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Optimal Reference Selection for Random

Access in Predictive Coding Schemes
M.- Q. Pham, Member IEEE, A. Roumy, Member IEEE, T. Maugey, Member IEEE,

E. Dupraz, Member IEEE, and M. Kieffer, Senior Member IEEE,

Abstract

Data acquired over long periods of time like High Definition (HD) videos or records from a sensor

over long time intervals, have to be efficiently compressed, to reduce their size. The compression has also

to allow efficient access to random parts of the data upon request from the users. Efficient compression

is usually achieved with prediction between data points at successive time instants. However, this creates

dependencies between the compressed representations, which is contrary to the idea of random access.

Prediction methods rely in particular on reference data points, used to predict other data points, and the

placement of these references balances compression efficiency and random access. Existing solutions to

position the references use ad hoc methods. In this paper, we study this joint problem of compression

efficiency and random access. We introduce the storage cost as a measure of the compression efficiency

and the transmission cost for the random access ability. We show that the reference placement problem

that trades off storage with transmission cost is an integer linear programming problem, that can be

solved by standard optimizer. Moreover, we show that the classical periodic placement of the references

is optimal, when the encoding costs of each data point are equal and when requests of successive data

points are made. In this particular case, a closed form expression of the optimal period is derived. Finally,

the optimal proposed placement strategy is compared with an ad hoc method, where the references

correspond to sources where the prediction does not help reducing significantly the encoding cost. The

optimal proposed algorithm shows a bit saving of -20% with respect to the ad hoc method.
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Predictive Coding, Random Access, Integer Linear Programming.

I. INTRODUCTION

Data acquired over a long period of time, for instance a long HD video, or time serie measurements

acquired by a sensor, require compression to be stored on a server. Random access (RA) to compressed

data is the ability for a user to access any temporal interval, for instance any frame within a video, or any

temporal sample acquired by the sensors. On the other hand, efficient compression requires to exploit

temporal correlations by jointly processing the data points at successive time instants, see [7, Th. 2.6.6].

This creates dependencies between the successive compressed representations of data points and makes

it impossible to directly access any data point at any time instant without sending additional unrequested

data points. This paper aims to address the resulting compromise between RA and compression efficiency.

Predictive coding (PC) is one way to achieve efficient compression and is used in many standards for

speech, audio, image, and video compression [17]. PC is well adapted to data points that are available

sequentially, as in standard video coding [9], [21], [24] and streaming video coding [2]. In PC, there exists

two types of sources. First, reference sources are coded independently of the others. Second, predicted

sources are predicted from other sources (either reference or predicted), and only the prediction residual

is encoded. PC is very popular since it is known to optimaly exploit the correlation between data points,

for a large class of source models. For instance, for lossless compression, if each data point is modeled

as the realization of a source, PC achieves the joint entropy of the sources and is therefore optimal [7,

Th. 2.5.1] (chain rule). For lossy compression, optimality results exist for Gauss-Markov sources and

linear prediction [22, Sec. 6.4.1].

The tradeoff between RA and PC is a longstanding problem in the video coding literature [9], [21],

[24]. In video coding, RA is expressed as the ability to start reading a video stream at an arbitrary

moment, even if the file has been damaged, or if the users do not start watching at the beginning of

the video stream. A classical solution for RA consists in periodically placing references. For instance, in

[23], a reference is imposed every eight frames in order to limit the delay to access the data. The video

content may also be taken into account to position the references, as in [1]. Or some of the frames may

be stored twice, both as a reference and as a prediction, which lowers the storage efficiency [11]. Apart

from video coding, RA was also addressed for sensor networks measurements [15], [19]. However, in

these works, all the sources are encoded as references. Genome [8] and Internet of Things [20] databases

were also considered in the context of RA, as well as some specific sequential lossless compression

algorithms, such as Lempel-Ziv [10], or Burrows-Wheeler [18]. What is common to all the above works
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is to seek at determining a set of reference positions in order to allow for RA. However, all the proposed

solutions are either suboptimal, or specific to a particular coding algorithm.

Therefore, the objective of this paper is to introduce a generic method in order to determine the set

of optimal reference positions that will address the tradeoff between RA and compression efficiency. In

order to address the RA problem for a wide range of applications, we model the data to be compressed as

a sequence of sources indexed by time. Each source of the sequence generates a sample vector which may

correspond to a frame (standard video coding), to a set of simultaneous frames with different viewpoints

(multiview video coding), or to a set of measurements taken by multiple sensors at the same time instant

(sensor networks). Within this model, we define a request as a user-dependent set of sources to be

transmitted to the user.

Optimal positioning of references was investigated in the context of tiling for omnidirectional visual

content. In this context, the request now concern tiles, where a tile is a subpart of the onmidirectional

image and can be seen as a view in multiview coding [12], [13], [25]. Put in our model, [12], [13],

[25] have an additional constraint compared to our work, that is that if the request ends between two

references, then the whole segment, from previous reference to next reference, is transmitted to the user.

Besides, the above works optimize some specific parameters, that are segment size in [12], resolution at

which tiles are transmitted in [13], and segment prediction method in [25]. Therefore, these methods do

not allow to completely address the tradeoff between RA and compression efficiency.

In order to jointly study the compression and RA problems, we propose to measure compression

efficiency with the storage cost, i.e. the amount of bits needed to encode the whole data. We further

propose to measure the RA ability with the transmission cost, i.e., the cost to send requests to the users.

The introduced transmission cost takes also into account the popularity of the requests modeled as a

probability distribution defined over the set of possible requests. In order to take both criterion into

account, we then propose to optimize a single metric given by the weighted sum of the storage cost and

the transmission cost. In particular, we show that the reference placement problem that trades off storage

with transmission cost is an integer linear programming problem, that can be solved by standard optimizer

[16]. Moreover, we show that the commonly considered periodic placement of the references [23] is not

optimal in general, unless some very restrictive assumptions are considered, that are for instance that the

encoding costs of each data point are equal (i.e. all data points when compressed as a reference require

the same cost, and when compressed as a predicted source require the same cost, but not necessarily

equal to the previous one) and that all requests are equally probable.

We demonstrate the performance of the proposed method for: 1) the particular case where the data

points have the same encoding cost (i.e. the encoding costs of the sources as a reference are equal,
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and the encoding costs as predicted are also equal) and 2) the general scenario, where the sources have

variable encoding costs. Experiments are conducted on various applications. We first consider the case

where a source is a frame of a video encoded with the VVC Test Model (VTM) version 6.2 for VVC

Versatile Video Coding (VVC) [5]. We then apply our method to meteorological data and to the occupancy

measure of self-service bicycle terminals in Paris. For each case, the transmission cost is evaluated with

different popularity distributions: either all sources are equally popular, or with significantly unequal

popularity. Depending on the application, we consider different unequal popularity distributions. We use

a log-normal distribution for video coding [4], a Gaussian distribution for meteorological data, and an

empirical frequency distribution based on real measurements for self-service bicycles.

In order to show the interest of our approach, we compare our optimization results with two other

methods. First, we consider a naive approach, in which sources with high predictive encoding cost are

chosen to be a reference. Second, we incorporate the tiling constraint of [12], [13], [25] into our method,

and derive the corresponding optimal solution. Experimental results are compared in terms of BD-rates

for the video coding application, and in terms of rate-saving for the other two applications. Our method

shows around −20% of bit-rate saving compared to the naive approach, and around −3% of bit-rate

saving compared to the optimized tiling approach.

