Elsa Dupraz

Lav R Varshney

Noisy In-Memory Recursive Computation with Memristor Crossbars

This paper considers iterative dot-product computation implemented on in-memory memristor crossbar substrates. To address the case where true memristor conductance values may differ from their target values, it introduces a theoretical framework that characterizes the effect of conductance value variations on the final computation. For simple dot-products, the final computation error can be approximated by a Gaussian distribution; the mean and variance values of the corresponding Gaussian distribution are provided. For iterative dot-product computation, recursive expressions are derived for the means and variances of the successive computation outputs. Experiments verify the accuracy of the proposed analysis on both synthetic data and on images processed with memristor-based principal component analysis.

I. INTRODUCTION

The Von Neumann architecture in computer engineering separates memory from computation and has been a standard paradigm for decades. Yet it introduces the key communication challenge of moving data back and forth between memory and compute, a problem often known as the memory wall. In order to continue scaling laws of computational performance, there has been a move to break this memory wall and use inmemory computation [START_REF] Strukov | The missing memristor found[END_REF], [START_REF] Shanbhag | Shannon-inspired statistical computing for the nanoscale era[END_REF]. To perform computation directly within memory, several memristor-based architectures have been proposed, but the crossbar architecture has emerged as quite prominent since it naturally leads to several important computational kernels from workloads in artificial intelligence and elsewhere [START_REF] Jain | Neural network accelerator design with resistive crossbars: Opportunities and challenges[END_REF]. In addition to this new architectural approach for in-memory computing, there has also been interest in using novel low-power device technologies for implementation, such as spintronics and ferroelectrics. Unfortunately, such nanoscale devices are often noisy [START_REF] Shanbhag | Shannon-inspired statistical computing for the nanoscale era[END_REF], and so there is a need to understand the informational properties of noisy in-memory computing using memristor crossbar architectures.

As noted, memristor crossbars can be used to directly implement numerous key computational kernels [START_REF] Gharpinde | A scalable in-memory logic synthesis approach using memristor crossbar[END_REF], and there are even programming languages being developed for them [START_REF] Ankit | PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference[END_REF]. As an example, memristor crossbars can be used for Hamming distance computation [START_REF] Cassuto | In-memory Hamming similarity computation in resistive arrays[END_REF], [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF]. More generally, they can be used for analog dot-product computation in memory [START_REF] Roth | Fault-tolerant dot-product engines[END_REF], [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF]. Dot-product computation in memory is useful for deep neural networks [START_REF] Jain | Neural network accelerator design with resistive crossbars: Opportunities and challenges[END_REF], sparse coding [START_REF] Sheridan | Sparse coding with memristor networks[END_REF], K-means clustering [START_REF] Jeong | K-means data clustering with memristor networks[END_REF], and for solving optimization problems such as linear and This work was supported in part by the "Make our Planet Great Again" Initiative of the Thomas Jefferson Fund and by grant ANR-17-CE40-0020 of the French National Research Agency ANR (project EF-FECtive).

quadratic programming [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF]. Memristor crossbar-based dotproduct computation is especially efficient since it is realized in only one clock cycle.

In this paper, we focus on dot-product computation in memory, which covers a wide range of applications [START_REF] Nahlus | Energy-efficient dot product computation using a switched analog circuit architecture[END_REF], [START_REF] Wang | GDOT: A graphene-based nanofunction for dot-product computation[END_REF]. Recall that the internal conductance value of a memristor depends on the current that flows through the memristor, an electronic device property useful for computation [START_REF] Strukov | The missing memristor found[END_REF]. In order to perform the computation, vector coefficients are given by input voltage values, and internal conductance values of the memristors must be set to values that depend on the coefficients of the matrix involved in the computation.

However, as described in [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF], the true conductance values may differ from the target values. These variations can be seen as noise introduced in the computation, and they may affect the final computation result. The effect of these variations was theoretically studied in [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF] in the case of Hamming distance computation. It was also studied in [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF] for dot-product computation, but only from simulations. Therefore, the objective of this paper is to introduce a theoretical framework that allows us to characterize the effect of conductance value variations on the final computation. In this sense, we are concerned with intrinsic robustness, rather than coding-theoretic approaches to introduce robustness via redundancy [START_REF] Dutta | Short-dot: Computing large linear transforms distributedly using coded short dot products[END_REF].

In this paper, we model both the conductance values and the voltage values as independent random variables. We show that, for a large class of distributions for both the conductances and input voltages, the final computation error can be approximated by a Gaussian distribution, and we provide the mean and variance values of the corresponding Gaussian distribution.

