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ABSTRACT
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Data assimilation combines forecasts from a numerical model with observa-

tions. Most of the current data assimilation algorithms consider the model and

observation error terms as additive Gaussian noise, specified by their covari-

ance matrices Q and R, respectively. These error covariances, and specifically

their respective amplitudes, determine the weights given to the background

(i.e., the model forecasts) and to the observations in the solution of data as-

similation algorithms (i.e., the analysis). Consequently, Q and R matrices sig-

nificantly impact the accuracy of the analysis. This review aims to present and

to discuss, with a unified framework, different methods to jointly estimate the

Q and R matrices using ensemble-based data assimilation techniques. Most

of the methodologies developed to date use the innovations, defined as differ-

ences between the observations and the projection of the forecasts onto the

observation space. These methodologies are based on two main statistical

criteria: (i) the method of moments, in which the theoretical and empirical

moments of the innovations are assumed to be equal, and (ii) methods that

use the likelihood of the observations, themselves contained in the innova-

tions. The reviewed methods assume that innovations are Gaussian random

variables, although extension to other distributions is possible for likelihood-

based methods. The methods also show some differences in terms of levels of

complexity and applicability to high-dimensional systems. The conclusion of

the review discusses the key challenges to further develop estimation meth-

ods for Q and R. These challenges include taking into account time-varying

error covariances, using limited observational coverage, estimating additional

deterministic error terms, or accounting for correlated noise.
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1. Introduction48

In meteorology and other environmental sciences, an important challenge is to estimate the state49

of the system as accurately as possible. In meteorology, this state includes pressure, humidity,50

temperature and wind at different locations and elevations in the atmosphere. Data assimilation51

(hereinafter DA) refers to mathematical methods that use both model predictions (also called back-52

ground information) and partial observations to retrieve the current state vector with its associated53

error. An accurate estimate of the current state is crucial to get good forecasts, and it is particularly54

so whenever the system dynamics is chaotic, such as it is the case for the atmosphere.55

The performance of a DA system to estimate the state depends on the accuracy of the model56

predictions, the observations, and their associated error terms. A simple, popular and mathemat-57

ically justifiable way of modeling these errors is to assume them to be independent and unbiased58

Gaussian white noise, with covariance matrices Q for the model and R for the observations. Given59

the aforementioned importance of Q and R in estimating the analysis state and error, a number of60

studies dealing with this problem has arisen in the last decades. This review work presents and61

summarizes the different techniques used to estimate simultaneously the Q and R covariances.62

Before discussing the methods to achieve this goal, the mathematical formulation of DA is briefly63

introduced.64

a. Problem statement65

Hereinafter, the unified DA notation proposed in Ide et al. (1997) is used1. DA algorithms are66

used to estimate the state of a system, x, conditionally on observations, y. A classic strategy is to67

use sequential and ensemble DA frameworks, as illustrated in Fig. 1, and to combine two sources68

of information: model forecasts (in green) and observations (in blue). The ensemble framework69

1Other notations are also used in practice

5

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



uses different realizations, also called members, to track the state of the system at each assimilation70

time step.71

The forecasts of the state are based on the usually incomplete and approximate knowledge of the72

system dynamics. The evolution of the state from time k−1 to k is given by the model equation:73

x(k) = Mk (x(k−1))+η(k), (1)

where the model error η implies that the dynamic model operator Mk is not perfectly known.74

Model error is usually assumed to follow a Gaussian distribution with zero mean (i.e., the model75

is unbiased) and covariance Q. The dynamic model operator Mk in Eq. (1) has also an explicit76

dependence on k, because it may depend on time-dependent external forcing terms. At time k,77

the forecasted state is characterized by the mean of the forecasted states, x f , and its uncertainty78

matrix, namely P f , which is also called the background error covariance matrix, and noted B in79

DA.80

The forecast covariance P f is determined by two processes. The first is the uncertainty propa-81

gated from k− 1 to k by the model Mk (the green shade within the dashed ellipse in Fig. 1, and82

denoted by Pm). The second process is the model error covariance Q accounted by the noise term83

at time k in Eq. (1). Given that model error is largely unknown and originated by various and84

diverse sources, the matrix Q is also poorly known. Model error sources encompass the model M85

deficiencies to represent the underlying physics, including deficiencies in the numerical schemes,86

the cumulative effects of errors in the parameters, and the lack of knowledge of the unresolved87

scales. Its estimation is a challenge in general, but it is particularly so in geosciences because we88

usually have far fewer observations than those needed to estimate the entries of Q (Daley 1992;89

