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Summary
Machine Learning algorithms are known to be highly en-
ergy consuming due to the large amount of data and
computation operations required by these algorithms. It
is of high importance to lower this energy consuption in
order to reduce the environmental impact and also to im-
prove the learning performance under limited computa-
tional ressources.
When designing electronic systems, a standard tech-
nique to reduce the energy consumption consists of
agressively downscaling the voltage supply. However,
due to physical limitations, further reducing the power
supply of next generations of electronic devices will
make computational units unreliable, which may intro-
duce faults in the computation operations realized on
these chips [3]. On the other hand, tolerating faults in
the computation operations gives us the opportunity to
address a tradeoff between algorithm performance and
energy consumption. This is the issue we consider in
this talk.
The first part of this talk reviews existing works on fault-
tolerant computation and learning. Linear computation
requires to (almost) retrieve the exact value of the func-
tion output, and fault-tolerant linear computation was
studied in [5, 6, 10, 15]. In addition, many machine learn-
ing problems have been considered recently under faulty
hardware. For instance, noisy hypothesis testing and
noisy parameter estimation were considered in [1], logis-
tic regression was studied in [14], and neural networks
were described in [12]. In the field of error-correction,
noisy Low Density Parity Check (LDPC) decoders have
also been widely investigated in [4, 7, 8, 13]. Unlike linear
computation, the above problems are naturally robust to
errors introduced by the hardware. But the above works
mainly focus on fault-tolerance, and do not make the con-

nection with energy consumption.
In a second part of this talk, we consider the problem of
recursive binary estimation under faulty hardware. Re-
cursive binary estimation [2, 9] consists of estimating a
sequence of statistically dependent hidden states from
their noisy observations. It is considered in many applica-
tions such as target tracking, speech, or image process-
ing, see [11] for a review. To the best of our knowledge,
the problem of noisy recursive binary estimation was not
studied yet in the literature.
We first focus on studying the robustness to faults of re-
cursive binary estimation. We propose a theoretical anal-
ysis that bounds the expected gap between the noisy re-
cursion and the noiseless one. We prove that this gap
converges to a fixed point, which shows the robustness
of the recursive binary estimation. Finite-length simula-
tions show the accuracy of the proposed analysis. Then,
we derive a model that relates the amount of faults in
the computation to the energy required to performed the
computation. We consider two energy allocation strate-
gies. In a first case, we assume that energy allocation
can vary from time to time, while in the second case, we
assume that energy allocation can vary from bit to bit. In
the two cases, we exhibit optimal energy allocation strat-
egy in order to maximize the performance of the recur-
sion under energy constraints.
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