We then consider the extended problem of successive dotproduct computations, which may arise in successive layers of neural networks and which allows for fixed-point computation and for solving linear and quadratic optimization problems [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF]. Here, we provide recursive expressions for the means and variances of the successive computation outputs, a little reminiscent of the extended Kalman filter and of the Gaussian approximation to density evolution [START_REF] Chung | Analysis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation[END_REF]. These recursive expressions are obtained from second-order Taylor expansions of the means and variances. Interestingly, we show that the means are given by the exact computation outputs, and as a result, the variances provide the mean-squared errors between the noisy memristor-based computation and the exact computation result. Our experiments verify the accuracy of the proposed expressions on synthetic data and show the Throughout the paper, uppercase letters denote random variables, and lowercase letters denote their realizations. Bold letters are used to denote vectors. Finally, 1, N denotes the set of integers between 1 and N .

II. COMPUTATION IN MEMORY

In this section, we describe how memristor crossbars can be used for dot-product computation in memory. The electronic model for an N × N memristor crossbar structure is shown in Figure 1. In this model taken from [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF], a memristor connects each horizontal Word-Line (WL) to each Vertical Bit-Line (BL). We use g ij to denote the conductance of the memristor between WL i and BL j . We also use u i to denote the input voltage value on WL i , and x j to denote the output voltage on BL j . The value of x j is measured through a pull-down resistor of conductance g 0j . We denote u = [u 1 , . . . , u N] the input voltage vector, and x = [x 1 , . . . , x N] the output voltage vector.

According to [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF], output voltage x j is related to input voltages u 1 , . . . , u n by the expression

x j = N i=1 g ij N k=0 g kj u i . (1)
Equation (1) can also be restated in matrix form as

x = uG, (2)
where the matrix G = {g ij } is of size N × N . Therefore, it suffices to adjust the g ij conductance values and the input voltage vector u in order to realize a given dot-product computation. This computation is very efficient in terms of latency as all the operations are performed in parallel.

Many machine learning algorithms can be decomposed so as to use memristor crossbars in their computations [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF]- [START_REF] Jeong | K-means data clustering with memristor networks[END_REF]. In the proposed architectures, memristor crossbars can be used iteratively by setting output values x j as new inputs u i for the next computation iteration. In such iterative computation, either the same memristor conductance values g ij are used from iteration to iteration, or these values are rewritten in order to perform a different dot-product computation in each iteration.

However, dot-product computation from memristor crossbars suffers from several drawbacks [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF]. First, all the conductance values g ij must be non-negative. In order to deal with this issue, a simple solution consists of using two crossbars (one for positive coefficients and one for negative coefficients). In addition, the true conductance value g ij may vary from the target value, which may introduce errors in the computation. The objective of this paper is to address this second issue. In the following, we first consider noisy dot-product computation. We then investigate the case of successive noisy dot-product computations.

III. NOISY DOT-PRODUCT COMPUTATION

In order to study the influence of variations in conductance values g ij on the final computation, we model these conductance values as random variables denoted as G ij . In this section, in order to be able to consider a wide range of probability distributions for the G ij , we only make a few assumptions on these random variables.

We assume that the random variables G ij are independent, but not necessarily identically distributed, and that their first and second moments exist. Formally, this is given by the

conditions E[|G ij |] < ∞ and E[|G ij | 2] < ∞. We further assume that G ij has mean g ij , and we denote E[G ij] = g ij , Var(G ij) = σ 2 ij .
In [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF], [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF], it is assumed that each random variable G ij follows a Gaussian distribution N (g ij , σ 2 ij) with mean g ij and variance σ 2 ij . This model can be seen as a particular case of our analysis.

In addition, in order to take into account potential variations in previous computations, we also describe the input voltages as random variables U i . Here again, we assume that the U i are independent, but not necessarily identically distributed, and that the first and second moments of each U i exist. We further denote E[U i] = u i and Var(U i) = γ i . Note that in [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF], [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF], the input voltages u i were considered as deterministic quantities.

The objective of this section is to propose approximations of the probability distributions of the random variables X j that represent the outputs of the noisy dot-product computation. The X j are obtained from [START_REF] Strukov | The missing memristor found[END_REF], by replacing the deterministic quantities g i,j and u i by the corresponding random variables G i,j and U i .

A. Approximate distribution for X j

Let us now prove a theorem that allows us to derive approximate distribution for a given output value X j .