Dee 1995). The sum of the two covariances Pm and Q gives the forecast covariance matrix, P f
90

(full green ellipse in Fig. 1). In the illustration given here, a large contribution of the forecast co-91
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variance P f is due to Q. This situation reflects what is common in ensemble DA, where Pm can be92

too small, as a consequence of the ensemble undersampling of the initial condition error (i.e., the93

covariance estimated at the previous analysis). In that case, inflating Q could partially compensate94

for the bad specification of Pm.95

DA uses a second source of information, the observations y, which are assumed to be linked to96

the true state x through the time-dependent operator Hk. This step in DA algorithms is formalized97

by the observation equation:98

y(k) = Hk (x(k))+ε(k), (2)

where the observation error ε describes the discrepancy between what is observed and the truth.99

In practice, it is important to remove as much as possible the large-scale bias in the observation100

before DA. Then, it is common to state that the remaining error ε follows a Gaussian and unbiased101

distribution with a covariance R (the blue ellipse in Fig. 1). This covariance takes into account er-102

rors in the observation operator H , the instrumental noise and the representation error associated103

with the observation, typically measuring a higher resolution state than the model represents. Op-104

erationally, a correct estimation of R that takes into account all these effects is often challenging105

(Janjić et al. 2018).106

DA algorithms combine forecasts with observations, based on the model and observation equa-107

tions, respectively given in Eq. (1) and Eq. (2). The corresponding system of equations is a non-108

linear state-space model. As illustrated in Fig. 1, this Gaussian DA process produces a posterior109

Gaussian distribution with mean xa and covariance Pa (red ellipse). The system given in Eqs. (1)110

and (2) is representative of a broad range of DA problems, as described in seminal papers such111

as Ghil and Malanotte-Rizzoli (1991), and still relevant today as referenced by Houtekamer and112

Zhang (2016) and Carrassi et al. (2018). The assumptions made in Eqs. (1) and (2) about model113

and observation errors (additive, Gaussian, unbiased, and mutually independent) are strong, yet114
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convenient from the mathematical and computational point of view. Nevertheless, these assump-115

tions are not always realistic in real DA problems. For instance, in operational applications, sys-116

tematic biases in the model and in the observations are recurring problems. Indeed, biases affect117

significantly the DA estimations and a specific treatment is required; see Dee (2005) for more118

details.119

From Eqs. (1) and (2), noting that M , H and y are given, the only parameters that influence the120

estimation of x are the covariance matrices Q and R. These covariances play an important role in121

DA algorithms. Their importance was early put forward in Hollingsworth and Lönnberg (1986),122

in section 4.1 of Ghil and Malanotte-Rizzoli (1991) and Daley (1991) in section 4.9. The results123

of DA algorithms highly depend on the two error covariance matrices Q and R, which have to be124

specified by the users. But these covariances are not easy to tune. Indeed, their impact is hard to125

grasp in real DA problems with high-dimensionality and nonlinear dynamics. We thus illustrate126

the problem with a simple example first.127

b. Illustrative example128

In either variational or ensemble-based DA methods, the quality of the reconstructed state (or129

hidden) vector x largely depends on the relative amplitudes between the assumed observation and130

model errors (Desroziers and Ivanov 2001). In Kalman filter based methods, the signal-to-noise131

ratio
∥∥P f

∥∥/‖R‖, where P f depends on Q, impacts the Kalman gain, which gives the relative132

weights of the observations against the model forecasts. Here, the ‖.‖ operator represents a matrix133

norm. For instance, Berry and Sauer (2013) used the Frobenius norm to study the effect of this134

ratio in the reconstruction of the state in toy models.135

The importance of Q, R and
∥∥P f

∥∥/‖R‖ is illustrated with the aid of a toy example, using136

a scalar state x and simple linear dynamics. This simplified setup avoids several issues typical137
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of realistic DA applications: the large dimension of the state, the strong nonlinearities and the138

chaotic behavior. In this example, the dynamic model in Eq. (1) is a first-order autoregressive139

model, denoted by AR(1) and defined by140

x(k) = 0.95x(k−1)+η(k), (3)

with η ∼N (0,Qt) where the superscript t means “true” and Qt = 1. Furthermore, observations y141