Notation: Upper case letters denote either a source or a random variable. bxc and dxe denotes rounding

x to the nearest integer less than, greater than or equal to it, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the joint optimization problem of the compression efficiency and random access is

derived. First, the source model and the encoding scheme are presented. Then, storage and transmission

costs are formally defined. These two quantities form the cost function to be optimized, and this leads

to the problem formulation.

A. Source model, coding scheme and source delivery

The data is modeled as the realizations of N correlated sources that can be represented by a N -

dimensional vector of random variables denoted (X1, . . . , XN ), where each Xn is a multivariate variable

of dimension d.

The sources are first compressed according to a predictive scheme, meaning that a source is encoded

either independently of the other sources (the source is then said to be a reference or to be intra-coded)

or by exploiting the knowledge of the previous one, see Fig. 1 (the source is then said to be predicted or

inter-coded). In the following, I ⊂ {1, ..., N} denotes the index set of the reference sources. To handle
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Xn

(source)

•

• Intra Coding

• Predictive Coding

Xn−1

Fig. 1. Predictive coding scheme: each source is either intra coded or predicted.

the case of the first source X1, we introduce the initialization source X0, which models the memory state

at the encoder when the encoding starts. For instance, X0 can be the all zero source, or XN . In the latter

case, the encoding is said to be cyclic.

For this predictive coding scheme, and given the index set I, we first derive the contribution of the

source Xn to the global encoding cost. Encoding of the source Xn leads to a cost rn (in bits) if the

source is intra-coded and αnrn if it is predicted. Note that compression can be either lossless, or lossy.

αn corresponds to the reduction that can be achieved with the prediction of the source Xn. Therefore,

given the index set of references I, the global cost of encoding the source Xn is

cost(Xn|I) = rn1I(n) + αnrn(1− 1I(n)) ∀ n ∈ [1, N ] (1)

where 1I is the characteristic function of the set I. For example, if optimal lossless compression is

performed, then the rates can be expressed as rn = H(Xn), and αnrn = H(Xn|Xn−1), where H(Xn)

and H(Xn|Xn−1) denote the entropy and conditional entropy respectively. The case of lossy compression

is studied in Sec. V.

Once the compression is performed, all sources are stored on a server. Then, random access to the

sources is allowed in the sense that a client may request any set of sources. The coding and request

principles are shown in Fig. 2.
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a) X1 X2 X3 X4 X5 X6 X7 X8 · · ·

b) X1 X2 X3 X4 X5 X6 X7 X8 · · ·

reference

predicted

/ request

/ additional source sent

Fig. 2. Serving a request in the predictive coding scheme. Sources selected as a reference are depicted with a square. Predicted

sources are depicted with a circle. An arrow from a square/circle to another circle means that the source depicted by the

square/circle at the beginning of the arrow is used to predict the other source. A request to a set of sources is depicted as

filled gray squares/circles. The set of sources which are effectively sent, includes the request but also additional sources (dotted

square/circle) to allow decoding. The decoding process is shown with dotted arrows. Two examples of request are shown: either

the requested sources (X2, X3, X4) are included in a single group of source and only one reference needs to be sent (a), or the

requested sources (X3, X4, X6) are spread over two groups of source and two references need to be sent (b).

B. Problem description and challenges

The goal of the paper is to optimize the predictive coding scheme by minimizing a cost that depends

on two criteria:

• the storage cost i.e. the averaged encoding cost of the data (1), averaged over all sources,

• the transmission cost: the amount of transmitted data per requested source, and averaged over all

possible requests.

Classically, in the context of video coding [1], [9], [21], [23], [24], the two criteria are not differentiated.

This is a consequence of the fact, that in classical 2D video coding, long consecutive sequences of sources

(frames) are requested, such that both criteria are almost equal.

As for the optimization of the predictive coding scheme, the design parameter considered here is the

placement of the references, denoted I.

C. Problem formulation

Given a sequence of sources (X1, ..., XN ) and the predictive coding scheme detailed in Section II-A

with source initialization X0 and reference index set I, the storage is completely determined by the cost
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to encode each source (1)

S(I) =
1

N

N∑
n=1

cost(Xn|I). (2)

The users make requests to the database, where a request can be any subset V ⊂ {1, . . . , N}. Given

the index set of the reference sources I, and upon request of the sources with index V , the server delivers

a set of compressed sources with index S such that the requested sources can be recovered (see Fig. 2).

More precisely, it is necessary that for each requested source, a reference source and all its successors

are sent. Therefore, for a given requested set V , the index set of the sent sources S must satisfy

∀v ∈ V, ∃i ∈ I : {i, i+ 1, . . . , v} ⊂ S (3)

which expresses the coding dependency chain. Then, the transmission cost corresponds to the cost to send

all sources with index in S, where this cost is averaged over the number of requested sources. Finally,

the minimum transmission cost is obtained by optimizing over the set of sent sources and is given by

(4)

R(V|I) = min
S⊂{1,...,N}

1

|V|

N∑
n=1

rn
(
1I(n) + αn(1− 1I(n))

)
1S(n) (4a)

subject to ∀v ∈ V,∃i ∈ I : {i, i+ 1, . . . , v} ⊂ S (4b)

Although the requests from users are unknown in advance and are therefore random, they can be collected

and classified into a limited number of typical requests characterized by some popularity distribution.

More precisely, we suppose that there exists M typical index sets of requested sources, denoted by

{V1, . . . , VM}. This may result from an analysis of the video based on saliency analysis, or change of

scene. The cardinality |Vm| is denoted by `m, for every m ∈ [1,M ]. Vector p = (p1, . . . , pM ) represents

the popularity distribution, where pm stands for the probability that the set Vm has been requested. In the

following, we assume that all sources might be requested with a non zero probability. In other words, we

assume that pm > 0,∀m ∈ {1, . . . ,M}, and ∪m∈{1,...,M}Vm = {1, . . . , N}. This leads to the minimum

averaged transmission cost (5)

The reference set selection problem consist in finding

I∗ ∈ argmin
I⊂{1,...,N}

S(I) + λR(I) (6)

where the storage S(I) and the transmission R(I) costs are defined in (2) and (5) respectively, λ ∈
(0,+∞) is a weighting parameter between the storage and the transmission rate. The difficulty of the
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R(I) =

M∑
m=1

pm
|Vm|

min
Sm⊂{1,...,N}

N∑
n=1

rn
(
1I(n) + αn(1− 1I(n))

)
1Sm(n) (5a)

subject to ∀m ∈ [1,M ], ∀v ∈ Vm, ∃i ∈ I : {i, i+ 1, . . . , v} ⊂ Sm (5b)

problem is twofold. First, a double optimization needs to be performed, one to determine the set of sent

sources Sm for each request m, and the second one to determine the reference index set I. This leads to

a quadratic cost function that results from the multiplication of the functions 1I and 1Sm . Second, the

constraint (5b) introduces a complex dependence between the optimization variables: Sm, ∀m ∈ [1,M ]

and I.

Remark: The formulation (6) is quite general. First, it includes the optimization of the weighted metric

γS(I) + µR(I). This weighted metric can for instance be the time to serve a request (in this case γ

represents the time per bit to read a memory, and µ the time to send and receive a bit), or the energy

cost to maintain a service, or the price to deploy such a service. Moreover, the solution to the problem

(6) allows to solve the two following constrained problems:

min
I⊂{1,...,N}

S(I) subject to R(I) ≤ RC

min
I⊂{1,...,N}

R(I) subject to S(I) ≤ SC

where RC and SC are global cost constraints. Indeed, we will show in Sec. III that (6) is a linear pro-

gramming problem. Therefore, all terms (S(I),R(I)) including the constraint (5b) are linear. Therefore,

the derivations of Sec. III imply that the two constrained problems above are equivalent to integer linear

programming problems.