Theorem 1: Consider two sequences (U i) i∈ 1,N and (G ij) i∈ 0,N of independent random variables and assume that all the random variables U i , G ij admit finite first and second moments. If the sequence (U i G ij) i∈ 1,N satisfies Lindeberg's condition (see [START_REF] Bardet | Dependent lindeberg central limit theorem and some applications[END_REF]), and if

α j = lim N →∞ δ 2 j N 2 = 0, (3)
where

δ j = N i=0 g ij , then N 2 √ v j (X j -x j) d ⇒ N 0, 1 α 2 j (4
)
where d ⇒ stands for the convergence in distribution, and

v j = E   N i=1 δ j U i G ij -∆ j u i g ij 2   , (5)
with

∆ j = N i=0 G ij . Proof: We first express X j -x j = N i=1 (δ j U i G ij -∆ j u i g ij) ∆ j δ j (6)
Since E[|G ij |] < ∞ for all i, j, then, by the weak law of large numbers,

1 N 2 ∆ j δ j P ⇒ α j , (7)
where P ⇒ stands for the convergence in probability. In addition, since E[(U i G ij) 2] < ∞ and since the Lindeberg's condition is satisfied, we apply the central limit theorem in order to show that

1 √ v j N i=1 (δ j U i G ij -∆ j u i g i,j) d ⇒ N (0, 1). (8)
To finish, we apply Slutsky's Theorem [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF]Page 19] from [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF] and (8) in order to show [START_REF] Gharpinde | A scalable in-memory logic synthesis approach using memristor crossbar[END_REF].

First note that condition (3) in Theorem 1 may be verified in most cases since the conductance values g i,j are all greater than 0. It only suffices to verify that the series (g ij) is not convergent. Then, Theorem 1 permits us to conclude that the probability distribution of a computation output X j can be approximated by a Gaussian distribution N x j , v j α 2 j N 4 with parameters α j and v j given in the theorem. Interestingly, this shows that whatever the distribution of the random variables U i and G ij , the random variable X j is centered around the true value x j given in (1). In addition, the obtained values of v j can be used to approximate the mean-squared error between X j and x j as

E[(X j -x j) 2] ≈ v j α 2 j N 4 .
Finally, although the convergence to a Gaussian distribution may require a large value of N , we will show in our simulations that the Gaussian distribution (8) approximates well the behavior of X j even for medium values of N .

In closing, note that the conditions given in the theorem (finite moments, Lindeberg's condition) are satisfied by a wide range of distributions, including the case described in [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF], [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF] where G ij is Gaussian and U i is deterministic. In the next part, we provide the expression of v j in (5) in the case where the inputs U i are deterministic, and in the case where they are random variables. The provided expressions only depend on the first and second moments of the random variables U i , G ij , and therefore work for the Gaussian case considered in [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF], [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF].

B. Expressions of v j

In this section, we provide the expression of v j for the case where U i is deterministic and equal to u i , and for the case where U i is random with mean u i .

We first assume that the U i are deterministic. In this case, v j can be expressed as

v j = N i=1 u 2 i δ 2 j σ 2 i + g 2 ij Γ j -2δ j g ij σ 2 ij + N i=1 i =i u i u i Γ j g ij g i j -δ j σ 2 ij g i j + σ 2 i j g ij (9)
where Γ j = n i=0 σ 2 ij . Note that, in the particular case where G ij is Gaussian, the distribution of X j can be approximated from [18, equation (9)] that provides an approximate probability distribution in analytical form for the ratio of two Gaussian random variables. In the simulation section, the approximate probability distribution of [18, equation (9)] will be compared with the approximate Gaussian distribution given in [START_REF] Roth | Fault-tolerant dot-product engines[END_REF].

We now consider the case where both G ij and U i are random variables.In this case, v j can be expressed as

v j = N i=1 δ 2 j (γ 2 i + u 2 i)(σ 2 ij + g 2 ij) + u 2 i g 2 ij (Γ j -δ 2 j) -2δ j g ij u 2 i σ 2 ij + N i=1 i =i u i u i Γ j g ij g i j -δ j σ 2 ij g i j + σ 2 i j g ij . (10)
The Gaussian approximation and the expressions of v j given in this section hold for a one-shot dot-product computation, since they consider independent U i . However, it is worth noting that two outputs X j , X j are not statistically independent, since they are computed from the same inputs U i . In the following, we consider iterative dot-product computation in which the outputs of one iteration serve as inputs for the next iteration.