of the state are contaminated with an independent additive zero-mean and unit-variance Gaussian142

noise, such that Rt = 1 in Eq. (2) with H (x) = x. The goal is to reconstruct x from the noisy ob-143

servations y at each time step. The AR(1) dynamic model defined by Eq. (3) has an autoregressive144

coefficient close to one, representing a process which evolves slowly over time, and a stochastic145

noise term η with variance Qt . Although the knowledge of these two sources of noise is crucial146

for the estimation problem, identifying them is not an easy task. Given that the dynamic model is147

linear and the error terms are additive and Gaussian in this simple example, the Kalman smoother148

provides the best estimation of the state (see section 2 for more details). To evaluate the effect149

of badly specified Q and R errors on the reconstructed state with the Kalman smoother, different150

experiments were conducted with values of {0.1,1,10} for the ratio Q/R (in this toy example, we151

use Q/R instead of
∥∥P f

∥∥/‖R‖ for simplicity).152

Figure 2 shows, as a function of time, the true state (red line) and the smoothing Gaussian153

distributions represented by the 95% confidence intervals (gray shaded) and their means (black154

lines). We also report the Root Mean Squared Error (RMSE) of the reconstruction and the so-155

called “coverage probability”, or percentage of x that falls in the 95% confidence intervals (defined156

as the mean ±1.96 the standard deviation in the Gaussian case). In this synthetic experiment, the157

best RMSE and coverage probability obtained, applying the Kalman smoother with true Qt =158

Rt = 1, are 0.71 and 95%, respectively. Using a small model error variance Q = 0.1Qt in Fig. 2(a),159
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the filter gives a large weight to the forecasts given by the quasi-persistent autoregressive dynamic160

model. On the other hand, with a small observation error variance R= 0.1Rt in Fig. 2(b), excessive161

weight is given to the observation and the reconstructed state is close to the noisy measurements.162

These results show the negative impact of independently badly scaled Q and R error variances. In163

the case of overestimated model error variance as in Fig. 2(c), the mean reconstructed state vector164

and thus its RMSE are identical to Fig. 2(b). In the same way, overestimated observation error165

variance like in Fig. 2(d) gives similar mean reconstruction, as in Fig. 2(a). These last two results166

are due to the fact that in both cases, the ratio Q/R are equal, respectively, to 10 and 0.1. Now,167

we consider in Fig. 2(e) and Fig. 2(f) the case where the Q/R ratio is equal to 1, but, respectively,168

using the simultaneous underestimation and overestimation of model and observation errors. In169

both cases, the mean reconstructed state is equal to that obtained with the true error variances (i.e.,170

RMSE=0.71). The main difference is the gray confidence interval, which is supposed to contain171

95% of the true trajectory: the spread is clearly underestimated in Fig. 2(e) and overestimated in172

Fig. 2(f), with respective coverage probability of 36% and 100%.173

We used a simple synthetic example, but for large dimensional and highly nonlinear dynamics,174

such an underestimation or overestimation of uncertainty may have a strong effect and may cause175

filters to collapse. The main issue in ensemble-based DA is an underdispersive spread, as in176

Fig. 2(e). In that case, the initial condition spread is too narrow, and model forecasts (starting177

from these conditions) would be similar and potentially out of the range of the observations. In178

the case of an overdispersive spread, as in Fig. 2(f), the risk is that only a small portion of model179

forecasts would be accurate enough to produce useful information on the true state of the system.180

This illustrative example shows how important is the joint tuning of model and observation errors181

in DA. Since the 1990s, a substantial number of studies have dealt with this topic.182

10
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c. Seminal work in the data assimilation community183

In a seminal paper, Dee (1995) proposed an estimation method for parametric versions of Q184

and R matrices. The method, based on maximizing the likelihood of the observations, yields an185

estimator which is a function of the innovation defined by y−H (x f ). Maximization is performed186

at each assimilation step, with the current innovation computed from the available observations.187

This technique was later extended to estimate the mean of the innovation, which depends on the188

biases in the forecast and in the observations (Dee et al. 1999a). The methodology was then189

applied to realistic cases in Dee et al. (1999b), making the maximization of innovation likelihood190

a promising technique for the estimation of errors in operational forecasts.191

Following a distinct path, Desroziers and Ivanov (2001) proposed using the observation-minus-192

analysis diagnostic. It is defined by y−H (xa) with xa the analysis (i.e., the output of DA algo-193

rithms). The authors proposed an iterative optimization technique to estimate a scaling factor for194

the background B = P f and observation R matrices. The procedure was shown to converge to a195

proper fixed-point. As in Dee’s work, the fixed-point method presented in Desroziers and Ivanov196