III. AN EQUIVALENT INTEGER LINEAR PROGRAMMING PROBLEM

In this section, we show that the reference selection problem (6) can be cast into an integer linear

programming problem. The first step consists in turning the quadratic cost function into a linear cost

function by introducing the optimization vectors y, z0,m, z1,m such that, ∀n ∈ [1, N ]

yn = 1I(n), (7a)

z0,m
n = 1I(n)1Sm(n), ∀m ∈ [1,M ] (7b)

z1,m
n = (1− 1I(n))1Sm(n), ∀m ∈ [1,M ] (7c)

August 28, 2020 DRAFT



IEEE TRANSACTIONS ON COMMUNICATIONS 9

where yn, z
0,m
n , z1,m

n stand for the nth entry of the vectors y, z0,m, z1,m. These vectors belong to the set

{0, 1}N . Moreover, to be compatible with the definition of the characteristic functions 1I and 1Sm , these

vectors must satisfy the following constraints

z0,m
n ≤ yn, ∀n (8a)

z1,m
n ≤ 1− yn, ∀n (8b)

where (8a) follows from (7a) and (7b) and (8b) follows from (7a) and (7c).

With this change of variable, the cost function in Problem (6) becomes (9)

1

N

N∑
n=1

rn (1− αn) yn + λ

M∑
m=1

pm
|Vm|

min
(z0,m,z1,m)

N∑
n=1

rn
(
z0,m
n + αnz

1,m
n

)
(9)

which is indeed linear, as well as the additional constraints (8).

We now turn to the constraint and show that the search space of the optimal index set Sm defined

by the constraint (5b) can be reduced without modifying the value of the cost function at the optimum.

More precisely, the sent sources (with index in Sm) must contain the information necessary for decoding

each requested source. This is the meaning of the constraint (5b). In particular, for each requested source

of index v ∈ Vm, a reference source with index i ≤ v needs to be sent. However, it is sufficient to send

the reference source that is closest to v. All other reference sources with index smaller will lead to an

unnecessary extra rate. Therefore, the constraint (5b) can be rewritten as a new decodability constraint

(10), without modifying the value of the cost function at its optimum

∀m ∈ [1,M ], S∗m(I) =
⋃

v∈Vm

{iv, iv + 1, . . . , v} (10a)

where iv = max
j∈I,j≤v

j (10b)

We now show that the decodability constraint (10) can be expressed in terms of linear equations. The

proof consists of several steps.

Step 1. (10)⇒(11) The decodability constraint (10) implies that there must at least one reference

source. This can be written as

∃n s.t. 1I(n) = 1⇔
N∑

n=1

yn ≥ 1 (11)

Step 2. (10)⇒(12)⇔(13)⇔(14). We now show that the decodability constraint (10) induces a

backward recursive construction of the set of sent sources. First, a source is sent if its index n
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belongs to the request (12a). Then, if the source of index n is not requested, and if the source n+ 1

is not a reference, then the fact that the source of index n + 1 is sent, implies that the previous

source of index n must also be sent (12b). This implies a backward recursion, and the recursion

stops when a previous source is a reference. (
n ∈ Vm

)
⇒
(
n ∈ Sm

)
(12a)

(n /∈ Vm) ∧ (n+ 1 ∈ Sm) ∧ (n+ 1 /∈ I)⇒
(
n ∈ Sm

)
(12b)

This is equivalent to

1Sm(n) = 1 ∀n ∈ Vm (13a)

1Sm(n) = 1Sm(n+ 1) (1− 1I(n+ 1)) ∀n /∈ Vm (13b)

and, thanks to the change of variable (7), this can be rewritten as

z0,m
n + z1,m

n = 1 ∀n ∈ Vm (14a)

z0,m
n + z1,m

n = z1,m
n+1 ∀n /∈ Vm (14b)

Step 3. (11)(12)⇒(10) Conversely, from (12a) or equivalently (13a), all requested sources belongs to

the set of sent sources. If the source with index v is a reference, then from (13b), the previous and all

other previous sources are not sent. If instead, the source with index v is not a reference, then from

(13b), the previous and all other previous sources are sent. The recursion stops when a reference

source has been found. Moreover, from (11), there exists at least one reference source. Therefore,

∀v ∈ Vm, the index set {i, i+ 1, . . . , v} (where i ∈ I) belongs to the index set of sent sources Sm.

In other words, the sent sources (with index in Sm) are sufficient to decode any requested source.

In conclusion, the new expressions of the cost function (9) and of the constraints (8), (11) and (14),

lead to a new formulation of the overall reference selection problem as written in (15), where z0 =(
z0,m
n

)
1≤n≤N,1≤m≤M

and z1 =
(
z1,m
n

)
1≤n≤N,1≤m≤M

. We observe that this problem is indeed a linear

integer programming problem, that can be solved by standard optimizer as [16]. In this paper, we employ

the Mixed-Integer Linear Programming (MILP) and use the ILP Matlab toolbox1.

IV. A CASE WHERE THE PERIODIC PLACEMENT OF THE REFERENCE SOURCES IS OPTIMAL

A classical approach in video coding [9], [21], [24] is to place references periodically [23]. In this

section, we derive sufficient conditions under which this periodic placement is optimal. More precisely, we

1available at https://fr.mathworks.com/help/optim/ug/intlinprog.html
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(y∗, z0,∗, z1,∗) = argmin
(y,z0,z1)∈R(2M+1)N

1

N

N∑
n=1

rn(1− αn)yn + λ

M∑
m=1

βm

N∑
n=1

rn
(
z0,m
n + αnz

1,m
n

)

s.t.



(yn, z
0,m
n , z1,m

n ) ∈ {0, 1}3 ∀ (n,m) ∈ [1, N ]× [1,M ]∑N
n=1 yn ≥ 1

−yn + z0,m
n ≤ 0 ∀ (n,m) ∈ [1, N ]× [1,M ]

yn + z1,m
n ≤ 1 ∀ (n,m) ∈ [1, N ]× [1,M ]

z0,m
n + z1,m

n = 1 ∀ (n,m) ∈ [1, N ]× [1,M ] and n ∈ Vm,

z0,m
n + z1,m

n − z1,m
n+1 = 0 ∀ (n,m) ∈ [1, N − 1]× [1,M ] and n /∈ Vm

(15)

study the reference selection problem (6) under the hypothesis that all sources have the same distribution

and that consecutive requests are done. In particular, we show that periodic placement of the reference

sources is optimal, and we derive a closed form expression for the optimal period. More formally, the

hypotheses considered here are:

Assumption 1. The encoding cost of all the sources in (1) are constants i.e.

∀ n ∈ [1, N ] , αn = α, rn = r,

Assumption 2. The family of request sets consists of all possible sets of ` consecutive indices, each

request has the same probability, i.e.

∀ m ∈ [1,M ] , `m = `, and pm =
1

M
.

Assumption 3. The weighting parameter λ between the storage and the transmission rate equals 1.

Proposition 4. Consider a set of N sources (N → +∞) that satisfy the Assumption 1. Further consider

that the requests satisfy Assumption 2, and that the cost function satisfies Assumption 3. The optimal

positioning of the reference sources that minimizes the optimization problem (6) is periodic.

Proof. The proof for this Proposition can be found in Appendix A.