IV. NOISY ITERATIVE DOT-PRODUCT COMPUTATION

We are now interested in performing iterative dot-product computation by successively applying (2) with different matrices G (1) , G (2) , • • • , G (T) in order to compute a vector

y = G (T) G (T -1) • • • G (1) u. (11
)
Such computation can be used for instance to solve linear and quadratic programming problems or to perform a PCA [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF].

A particular case arises when G (t) = G for all t, which corresponds to fixed point computation. In what follows, we denote x (0) = u, x (T) = y, and 1) .

x (t) = G (t) x (t-
We use X (t) to denote the random vectors that correspond to each x (t) . As for the simple dot-product computation considered in Section III, it is reasonable to assume that the components X (0) j of the initial vector X (0) are independent. However, after applying the first matrix G (1) , the components X (1) j of X (1) are not independent anymore. As a result, the assumptions of Theorem 1 are not satisfied when we consider the general term X (t) = G (t-1) X (t-1) . In particular, the Central Limit Theorem used in the proof of Theorem 1 does not apply to a sum of dependent random variables, unless some restrictive assumptions are made [START_REF] Bardet | Dependent lindeberg central limit theorem and some applications[END_REF]. In the following, as an alternative, we provide approximated expressions for the first and second moments of the X (t) j , by considering the second-order Taylor expansions of these moments. Throughout this section, in order to obtain accurate Taylor expansions, we assume that condition (3) of Theorem 1 still holds.

A. Second-order Taylor expansions of the moments

In this section, we consider dependent random inputs

X (t-1) i (t > 1) such that for all i, i ∈ 1, N the co- variance between X (t-1) i and X (t-1) i exists and is denoted Cov(X (t) i , X (t) i) = γ (t)
ii . We also denote µ

(t-1) i = E[X (t-1) i]
and Var(X

(t-1) i) = γ (t-1) i
. We give three propositions that provide the Taylor expansions of the means, variances, and covariances of the random outputs X (t) j . These propositions will allow us to track the evolution of the moments of the successive random vectors X (t) .

Proposition 1: The second-order Taylor expansion of the mean µ

(t) j of X (t) j is given by µ (t) j = N i=1 µ (t-1) i g (t) ij δ (t) j - Θ j (δ (t) j) 2 + Γ j Λ j (δ (t) j) 3 +O 1 (δ (t) j) 3 (12)
where

Θ j = N i=1 µ (t-1) i σ 2(t) ij (13)
Λ j = N i=1 µ (t-1) i g (t) ij , (14)
and O(•) is the Bachmann-Landau notation.

Proof: Directly comes from the approximated expression of [START_REF] Seltman | Approximations for mean and variance of a ratio[END_REF] for the mean of a ratio, derived by considering the second-order Taylor expansion of the ratio.

From Proposition 1, if E[X

(t-1) i] = x (t-1) i
and if condition (3) is verified, we have that lim N →∞ µ (t) j = x (t) j . By induction, this shows that when N is large enough, the random output X (t) j is centered around its true value x (t) j , as was the case for dot-product computation considered in Section III.

However, in the following, we keep the second-order terms in order to improve the accuracy of the approximation of µ (t) j when N is not too large.

Proposition 2: The second-order Taylor expansion of the variance γ (t) j of X (t) j is given by

γ (t) j = Θj δ (t) j 2 + Ψj (δ (t) j) 2 - 2ΛjΘj (δ (t) j) 3 + 3Θ 2 j Γj (δ (t) j) 4 -(µ (t) j) 2 +O 1 (δ (t) j) 3 (15)
where

Ψ j = N i=1 (µ (t-1) i) 2 σ 2(t) ij + γ (t-1) i σ 2(t) ij + N i=1 N i =1 g ij g i j γ (t-1) i,i . (16
) Proof: We express Var(X j) = E[X 2 j]-E[X j] 2 and denote X 2 j = V 2 j /W 2 j .
We then use the second-order Taylor expansion of a function f (v, w) = v 2 /w 2 and apply the expectation to obtain E[X 2 j]. Then, E[X j] 2 is given by Proposition 1. Note that in [START_REF] Seltman | Approximations for mean and variance of a ratio[END_REF], only the first-order Taylor expansion of the variance of a ratio was provided.