(2001) is applied at each assimilation step, with the available observations at the current step.197

Later, Chapnik et al. (2004) showed that the maximization of the innovation likelihood proposed198

by Dee (1995) makes the observation-minus-analysis diagnostic of Desroziers and Ivanov (2001)199

optimal. Moreover, the techniques of Dee (1995) and Desroziers and Ivanov (2001) have been200

further connected to the generalized cross-validation method previously developed by statisticians201

(Wahba and Wendelberger 1980).202

These initial studies clearly nurtured the discussion of the estimation of observation R, model Q,203

or background B = P f error covariance matrices in the modern DA literature. For demonstration204

purposes, the algorithms proposed in Dee (1995) and Desroziers and Ivanov (2001) were tested on205
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realistic DA problems, using a shallow-water model on a plane with a simplified Kalman filter, and206

using the French ARPEGE three-dimensional variational framework, respectively. In both cases,207

although good performances have been obtained with a small number of iterations, the proposed208

algorithms have shown some limits, in particular with regard to the simultaneous estimation of the209

two sources of errors: observation and model (or background). In this context, Todling (2015)210

pointed out that using only the current innovation is not enough to distinguish the impact of Q and211

R, which still makes their simultaneous estimation challenging. Given that our preliminary focus212

here is to review methods for the joint estimate of Q and R, the work Dee (1995) and Desroziers213

and Ivanov (2001) are not further detailed hereafter. After these two seminal studies, various214

alternatives were proposed. They are based on the use of several types of innovations and are215

discussed in this review.216

d. Methods presented in this review217

The main topic of this review is the “joint estimation of Q and R”. Thus, only methods based218

on this specific goal are presented in detail. A history of what have been, in our opinion, the most219

relevant contributions and the key milestones for Q and R covariance estimation in DA is sketched220

in Fig. 3. The highlighted papers are discussed in this review, with a summary of the different221

methodologies, given in Table 1. We distinguish four methods and we can classify them into222

two categories: those which rely on moment-based methods, and those using likelihood-based223

methods. Both methods make use of the innovations. The main concepts of the techniques are224

briefly introduced below.225

On the one hand, moment-based methods assume equality between theoretical and empirical226

statistical moments. A first approach is to study different type of innovations in the observation227

space (i.e., working in the space of the observations instead of the space of the state). It has228

12
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been initiated in DA by Rutherford (1972) and Hollingsworth and Lönnberg (1986). A second229

approach extracts information from the correlation between lag innovations, namely innovations230

between consecutive times. On the other hand, likelihood-based methods aim to maximize likeli-231

hood functions with statistical algorithms. One option is to use a Bayesian framework, assuming232

prior distributions for the parameters of Q and R covariance matrices. Another option is to use the233

iterative expectation–maximization algorithm to maximize a likelihood function.234

The four methodologies listed in Fig. 3 will be examined in this paper. Before doing that, it is235

worth mentioning existing review work that have attempted to summarize the methodologies in236

DA context and beyond.237

e. Other review papers238

Other review papers on parameter estimation (including Q and R matrices) in state-space models239

have appeared in the statistical and signal processing communities. The first one (Mehra 1972)240

introduces moment- and likelihood-based methods in the linear and Gaussian case (i.e., when η241

and ε are Gaussians and M is a linear operator in Eqs. (1) and (2)). Many extensions to nonlinear242

state-space models have been proposed since the seminal work of Mehra, and these studies are243

summarized in the recent review by Dunı́k et al. (2017), with a focus on moment-based methods244

and the extended Kalman filter (Jazwinski 1970). The book chapter by Buehner (2010) presents245

another review of moment-based methods, with a focus on the modeling and estimation of spatial246

covariance structures Q and R in DA with the ensemble Kalman filter algorithm (Evensen 2009).247