In the previous proposition, the reason for the asymptotic study (N →∞) is to neglect the boundary

effect of the last group of sources.
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Proposition 5. Consider a set of N sources (N → +∞) that satisfy the Assumption 1. Further consider

that the requests satisfy Assumption 2, and that the cost function satisfies Assumption 3. The reference

index set is periodic of period k. The storage (2) and the transmission cost (5) only depend on this period

and are given by

S(k) =
r

k
[(k − 1)α+ 1], (16)

R(k) =
r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
(17)

Proof. The proof for (16) directly derives from the definition of the storage (2). The proof for the

transmission cost is more involved as it requires to solve an optimization problem. It is given in

Appendix B

Theorem 6. Consider a set of N sources (N → +∞) that satisfy the Assumption 1. Further consider

that the requests satisfy Assumption 2, and that the cost function satisfies Assumption 3. The optimal

positioning of the reference sources that minimizes problem (6) is periodic of period k∗

k∗ = argmin
k∈{bkc,dke}

F (k) (18)

where

k̄ =

√
2(1− α)(2`− 1)

α
.

Proof. k∗ is the value that minimizes the function F (k) = S(k) + R(k). Details of the proof can be

found in Appendix C.

V. OPTIMAL REFERENCE PLACEMENT IN THE CASE OF LOSSY COMPRESSION

A. Equivalent integer linear programing problem with increased search space dimension

In this section, we extend the reference selection problem to the case of lossy compression. We assume

that the quantization step size is fixed for all the sources, and, as in the lossless case, we only optimize

the reference placement (no rate-distortion allocation). The difference between the two cases lies in the

fact that in the lossy case, the rate needed to transmit a source can depend on the distance between this

source and its previous reference. Therefore, in this part, we also assume that the distance between two

consecutive references is not greater than T . Under these assumptions, we express the cost function in

the lossy case, and show that minimizing this cost function is, as before, equivalent to solving a linear

programming problem.
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For a sequence of sources (X1, . . . , XN ), the global cost for the lossy encoding of the source Xn

satisfies, for every n ∈ [1, N ],

cost(Xn|I) = rn1I(n) + αn,t∗rn (1− 1I(n)) , (19a)

where t∗ = arg max
t∈I∩Tn

t, (19b)

and where Tn = [max{1, n − T + 1},max{1, n − 1}] for n ∈ [1, N ]. In (19), rn stands for the rate to

encode the reference source Xn, and αn,trn is the rate to encode the source Xn from Xn−1, given that the

source Xt is a reference source (with t ∈ Tn). The difficulty in (19b) is that the optimization is performed

over indices, whereas, in the global optimization problem, the cost function (19a) is homogeneous to a

rate. Therefore, we rewrite (19) into (20) assuming that the rate needed to compress a source increases

with the distance to the reference.

cost(Xn|I) = rn1I(n) +

(
min

t∈I∩Tn
αn,t

)
rn (1− 1I(n)) . (20)

cost∗(Xn|I) = rn1I(n) +

(
min
Jn⊂I

∑
t∈Tn

αn,t1Jn
(t)

)
rn (1− 1I(n)) , (21a)

s.t. 1I(n) +
∑
t∈Tn

1Jn
(t) (1− 1I(n)) = 1. (21b)

Now, (20) can be equivalently reformulated as in (21). Indeed, if n ∈ I, both cost functions are equal,

and if n ∈ [1, N ] \ I, we have

cost∗(Xn|I) =

(
min
Jn⊂I

∑
t∈Tn

αn,t1Jn
(t)

)
rn (22a)

s.t.
∑
t∈Tn

1Jn
(t) = 1. (22b)

We now formulate the optimization problem in the lossy case. As for the lossless case, the storage

cost is given by

S(I) =
1

N

N∑
n=1

cost∗(Xn|I) (23)

and the minimum averaged transmission cost required to deliver the M sets of requested sources {V1, . . . , VM}
is obtained by
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R(I) =

M∑
m=1

pm
|Vm|

min
Sm⊂{1,...,N}

N∑
n=1

cost∗(Xn|I)1Sm(n) (24a)

subject to ∀m ∈ [1,M ], ∀v ∈ Vm, ∃i ∈ I : {i, i+ 1, . . . , v} ⊂ Sm (24b)

Therefore, in this case, the reference set selection problem consists of finding an index set I∗ such that

I∗ ∈ argmin
I⊂{1,...,N}

S(I) + λR(I) (25)

The following proposition shows that, as in the lossless case, finding a solution for (25) is equivalent to

solving a linear programming problem.

Proposition 7. The reference selection problem (25) can be cast into an integer linear programming

problem.

Proof. See Appendix D.

The linear programming problem stated in Section III for the lossless case involves N(1 + 2M)

binary variables to optimize. In the lossy case, the linear programming problem of Proposition 7 involves

(N +
∑N

n=1 |Tn|)(1 +M) binary variables. In the lossy case, the number of variables is thus increased

by a factor approaching T , which can be large. In the next section, we consider a source model for

which the optimization problem for the lossy case can be simplified into the optimization problem for

the lossless case.

B. Reduction of the search space dimension

In the previous section, we showed that the reference selection problem remains an integer linear

programming problem in the case of lossy compression. However, the main difference with the lossless

case, is that the dimension of the search space can be significantly increased. A way to reduce the

dimension of the optimization problem is to break the dependency chain thanks to some assumptions, as

it is done in other applications such as bit allocation in a video stream [14], [26] or packet scheduling

on a lossy channel [6].

In the following, we show an example of drastic simplification, such that (1) still holds, i.e., the cost

function depends on two instead of T parameters as in (20). Consider the first order autoregressive model

Xn = AXn−1 + Zn, (26)
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where Xn models the source, Zn is an innovation process, A is a fixed d×d matrix, and all vectors are of

dimension d. For ease of presentation, we assume that all processes are centered. Now, the compression

scheme consists in first building a linear prediction X̂n, with the d × d matrix H , then computing a

residue En. Each component of En is scalar quantized and entropy coded. The coded data are sent to

the decoder. Finally, the decoder computes the quantized residue Ẽn, and reconstructs the data X̃n from

the prediction and the quantized residue:

X̂n = HX̃n−1 (27a)

En = Xn − X̂n (27b)

Ẽn = En + ∆n (27c)

X̃n = X̂n + Ẽn. (27d)

One has

X̃n = Xn − En + Ẽn = Xn + ∆n. (28)

Assume that each component En,i of the residue En is entropy coded, without exploiting the temporal

dependencies (along the index n). The rate Rn,i required to represent En,i with a distortion Dn,i = E[∆2
n,i]

is

Rn,i =
1

2
log

(
cn,i
Dn,i

E[E2
n,i]

)
, (29)

where cn,i is a constant which depends on the quantizer type, and the distribution of the residue. The rate-

distortion characterization (29)for a wide class of distributions [22, Sec. 4], but also for all distributions

in the high resolution regime [22, Sec. 5.2.3 and Sec. 5.2.6], provided that we apply a scalar quantization

with a Variable-Length Code that does not exploit dependencies.

