1} , ∀ x ∈ R n , f (x) = f ( x n ).
The following result derives from the foregoing and [START_REF] Pastor | Random Distortion Testing and Optimality of Thresholding Tests[END_REF][START_REF] Pastor | Random distortion testing with linear measurements[END_REF].

Proposition 2 (Maximal element of C [n] γ ,
). For any γ ∈ (0, 1) and any n ∈ N,

f RDT(γ ,τ) n = max C [n] γ , (15) 
where f

RDT(γ ,τ) n ∈ M (R n , {0, 1}) is defined by setting ∀(y 1 , y 2 , . . . , y n ) ∈ R n , f RDT(γ ,τ) n (y 1 , y 2 , . . . , y n ) = 1 if |∑ n i=1 y i | √ n λ γ (τ √ n) 0 otherwise and λ γ (τ √ n) is the unique solution in x to the equation 2 -Φ(x -τ √ n) -Φ(x + τ √ n) = γ
where Φ is the cumulative distribution function (cdf) of the N (0, 1) law.

RDT and NP tests are structurally different because dedicated to two different testing problems and optimal with respect to two different criteria. This structural difference will be enhanced by coming back to our initial detection problem.

Application to Detection

Consider again the problem of estimating ε ∈ {0, 1}, when we have a sequence Y ∈ Seq q of observations such that:

∀ n ∈ N, ∀(ε, ω) ∈ 0, 1 × Ω,Y n (ε, ω) = ε + ∆ n (ω) + X n (ω) (16) 
where X 1 , X 2 , . . . iid ∼ N (0, 1) and ∀n ∈ N, ∆ n ∈ B ∞ (q) with q ∈ [0, ∞). The empirical mean of Y satisfies:

∀ n ∈ N, Y n (ε) = Y(ε) n = ε + ∆ n + X n . We thus have | ∆ n | q (a- s). Set Θ n = ε + ∆ n for every n ∈ N.
In the sequel, we assume q < 1/2 because, in this case, we straightforwardly verify that

ε = 0 ⇔ | Θ n | q ε = 1 ⇔ | Θ n | 1 -q (17) 
Therefore, when q ∈ [0, 1/2), deciding on whether ε is zero or not when we are given Y Y Y n (ω) amounts to testing whether | Θ n (ω)| τ or not for τ ∈ [q, 1q]. We thus can use the decision f

RDT(γ ,τ) n (Y Y Y n ), where f RDT(γ ,τ) n
is given by Proposition 2. We can calculate the false alarm probability (1) of f

RDT(γ ,τ) n (Y Y Y n ) where Y Y Y n is defined by (4). The theoretical results in [9] yield that ∀τ ∈ [q, 1 -q], P FA f RDT(γ ,τ) n (Y Y Y n )
γ. In the sequel, for the sake of simplifying notation, we assume that both τ and q are in [0, 1/2). In this case, we have:

∀τ ∈ [0, 1/2) ,        Sel γ f RDT(γ ,τ) n = [0, τ] Lnd γ f RDT(γ ,τ) n = q∈[0,τ] f RDT(γ ,τ) n (Y Y Y n ) : Y ∈ Seq q (18)
We can then state the following lemma, which is the counterpart to Lemma 3. Theorem 3 (Maximality of RDT decisions). For any γ ∈ (0, 1), any n ∈ N and any

0 q τ < 1/2, Lnd γ f RDT(γ ,τ) n = max Lndscps [0,τ] γ C [n] γ , * .
Proof. It results from Definition 6 that Lnd γ ( f

) := f (Y Y Y n ) : Y ∈ Seq q , q ∈ [0, τ]
. According to (9), we also have:

Lndscps [0,τ] γ C [n] γ = Lnd γ ( f ) ∈ Lndscp γ : f ∈ C [n] γ , Sel γ ( f ) = [0, τ]
Given q ∈ [0, τ] and Y ∈ Seq q , set:

   Z = Y Y Y n = (Y 1 ,Y 2 , . . . ,Y n ) (see (4)) W = (X 1 , X 2 , . . . , X n ) ∼ N (0, I n ) Θ = (1 + ∆ 1 , 1 + ∆ 2 , . . . , 1 + ∆ n )
We basically have Z = Θ +W . Consider now the mean testing problem (12) with Θ, W and Z defined as above. For any f ∈ M (R n , {0, 1}), it follows from Eqs. ( 16) , ( 17), ( 2) and (13) that:

β [n] Θ ( f ) = P DET [ f (Y Y Y n )] (19) 
Suppose now that f ∈ C

[n]

γ with Sel γ ( f ) = [0, τ]. We derive from Proposition 2, (19) and its application to f

RDT(γ ,τ) n , that P DET [ f (Y Y Y n )] P DET f RDT(γ ,τ) n (Y Y Y n ) . Since q τ < 1/2 implies that q ∈ Sel γ ( f ) and since Sel γ ( f ) = Sel γ f RDT(γ ,τ) n = [0, τ], we can rewrite the foregoing equality as f (Y Y Y n ) f RDT(γ ,τ) n (Y Y Y n ).
This holding true for any q ∈ Sel γ ( f ), any Y ∈ Seq q and since f and f RDT(γ ,n) q have same selectivity [0, τ], we derive from the foregoing and Definition 7 that Lnd γ ( f ) * Lnd γ f RDT(γ ,τ) n .