In the statistical community, the recent development of powerful simulation techniques, known248

as sequential Monte-Carlo algorithms or particle filters, has led to an extensive literature on the249

statistical inference in nonlinear state-space models relying on likelihood-based approaches. A250

recent and detailed presentation of this literature can be found in Kantas et al. (2015). However,251
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these methods typically require a large number of particles, which make them impractical for252

geophysical DA applications.253

The review presented here focuses on methods proposed in DA, especially the moment- and254

likelihood-based techniques which are suitable for geophysical systems (i.e., with high dimen-255

sionality and strong nonlinearities).256

f. Structure of this review257

The paper is organized as follows. Section 2 briefly presents the filtering and smoothing DA258

algorithms used in this work. The main families of methods used in the literature to jointly259

estimate error covariance matrices Q and R are then described. First, moment-based methods260

are introduced in section 3. Then, we describe in section 4 the likelihood-based methods. We261

also mention other alternatives in section 5, along with methods used in the past but not exactly262

matching the scope of this review, and diagnostic tools to check the accuracy of Q and R. Finally,263

in section 6, we provide a summary and discussion on what we consider to be the forthcoming264

challenges in this area.265

266

2. Filtering and smoothing algorithms267

This review paper focuses on the estimation of Q and R in the context of ensemble-based DA268

methods. For the overall discussion of the methods and to set the notation, a short description of269

the ensemble version of the Kalman recursions is presented in this section: the ensemble Kalman270

filter (EnKF) and ensemble Kalman smoother (EnKS).271

The EnKF and EnKS estimate various state vectors x f (k), xa(k), xs(k) and covariance matrices272

P f (k), Pa(k), Ps(k), at each time step 1≤ k≤ K, where K represents the total number of assimila-273
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tion steps. Kalman-based algorithms assume a Gaussian prior distribution p(x(k)|y(1 : k−1)) ∼274

N
(
x f (k),P f (k)

)
. Then, filtering and smoothing estimates correspond to the Gaussian posterior275

distributions p(x(k)|y(1 : k))∼N (xa(k),Pa(k)) and p(x(k)|y(1 : K))∼N (xs(k),Ps(k)) of the276

state conditionally to past/present observations and past/present/future observations respectively.277

The basic idea of the EnKF and EnKS is to use an ensemble x1, . . . ,xNe of size Ne to track278

Gaussian distributions over time with the empirical mean vector x̄ = 1/Ne ∑
Ne
i=1 xi and the empirical279

error covariance matrix 1/(Ne−1)∑
Ne
i=1 (xi− x̄)(xi− x̄)T.280
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The EnKF/EnKS equations are divided into three main steps, ∀i = 1, . . . ,Ne and ∀k = 1, . . . ,K:281

Forecast step (forward in time):

x f
i (k) =Mk (xa

i (k−1))+ηi(k) (4a)

Analysis step (forward in time):

di(k) =y(k)−Hk

(
x f

i (k)
)
+ εi(k) (4b)

K f (k) =P f (k)H T
k

(
HkP f (k)H T

k +R(k)
)−1

(4c)

xa
i (k) =x f

i (k)+K f (k)di(k) (4d)

Reanalysis step (backward in time):

Ks(k) =Pa(k)M T
k

(
P f (k+1)

)−1
(4e)

xs
i (k) =xa

i (k)+Ks(k)
(

xs
i (k+1)−x f

i (k+1)
)

(4f)

with K f (k) and Ks(k) the filter and smoother Kalman gains, respectively. Here, P f (k) and282

HkP f (k)H T
k denote the empirical covariance matrices of x f

i (k) and Hk(x
f
i (k)), respectively.283

Then, P f (k)H T
k and Pa(k)M T

k denote the empirical cross-covariance matrices between x f
i (k)284

and Hk(x
f
i (k)) and between xa

i (k) and Mk(xa
i (k)), respectively. These quantities are estimated285

using Ne ensemble members.286

In some of the methods presented in this review, the ensembles are also used to approximate Mk287

and Hk by linear operators Mk and Hk such as288

Mk =EM (a)
k (Ea

k−1)
† (5a)

Hk =EH ( f )
k (E f

k )
† (5b)
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with † the pseudo-inverse, EM (a)
k , Ea

k−1, EH ( f )
k and E f

k the matrices containing along their289

columns the ensemble perturbation vectors (the centered ensemble vectors) of Mk(xa
i (k− 1)),290

xa
i (k−1), Hk(x

f
i (k)) and x f

i (k), respectively.291

In Eq. (4b), the innovation is denoted as d and tracked by d1(k), . . . ,dNe(k). The innovation is292

the key ingredient of the methods presented in sections 3 and 4.293

3. Moment-based methods294

In order to constrain the model and observational errors in DA systems, initial efforts were fo-295

cused on the statistics of relevant variables which could contain information on covariances. The296

innovation, given in Eq. (4b), corresponds to the difference between the observations and the fore-297

cast in the observation space. This variable implicitly takes into account the Q and R covariances.298