The residue satisfies (30),

En = Zn +AXn−1 −HXn−1 −H∆n−1 (30a)

En = Zn −A∆n−1 (30b)

E[EnE
T
n ] = E[ZnZ

T
n ]− 2E[Zn∆T

n−1A
T ] +AE[∆n−1∆T

n−1]AT (30c)

= E[ZnZ
T
n ] +AE[∆n−1∆T

n−1]AT (30d)

where (30b) uses the fact that we apply the optimal linear predictor, which minimizes the residue energy
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E[ET
nEn], i.e., H = A [17, Chap. 11] [22, Sec. 6], and where (30d) follows from the fact that Zn is

an i.i.d. process (this implies that Zn is independent of the past quantization error ∆n−1). Therefore,

the variance of the ith component of the residue, E[E2
n,i], only depends on the characteristics of the

source (A and E[ZnZ
T
n ]) and on the quantization error statistics E[∆n−1∆T

n−1]. In other words, given

the source model, E[E2
n,i] only depends on the quantization applied at time n− 1, but does not depend

on the position of the previous reference, which we summarize as E[E2
n,i] = f(Dn−1). Finally, the cost

to encode the source Xn, is
d∑

i=1

Rn,i =
1

2

d∑
i=1

log

(
cn,i
Dn,i

f(Dn−1)

)
. (31)

To summarize, if the sources follow a first order autoregressive model, if the quantization steps are

fixed for all the sources, if the components of the prediction residual are scalar quantized and entropy

coded without exploiting the dependencies, then the rate to encode a source does not depend on the

position t of the reference, i.e.,

αn,t = αn,∀t (32)

and the general cost function (21) boils down to the cost function derived in the lossless case (1).

VI. EXPERIMENTAL VALIDATION

In this section, we aim at validating the performance of the proposed method for either constant

or variable source encoding cost αn in (1). More precisely, the αn for every n ∈ [1, N ] are chosen in

]0, 1[ or obtained from real measurements (video, meteorological data, occupancy measure of self service

terminal). Each of these experiments is considered with or without taking into account the popularity of

the request pm, (m ∈ [1,M ]). Then, for each choice in this input parameter set, different request lengths

are considered. The weighting parameter λ is set to 1. In the Fig. 4-8, the labels (ix) in each subfigure

indicate:

• i: the test condition

• x: the set of parameters used for this test condition (specified in the Figure’s caption) or the quantity

that is plotted for this test condition (specified in the Figure’s caption)

The four test conditions are:

(1) all requests have the same popularity and the sources have the same encoding cost

(2) all requests have different popularities and all the sources have the same encoding cost

(3) all requests have the same popularity and the sources have different encoding costs

(4) all requests have different popularities and the sources have different encoding costs.
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Fig. 3. Optimal placement of the reference for constant predictive coding cost α and constant popularity p (test condition 1):

y∗ solution to Problem (15), where 1 stands for a reference source. Test for four different cases of α and size of request `. (a)

α = 0.9 and ` = 1; (b) α = 0.1 and ` = 10; (c) α = 0.1 and ` = 1; (d) α = 0.9 and ` = 10.

A. Results on the synthetic dataset

In all the simulations on the synthetic dataset, rn, the intra coding cost of each source is considered

constant.

� Test condition (1): all requests have the same popularity and the sources have the same encoding cost.

More precisely αn = α,∀n ∈ [1, N ] and pm = 1/M,m ∈ [1,M ]. Moreover, N , the total number of

sources is set to 100, and cyclic encoding is performed.

Fig. 3 shows the optimal reference placement y∗ obtained by solving the integer linear programming

problem (15). First, we observe that, even if the assumption of Proposition 4 is not satisfied (N is finite),

the optimal positioning is periodic. We denote τ∗ this period. Second, the more the sources are correlated

(small α), the larger the period of the Group Of Sources (GOS), as intuition suggests.

Tab I reports the optimal period k∗ derived by Theorem 6 i.e. obtained in the asymptotic case N →∞
to neglect the effect of the last GOS. We note that, for all tested cases (α ∈ {0.1, 0.9} and ` ∈ {1, 10}),
both optimization solutions (closed form under asymptotic assumption k∗ and solution to the optimal

τ∗) lead to the same result except when ` = 10, α = 0.1, where τ∗ = 20 and k∗ = 19. This difference
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Request size `

1 2 3 4 5 6 7 8 9 10

Pa
ra

m
et

er
α

0.1 4 7 10 11 13 14 15 16 18 19

0.2 3 5 6 8 9 9 10 11 12 12

0.3 2 4 5 6 7 7 8 8 9 9

0.4 2 3 4 5 5 6 6 7 7 8

0.5 2 3 3 4 4 5 5 6 6 6

0.6 1 2 3 3 4 4 4 5 5 5

0.7 1 2 2 3 3 3 3 4 4 4

0.8 1 1 2 2 2 2 3 3 3 3

0.9 1 1 1 1 2 2 2 2 2 2
TABLE I

OPTIMAL REFERENCE PERIOD k∗ , SOLUTION DERIVED IN THEOREM 6 FOR A DATASET OF N = 100 SOURCES,

α ∈ {0.1, 0.2, . . . , 0.9}, AND ` = {1, 2, . . . , 10}.

occurs because the number of GOSs (k∗/N ) is very small (< 5) such that the effect of an incomplete

GOS does affect the solution. In other words, neglecting the effect of the incomplete last GOS does not

affect the placement of the references except when the number of GOSs is small.

Fig. 4. Comparison of the storage (S), transmission (R) and sum costs (F = S+R) obtained either with the optimal reference

placement y∗ (line with star) or when the period has been overestimated by only 1 i.e. y� (dotted line with diamond). (1e):

when ` = 1 and α ∈ {0.1, . . . , 0.9}. (1f): when α = 0.9 and ` ∈ {1, . . . , 10}. From top to bottom: storage costs, transmission

costs and the ratio (F � − F ∗)/F ∗ where F � and F ∗ correspond to the function values at y∗ and y�, respectively.

Fig. 4 illustrates the importance to perform the reference placement optimization (15). Indeed, the
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storage costs S, (top figures) and the transmission costs R (middle figures) are compared when the

period has been overestimated by only 1 with respect to the optimal one k∗. More precisely, we compare

these costs for k∗ and for k� = k∗ + 1. Then, the excess rate of the sum cost F = S + R is computed

and the proportional excess rate ((F � − F ∗)/F ∗) is shown (bottom figures in Fig. 4). Interestingly, an

overestimation of the period by only 1 may lead to a significant increase of the sum rate F by up to 20%.

Fig. 5. Optimal placement of the reference for constant predictive coding cost α and variable popularity shown in the top figure

(test condition 2): y∗ solution to Problem (15), where 1 stands for a reference source. Test for four different cases of α and

size of request `: (2a) α = 0.9 and ` = 1; (2b) α = 0.1 and ` = 10; (2c) α = 0.1 and ` = 1; (2d) α = 0.9 and ` = 10.

� Test condition (2): all requests have different popularities and all the sources have the same encoding

cost. More precisely αn = α (n ∈ [1, N ]) and the probability of popularity of request Vm is pm for

every m ∈ [1,M ]. This popularity probability distribution has be chosen to mimic the case, where a

video contains two popular instants, and users access the video around these key events for variable time

durations. If every source in the request set has the same probability, we can then compute the probability

of request for each source, denoted (πn)1≤n≤N , which defines the vector π and is given by the following
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Fig. 6. Comparison of the storage (S), transmission (R) and sum costs (F = S+R) obtained either with the optimal reference

placement y∗ (line with star) or when the references correspond to the most popular sources i.e. y� (dotted line with diamond).

(2e): when ` = 7 and α ∈ {0.1, . . . , 0.9}. (2f): when α = 0.7 and ` ∈ {1, . . . , 10}. From top to bottom: storage rates,

transmission rates and the ratio (F �−F ∗)/F ∗ where F � and F ∗ correspond to the function values at y∗ and y�, respectively.

formula:

∀n ∈ [1, N ] , πn =
∑

{m∈[1,M ] : vn∈Vm}

pm
`m

(33)

Moreover, N , the total number of sources is set to 100, and cyclic encoding is performed.