We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 4 (Approximation of oracles with γ by RDT decisions in (2 Dec γ , * )).

Setting Lnd RDT(γ,τ) := Lnd γ f RDT(γ ,τ) n : n ∈ N for any given γ ∈ (0, 1), we have: RDT(γ,τ) , 2 Dec γ , * = sup Lnd RDT(γ,τ) , 2 Dec γ , *

2 O γ = upper Lnd
Proof. Given γ ∈ (0, 1), it follows from (2) and [9, Theorem 2] that: We have now all the material to state the main result. Theorem 4 (Multiplicity Principle in (2 Dec γ , * )). For any given τ ∈ (0, 1/2), the MP is satisfied in (2 Dec γ , * ) by the pair Lnd NP(γ) , Lnd RDT(γ,τ) .

∀(q, τ) ∈ [0, 1/2) × [0, 1/2), ∀n ∈ N, P DET f RDT(γ ,τ) n (Y Y Y n ) Q 1/2 (1 -q) √ n, λ γ (τ √ n) Since τ < 1 -q, [
Proof. According to Theorems 2 and 3, the subsets Lnd NP(γ) and Lnd RDT(γ,τ) of 2 Dec γ are such that sup Lnd NP(γ) , 2 Dec γ , * = sup Lnd RDT(γ,τ) , 2 Dec γ , * = 2 O γ

In addition, (18) and Lemma 5 imply that Lnd NP(γ) × Lnd RDT(γ,τ) ∩ * = / 0. The conclusion follows from Lemma 1.

Conclusions and Perspectives

In this paper, via the framework provided by the Multiple Principle (MP), which is motivated by the concept of degeneracy in biology, and by introducing the notions of test landscapes and selectivity, we have established that this principle is satisfied when we consider the standard NP tests and the RDT tests applied to a detection problem. One interest of this result is that it opens prospects on the construction of Memory Evolutive Systems [START_REF] Ehresmann | Memory Evolutive Systems; Hierarchy, Emergence, Cognition[END_REF][START_REF] Ehresmann | MES: A Mathematical Model for the Revival of Natural Philosophy[END_REF] via tests.

More elaborated statistical decision problems should be considered beyond this preliminary work. Sequential tests are particularly appealing because they collect information till they can decide with guaranteed performance bounds. On the one hand, the Sequential Probability Ratio Test (SPRT) established in [START_REF] Wald | Sequential Tests of Statistical Hypotheses[END_REF] is proved to be optimal; on the other hand, in [START_REF] Khanduri | Sequential Random Distortion Testing of Non-Stationary Processes[END_REF], we have exhibited non-optimal tests with performance guarantees in presence of interferences. In the same way as NP and RDT tests satisfy PM, we conjecture that these two types of sequential tests satisfy MP as well.

From a pratical point of view, such results open new prospects for the design of networks of sensors, where combining different types of sensors and tests satisfying the MP could bring resilience to the overall system.

Definition 4 .

 4 Given γ ∈ (0, 1), an oracle with level γ is any decision D ∈ Dec γ such that P DET [D] = 1. The set of all the oracles with level γ is denoted by O γ .

7 ,. 7 MultiplicityLemma 5 (

 775 Eq. (3) and Lemma B.2] induce that limn→∞ P DET f RDT(γ ,τ) n (Y Y Y n ) = 1.The set LndRDT(γ,τ) ⊂ Lndscp γ thus satisfies Theorem 1 conditions with X γ = {τ} and∀ n ∈ N, f n,τ = f RDT(γ ,τ) n Principle in (2 Dec γ , * )To state the MP in (2 Dec γ , * ), we need the following lemma. Selectivity of NP tests). ∀n ∈ N, Sel γ f NP(γ ) n= {0}Proof. A consequence of [9, Section B, p. 6.].

  P DET [D] = 1 and thus that D ∈ O γ . It follows that L ∈ 2 O γ . We thus obtain that upper Lndscp γ , 2 Dec γ , * ⊂ 2 O γ and therefore, from (8), 2 O γ = upper Lndscp γ , 2 Dec γ , * . The second equality in (7) is straightforward since the elements of 2 O γ are isomorphic in the sense of * .
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