Proposition 3: The second-order Taylor expansion of the covariance γ (t)

jj of X (t) j , X (t)
j , with j = j , is given by

γ (t) jj = N i=1 N i =1 λ ij λ i j γ (t-1) i,i + O 1 (δ (t) j) 3 (17)
where

λ ij = g ij δ (t) j - σ 2(t) ij (δ (t) j) 2 + Γ j g ij (δ (t) j) 3 (18)
and λ i j is obtained by replacing indices i,j with i ,j in [START_REF] Pillai | An unexpected encounter with cauchy and lévy[END_REF]. Proof: We have that

γ (t) jj = N i=1 N i =1 E G (t) ij ∆ (t) j E G (t) i j ∆ (t) j γ (t-1) ii . (19)
We then replace E

G (t) ij ∆ (t) j and E G (t) i j ∆ (t) j
by their second-order Taylor expansions from [START_REF] Seltman | Approximations for mean and variance of a ratio[END_REF]. For finite N , we have that γ (t) jj = 0, which shows the statistical dependency between outputs X (t) j and X (t) j . The above three propositions allow us to track the evolution of the means, variance, and covariances of output components over iterations. It is worth noting that the expressions of the moments at time instant t only depend on the expressions of the moments at time instant t -1. We now present simulation results that aim to verify the accuracy of the proposed expressions.

V. SIMULATION RESULTS

In this section, we describe our simulation results which aim to verify the accuracy of the proposed approximations. We started with the dot product computation described in Section III. We set N = 1000, and generated random values of g ij , U i , σ 2 ij according to uniform distributions. Then, we generated K = 10000 samples X j . We plotted the histogram of these samples, and superimposed both the approximate Proposition 2 are close to the empirical variances, for most iterations. We observe that after 5 iterations, the approximated variance saturates to a given value around 10 -18 . This is probably due to numerical errors, because all the involved terms become very small. Finally, we considered a practical application that is memristor-based PCA. We considered an original image of size 16 × 16, represented in Figure 4. We then generated 10 noisy versions of this image, where the noise is given by Gaussian random amplitudes. We implemented the memristorbased PCA proposed in [START_REF] Liu | A memristor-based optimization framework for artificial intelligence applications[END_REF] and applied it to the 10 images. We considered different variances σ 2 = 0.01, σ 2 = 1, and σ 2 = 4 for the memristor conductance values G ij . Figure 4 shows the obtained first principal components for standard PCA and for memristor-based PCA with the different noise levels. We see that a low level of noise given by σ 2 = 0.01 produces a result close to standard PCA, while higher variance values degrade the performance.

VI. CONCLUSION

Understanding the properties and limits of noisy computing is becoming more and more important, now that nanoscale beyond-CMOS devices are being used in computer systems that are, themselves, no longer constructed according to the Von Neumann architecture. In this work, we have considered the key computational kernel of iterative dot-products, which arises in numerous important applications that require low energy and low latency. In some sense generalizing the work of Chen, Schoeny, and Dolecek [START_REF] Chen | Hamming distance computation in unreliable resistive memory[END_REF], here we have developed theoretical arguments to be able to track the error in iterative dot-product computation and shown a kind of inherent robustness.

In future work, we intend to study other key computational problems in noisy memristor crossbar architectures, such as shortest path computation [START_REF] Ye | Computing shortest paths in 2d and 3d memristive networks[END_REF].

Fig. 1 .

 1 Fig. 1. Electronic model for an N × N memristor crossbar structure

Fig. 2 .

 2 Fig. 2. Comparison of the histogram of the X j together with the two approximated probability distributions. The Gaussian approximation and Density approximation curves are superimposed.

Fig. 4 .

 4 Fig. 4. Contours of original image, noisy image, and first component PCA obtained from standard PCA and from memristor-based PCA with different noise variances σ 2 . We considered 10 images of size 16 × 16 with amplitude noise.

distribution of [START_REF] Pillai | An unexpected encounter with cauchy and lévy[END_REF] and the Gaussian distribution obtained from Theorem 1. The results are represented in Figure 2. We observe that the two approximations are superimposed and close to the histogram. This allows us to claim that the proposed Gaussian approximation accurately represents the probability distribution of the outputs (formal statistical tests are omitted for brevity).

We then considered noisy recursive computation described in Section IV. We set T = 8 and generated both input values U i and 8 different matrices G (t) at random. We considered three different values K = 256, K = 512, and K = 1024. In each case, we measured the empirical means and variances at each iteration. We then computed the successive theoretical approximated means and variances given in Propositions 1 and 2. For the sake of comparison, we also computed the successive Gaussian parameters obtained from Theorem 1. The results are represented in Figure 3 for the variances. We first observe that, except for the first few iterations, the Gaussian approximation does not allow us to accurately predict the empirical variance. On the contrary, the approximated variances obtained from