Fig. 5 shows the popularity of each source (top figure) and the resulting optimal reference placement.

Interestingly, references correspond to popular sources as intuition suggests. But this is not the only

criterion. Indeed, references are also rather positioned at the beginning of a burst of popular sources.

Fig. 6 illustrates the importance to perform the reference placement optimization (15). A naive reference

placement is performed, where the references correspond to the most popular sources. Then, this naive

placement y� is compared to the optimal one y? under the hypothesis that both strategies have the same

number of references.

Fig. 6 compares the costs (Storage S, Transmission R, and the sum cost F = S+R as proposed in [3])

for both strategies (optimal vs most popular selection). In this experiment, we choose to show two results

of (2e) fixed ` = 0.7 with α ∈ {0.1, 0.2, . . . , 0.9}, and (2f) fixed α = 0.7 with ` ∈ {1, 2, . . . , 10}. In

both cases, the storage costs of both y∗ and y� are equal, however again there are significant differences

between the transmission costs (R∗ and R�). Finally, the naive placement strategy leads to a significant

increase of the sum rate F by up to 20%.
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Fig. 7. Optimal placement of the reference sources for variable predictive coding cost αn (obtained from RitualDance sequence)

and fixed (test condition 3) or variable (test condition 4) popularity. In the top figures, the dashed curve represents the popularity

whereas the solid line curve represents the predictive encoding cost (αn). The bottom figures plot the solution y∗ to Problem (15),

where 1 stands for a reference source. Each test condition are tested for two different cases of size of request `: (3b) and (4a)

` = 1; (3c) and (4c) ` = 60.

B. Real dataset: video

We now test our optimal placement method on the real datasets. Here, we consider seven CTC sequences

which are presented in Tab. II and available at ftp://ftp.tnt.uni-hannover.de. We use the reference software

of the Versatile Video Coding (VVC) [5] scheme, known as VVC Test Model (VTM) version 6.2, to

estimate the encoding costs and therefore the parameters (rn, αn)n∈[1,N ]. For each video frame of time

index n, rn corresponds to the intra coding cost, and αn is the ratio between the predictive coding cost

and the intra coding cost. The resulting αn are shown in the top figures of Fig 7 (black line).

� Test conditions: variable source encoding costs αn, n ∈ [1, N ] and equal (3) or variable request

popularities (4) pm,m ∈ [1,M ]. The labels (3) and (4) correspond to the label used in Fig. 7 and 8. The

two types of popularity are shown as dashed lines in the top figures of Fig. 7: constant request popularity

in the left column and variable request popularity in the right column. In [4], the authors show that the

popularity in terms of the number of viewers who watched a segment in videos exhibit a log-normal

distribution. Therefore, we use a log-normal distribution with parameters µ = 0.016 and σ = 1.35 to

generate the request popularity for the case (4). Here, we observe that most of the references are placed
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Fig. 8. Comparison of the storage (S), transmission (R) and sum costs (F = S+λR) obtained either with the optimal reference

placement y∗ (line with star) or with the naive solution i.e. y� (line with diamond). Tested on the RitualDance sequence over

four different values of QP ∈ {22, 27, 32, 37} and with the request length ` = 60. The request popularity is either uniform

(top, labeled (3)) or varies (bottom, labeled (4)). From left to right: storage (d), transmission cost (e) and the sum cost (f),

respectively.

where αn is high. This is because, when αn is close to 1, the costs to encode a source as a reference

or as a predicted source are almost the same. Therefore, the source Xn can be encoded as a reference

without significantly increasing the total storage and transmission costs. In the right column of Fig. 7,

variable popularity is added. Then, many references are concentrated at positions where sources are very

popular between 30 and 160.

These observations suggest a naive reference placement strategy y�, where the references correspond to

the higher values of αn. In Fig. 8, this naive placement y� is compared to the optimal one y?. However,

for the sake of fairness, the number of references kept in the naive approach is optimized in order to take

into account both storage and transmission costs. More precisely, the average conditional encoding cost is

computed ᾱ =
∑N

i=1 αn, and the placement optimization for this average cost is performed (Theorem 6).

From this solution, a number of references can be computed, and is used as the number of references to

keep in the naive approach. In Fig. 8, we show the results obtained for the RitualDance sequence, for

four different values of QP ∈ {22, 17, 32, 37} and for the requested length ` = 60. We compute the costs

(Storage S, Transmission R, and the sum cost F = S+λR as proposed in [3]) for both strategies (optimal
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Class Sequence name
Requested length ` = 60 Requested length ` = 90

BD-rate (S) BD-rate (R) BD-rate (F) BD-rate (S) BD-rate (R) BD-rate (F)

B RitualDance 2.379 -44.226 -29.502 1.973 -36.951 -23.128

D

BasketballPass 1.556 -45.468 -30.853 1.101 -39.942 -26.088

BlowingBubbles 5.051 -48.988 -34.495 3.482 -37.274 -23.881

BQSquare -1.229 -37.800 -27.395 -0.733 -28.861 -19.774

Flowervase 7.420 -7.005 -1.816 0.622 -0.805 -0.187

Keiba 0.104 -34.909 -22.973 0.164 -22.072 -13.238

Mobisode2 4.016 -29.537 -17.798 3.897 -23.195 -12.431

RaceHorses 1.803 -41.929 -28.513 1.541 -35.248 -22.505

Average class D 2.675 -35.091 -23.406 1.439 -26.771 -16.872

Average 2.638 -36.233 -24.168 1.506 -28.043 -17.654
TABLE II

COMPARISON OF THE BD RATE OF THE STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED

EITHER WITH THE OPTIMAL REFERENCE PLACEMENT y∗ WITH THE NAIVE SOLUTION y� . THESE RESULTS PRESENTED IN

THIS TABLE, FOR EACH SEQUENCE ARE AVERAGED OVER FOUR DIFFERENT VALUES OF QP ∈ {22, 27, 32, 37}.

and naive). The naive placement strategy leads to a significant increase of the sum rate F between 0.036

Mbps and 0.189 Mbps for uniform request popularity (test condition 3), and between 0.049 Mbps and

0.219 Mbps for variable request popularity (test condition 4).

We conduct the experiments described above for different sequences from the MPEG common test

conditions. We evaluate the rate-distortion performance for the two schemes (naive and proposed) and

compare them by computing the Bjontegaard Delta (BD-rate) bit rate saving as classically done in video

compression. For each sequence, the performance is averaged over four QP values ∈ {22, 27, 32, 37}.
Results are reported in Tab. II for two request lengths ` ∈ {60, 90}. We see that our approach leads to

impressive gains of about −17% and −24% on average for the global F .

We also compare our approach to a more sophisticated technique [12] that consists in optimizing the

partitioning of the video set. The difference between partitioning and reference frame positioning as

proposed in this paper is that partitioning cut the video into several segments of optimized size, and

at the transmission, it is considered that the whole segment is transmitted. Note that these segments

are generally coded with a PC scheme as considered here, which implies that if there are not useful,

the transmission of the last frames of a segment could be avoided. To evaluate the benefits of taking

into account this partial transmission in the optimization as we propose in this paper, we optimize the

reference frame positioning using [12] and our method and we compare the rate-distortion performance.
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Class Sequence name
Requested length ` = 60 Requested length ` = 90

BD-rate (S) BD-rate (R) BD-rate (F) BD-rate (S) BD-rate (R) BD-rate (F)

B RitualDance -4.439 0.919 -1.612 -3.749 0.159 -1.721

D

BasketballPass -3.967 0.302 -1.694 -3.558 -0.073 -1.719

BlowingBubbles -7.901 -0.179 -3.648 -7.818 -0.637 -3.959

BQSquare -6.964 0.814 -2.235 -6.136 0.415 -2.259

Flowervase -15.636 -2.963 -8.36 -19.250 -8.098 -13.210

Keiba -4.701 -0.048 -2.167 -3.963 -1.037 -2.403

Mobisode2 -3.819 -1.319 -2.445 -4.286 -1.389 -2.777

RaceHorses -4.148 -0.291 -2.033 -3.960 -1.078 -2.412

Average class D -6.734 -0.526 -3.226 -7.000 -1.700 -4.106

Average -6.447 -0.346 -3.024 -6.590 -1.467 -3.808
TABLE III

COMPARISON BETWEEN PROPOSED METHOD AND THE PROPOSED METHOD WITH ADDITIONAL CONSTRAINTS IN [12],

CALLED [12]♦ . IN THIS TABLE, THE TRANSMISSION COSTS FOR [12]♦ RESULTS ARE RECOMPUTED IN ORDER TO SATISFY

ALL THE REQUESTS. THESE RESULTS PRESENTED IN THIS TABLE, FOR EACH SEQUENCE ARE AVERAGED OVER FOUR

DIFFERENT VALUES OF QP ∈ {22, 27, 32, 37}.

Results are shown in Tab III. We see that the advantage of our method is still significant (around −3%

in average for F ), which demonstrates that reference frame positioning formulation as we propose in

this paper is more accurate than a formulation, which does not take into account the possible partial

transmission of a segment.

C. Real dataset: time series measurement

In this experiment, we consider lossless compression of two time series measurements. The first one

corresponds to temperature data measured on the European territory by the network MESONET2. It

consists in 341 temperature sensors recording temperature every 3 hours during 4 months i.e from June

to September (976 frames of 341 temperature values in the METAR format). The second corresponds

to the occupancy measure of a self service bike terminal (Velib) in Paris. It consists in an occupancy

value measured every 20 minutes during 10 days on 1188 terminals. In both experiments, the vector

Xn models the measurements acquired simultaneously at time n. From the database, we evaluate αn as

the correlation between Xn and Xn−1, and we observed that the rn are constant over time. The request

2https://mesonet.agron.iastate.edu
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aaaaaaaaaaa
Request length

Bit rate
S� S∗ R� R∗ F � F ∗

` = 7 0.613 0.622 0.970 0.801 1.584 1.423

` = 14 0.604 0.610 0.900 0.736 1.500 1.346

` = 21 0.600 0.605 0.853 0.708 1.454 1.313

` = 28 0.599 0.603 0.800 0.691 1.399 1.294
TABLE IV

EVALUATION OF STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED WITH THE OPTIMAL

REFERENCE PLACEMENT y∗ AND WITH THE NAIVE SOLUTION y� FOR METEOROLOGICAL DATA.

aaaaaaaaaaa
Request length

Bit rate
S� S∗ R� R∗ F � F ∗

` = 30 0.873 0.885 1.221 0.930 2.094 1.815

` = 60 0.867 0.876 1.119 0.908 1.986 1.784

` = 90 0.865 0.872 1.060 0.896 1.925 1.768
TABLE V

EVALUATION OF STORAGE (S), TRANSMISSION (R) AND SUM COSTS (F = S +R) OBTAINED WITH THE OPTIMAL

REFERENCE PLACEMENT y∗ AND WITH THE NAIVE SOLUTION y� FOR SELF-SERVICE BIKE TERMINAL OCCUPANCY DATA.

popularity for both data is generated using a Gaussian mixture distribution. For temperature data, it

simulates the evolution of, for example, tourists’ interest to meteorological data over time (e.g., higher in

the summer). For the Velib data, it simulates the evolution of consumers’ interest in bicycle renting over

time (e.g., higher before/after working hours). We compare our method with the naive approach, where

the references correspond to the most popular sources. Results are shown in Tab. IV (for meteorological

data) and in Tab. V (for Velib data). We can see that the global cost function F is significantly lower

with our approach than with the naive one (about -10% to -20% saving). The naive approach favors the

storage cost S, whereas our approach optimize the global cost F .

VII. CONCLUSION

In this paper, the tradeoff between compression efficiency and random access to sequentially processed

data has been studied. More precisely, the data were processed with a predictive coding scheme. First

an optimization problem has been formulated to solve this tradeoff. In particular, it was shown that

solving this trade off is a question of determining the placement of the references. Second, this problem

has been shown to be equivalent to an integer linear programming problem, for which classical solvers
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exist. Then, a classical and heuristic approach has been studied: the case of periodic placement of the

references. Sufficient conditions under which this periodic placement is optimal, have been derived.

Finally, experiments performed on synthetic but also real datasets (video sequences and the time series

measurement: meteorological and self-service bicycles data) showed the benefits ot the proposed method.

APPENDIX A

PROOF OF PROPOSITION 4

Proof. Let I∗ be the optimal reference index set of Problem (6). First we prove the following statement:

a) For every three consecutive references in I∗, denoted (i1, i2, i3) ∈ I∗, then i2 is in the middle between

i1 and i3 i.e. i2 ∈ {
⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}. Proof by contradiction: assume that the above statement is not

satisfied i.e. i2 /∈ {
⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
} , and let I� be the set I∗, where i2 is replaced by the index in the

middle. More precisely, I� = I∗ \ {i2} ∪ {̃i2} where ĩ2 ∈ {
⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}. This implies that

ĩ2 + i2 6= i1 + i3 (34)

We now aim to show that R(I�) < R(I∗).

Let Vm = {m, . . . ,m+`−1} be an arbitrary request set. To ensure the reconstruction of the requested

sources at the decoder (10), the indices of the sent sources must be either S∗m = {i∗m, . . . ,m + ` −
1} or S�m = {i�m, . . . ,m + ` − 1} for the reference index set I∗ or I�, respectively, where i∗m =

maxj≤m,j∈I∗ j and i�m = maxj≤m,j∈I� j. Let i2 = min
(
i2, ĩ2

)
and i2 = max

(
i2, ĩ2

)
. Moreover, from

the definition of I∗ and I�, we deduce that i∗m = i�m, ∀m ∈ [i2, i3 − 1]. The computations in (35) show

R(I∗)−R(I�)

=
r

M`

i3−1∑
m=i2

N∑
n=1

(
1I∗(n)1S�

m
(n)− 1I�(n)1S∗

m
(n)
)

(1− α) +
(
1S∗

m
(n)− 1S�

m
(n)
)
α

=
r

M`

i3−1∑
m=i2

((
1S�

m
(i2)− 1S∗

m
(̃i2)
)

(1− α) +

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)
α

)

=
r

M`
α

 ī2−1∑
m=i2

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)

+

i3−1∑
m=ī2

N∑
n=1

(
1S∗

m
(n)− 1S�

m
(n)
)

=
r

M`
α
(
i2 − i2

) (
i1 + i3 − (i2 + i2)

)
≥ 0 ∀ i2 ∈ {i1 + 1, . . . , i3 − 1} (35)

that R(I∗) ≥ R(I�) with equality if and only if i2 ∈ {
⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
} (from (34)), which contradicts

the initial assumption. This proves statement (a).
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We now prove that b) for a fixed number of references K and if N = Kq with q ∈ N, then the optimal

positioning for these K references is periodic. Let us denote a group of sources (GOS) a sequence of

consecutive sources between two intra coded sources. More specifically, the GOS contains all sources

between index n and m such that n and m+1 are intra coded, and all other sources with indices between

n + 1 and m are predicted. Note that the difference of GOS sizes between two arbitrary consecutive

GOSs is zero or one. This is a consequence of assumption (a). Moreover, if the difference of GOSs sizes

is one i.e. i1+i3
2 /∈ N, there are two possible positions for i2 ∈ {

⌈
i1+i3

2

⌉
,
⌊
i1+i3

2

⌋
}, and both give the same

rate (from the equality case in (35)). It implies that for any three consecutive GOSs, at least two of them

have the same size. Without changing the rate of the encoding scheme, we can shift the references such

that all the GOSs with the same size are placed at the beginning of the list of the sources. With the latter

positioning of the references, there are at most two values of GOSs sizes, denoted by k and k + 1. Let

q > 0 be the number of references that starts a GOS of size k. We have that the total number of sources

satisfies

N = qk + (K − q)(k + 1) = Kk +K − q

Since by assumption N is a multiple of K, it follows that K − q = 0 i.e. there is no GOS of size k+ 1

i.e. all GOS have the same size. Hence the proof of statement (b).

Finally, if N is not a multiple of K, there exists r ∈ N such that N = Kk + r and 1 ≤ r ≤ K − 1.

However, when N → +∞, we have r → 0. Hence the proof of this proposition.

APPENDIX B

PROOF OF PROPOSITION 5

Proof. As we consider only the requests of ` consecutive sources in a predictive encoding scheme which

has periodic reference positions, then the per-source transmission rate over all requests can computed

from k first requests. We can simplify (5) as follows:

R(k) = K
r

M`

(
(1− α)

k∑
m=1

1S∗
m∩I(n)

+ α

k∑
m=1

N∑
n=1

1S∗
m

(n)

)
(36)

where S∗m = {im, . . . ,m+ `− 1}, and im = maxj≤m,j∈I j. Then

k∑
m=1

N∑
n=1

1S∗
m

(n) =

k∑
m=1

(m+ `− i1) =
k(k + 1)

2
+ k(`− 1) (37)
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Let q ∈ N and r ∈ N be such that ` = qk + r with q ≥ 0 and 1 ≤ r ≤ k. One can observe that

depending on the request set, it may require the transmission of more than one GOS. More precisely,

when m ≤ k − r+ 1 the requested sources Vm are spread over either q + 1 or q + 2 GOSs. This means

that
k∑

m=1

1S∗
m∩I(n) =

k−r+1∑
m=1

1S∗
m∩I(n) +

k∑
m=k−r+2

1S∗
m∩I(n)

=

k−r+1∑
m=1

q +

k∑
m=k−r+2

(q + 1)

= (k − r + 1)(q + 1) + (r − 1)(q + 2) (38)

Using (37) and (38), the formula (36) becomes

R(k) =
K

M

r

`

(
(1− α) (k + kq + r − 1)

+ α

(
k(k + 1)

2
+ k(`− 1)

))
=

r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
where the last expression follows from the fact that N → +∞. Indeed, since the request size ` is

finite, we have that M → +∞ and this implies that K/M → 1/k when N → +∞. This concludes the

proof.

APPENDIX C

PROOF OF THEOREM 6

Proof. We aim to find the minimizer of the following cost function

F (k) =
r

k
[(k − 1)α+ 1]

+
r

k`

(
k + `− 1 +

α

2
(k − 1) (k + 2`− 2)

)
(39)

Minimizing F (k) is equivalent to minimizing the function F̃ (k):

F̃ (k) =(1− α)
(2`− 1)

`

1

k
+
α

2`
k + 2α+

1

`

(
1− 3

2
α

)
.

Moreover,

(1− α)
(2`− 1)

`

1

k
+
α

2`
k ≥

√
(1− α)

(2`− 1)

`

α

2`
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with equality if and only if

(1− α)
(2`− 1)

`

1

k
=
α

2`
k. (40)

Therefore

k̄ =

√
2(1− α)(2`− 1)

α
. (41)

Finally, the minimizer of F (k) belongs to
{⌊
k
⌋
,
⌈
k
⌉}

. Hence, the proof of Theorem 6.

APPENDIX D

PROOF OF THEOREM 7

Proof. Let us define the binary vectors y0,y1,t, z0,m, and z1,m,t which n-th components are

y0
n = 1I(n) (42a)

y1,t
n = 1Jn

(t)(1− 1I(n)), ∀t ∈ Tn (42b)

z0,m
n = 1I(n)1Sm(n), ∀m ∈ [1,M ] (42c)

z1,m,t
n = 1Jn

(t) (1− 1I(n))1Sm(n), ∀t ∈ Tn,m ∈ [1,M ] (42d)

where n = 1, 2, . . . , N . We aim to show that the reference selection problem (25) can be cast into an

integer linear programming problem with respect to the binary vectors y0,y1,t, z0,m, and z1,m,t.

First, with the change of variables introduced in (42), the quadratic cost function in Problem (25) can

be rewritten as (43) and becomes linear in the optimization variables.

1

N

N∑
n=1

rn

(
y0
n + min

y1,t

∑
t∈Tn

αn,ty
1,t
n

)
+ λ

M∑
m=1

pm
|Vm|

min
(z0,m,z1,m,t)

N∑
n=1

rn

(
z0,m
n +

∑
t∈Tn

αn,tz
1,m,t
n

)
(43)

Second, the vectors y0,y1,t, z0,m, z1,m,t, introduced in (42), must satisfy the following additional linear

constraints to be compliant with the definition of the characteristic functions 1I ,1Jn
and 1Sm .

y1,t
n ≤ y0

t , ∀n ∈ [1, N ], t ∈ Tn (44a)

y0
n +

∑
t∈Tn

y1,t
n = 1, ∀n ∈ [1, N ] (44b)

z0,m
n ≤ y0

n, ∀n ∈ [1, N ],m ∈ [1,M ] (44c)

z1,m,t
n ≤ y1,t

n , ∀n ∈ [1, N ],m ∈ [1,M ], t ∈ Tn. (44d)

where (44a) follows from (42a) and (42b), (44b) follows from (21b), and (44c) and (44d) follow from

(42a-d).
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Finally, we show that the decodability constraint for lossy compression (24b) can be expressed in

terms of linear equations. The proof follows similar steps as in the lossless compression case. Indeed,

the constraint in the lossless case (5b) and lossy case (24b) are the same. Therefore, as in the lossless

case, (10) and (24b) are equivalent. We now show that the decodability constraint (10) can be expressed

in terms of linear equations of the new variables introduced in (42). The proof consists of several steps.

Step 1. (10)⇒(45). There must be at least one reference source, i.e.
N∑

n=1

y0
n ≥ 1 (45)

Step 2. (10)⇒(46). If an index source n belongs to a request then it must be sent, i.e.

z0,m
n +

∑
t∈Tn

z1,m,t
n = 1 ∀n ∈ Vm (46)

(10)⇒(47). If the source of index n is not requested, and if the source n + 1 is not a reference,

then the fact that the source of index n + 1 is sent, implies that the previous source of index n

must also be sent, i.e.

z0,m
n +

∑
t∈Tn

z1,m,t
n =

∑
t∈Tn

z1,m,t
n+1 ∀n /∈ Vm (47)

Step 3. (45), (46), (47)⇒(10). This converse is the same as Step 3 derived in Sec. III for the lossless

case.

In conclusion, the new expressions of the cost function (43) and of the constraints (44), (45), (46) and

(47), lead to a new formulation of the overall reference selection problem which is indeed a linear integer

programming problem.
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