Unfortunately, as explained in Blanchet et al. (1997), by using only current observations, their299

individual contributions cannot be easily disentangled. Thus, the techniques with only the classic300

innovation y(k)−Hk(x f (k)) are not discussed further in this review.301

Two main approaches have been proposed in the literature to address this issue. They are based302

on the idea of producing multiple equations involving Q and R. The first approach uses different303

type of innovation statistics (i.e., not only the classic one). The second approach is based on lag304

innovations, or differences between consecutive innovations. From a statistical point of view, they305

refer to the “methods of moments”, where we construct a system of equations that links various306

moments of the innovations with the parameters and then replace the theoretical moments by the307

empirical ones in these equations.308
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a. Innovation statistics in the observation space309

This first approach, based on the Desroziers diagnostic (Desroziers et al. 2005), is historical310

and now popular in the DA community. It does not exactly fit the topic of this review paper (i.e.,311

estimating the model error Q), since it is based on the inflation of the background covariance312

matrix P f . However, this forecast error covariance is defined by P f (k) = MkPa(k−1)MT
k +Q in313

the Kalman filter, considering a linear model operator Mk. Thus, even if DA systems do not use314

an explicit model error perturbation controlled by Q, the inflation of the background covariance315

matrix P f has similar effects, compensating for the lack of an explicit model uncertainty.316

Desroziers et al. (2005) proposed examining various innovation statistics in the observation

space. It is based on different type of innovation statistics between observations, forecasts and

analysis, with all of them defined in the observation space: namely, do− f (k) = y(k)−Hk
(
x f (k)

)
as in Eq. (4b) and do−a(k) = y(k)−Hk (xa(k)). In theory, in the linear and Gaussian case, for un-

biased forecast and observation, and when P f (k) and R(k) are correctly specified, the Desroziers

innovation statistics should verify the equalities:
E
[
do− f (k)do− f (k)T

]
= HkP f (k)HT

k +R(k) (6a)

E
[
do−a(k)do− f (k)T

]
= R(k) (6b)

with E the expectation operator. Equation (6a) is given by using Eq. (4b):317

do− f (k)do− f (k)T =−y(k)x f (k)THT
k

−Hkx f (k)y(k)T

+Hkx f (k)x f (k)THT
k

+y(k)y(k)T, (7)

then applying the expectation operator and using the definition of P f and R. The observation-318

minus-forecast innovation statistics in Eq. (6a) is not useful to constrain model error Q. Indeed,319
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do− f does not depend explicitly on Q, but rather on the forecast error covariance matrix P f . Thus,320

the combination of Eq. (6a) and Eq. (6b) can be used as a diagnosis of the forecast and obser-321

vational error covariances in the system. A mismatch between the Desroziers statistics and the322

actual covariances, namely the left- and right-hand side terms in Eq. (6a) and Eq. (6b), indicates323

inappropriate estimated covariances P f (k) and R(k).324

The forecast covariance P f is sometimes badly estimated in ensemble-based assimilation sys-325

tems. The limitations may be attributed to a number of causes. The limited number of ensemble326

members produces an over- or, most of the time, underestimation of the forecast variance. An-327

other limitation is the inaccuracies in methods used to sample initial condition or model error. The328

underestimation of the forecast covariance produces negative feedback, and the estimated analysis329

covariance Pa is thus underestimated, which in turn produces a further underestimation of the fore-330

cast covariance in the next cycle. This feedback process leads to filter divergence, as was pointed331

out by Pham et al. (1998), Anderson and Anderson (1999) or Anderson (2007). To avoid this332

filter divergence, inflating the forecast covariance P f has been proposed. This covariance inflation333

accounts for both sampling errors and the lack of representation of model errors, like a too small334

amplitude for Q or the fact that a bias is omitted in η and ε, Eqs. (1) and (2). In this context, the335

diagnostics given by the Desroziers innovation statistics have been proposed as a tool to constrain336

the required covariance inflation in the system.337

We distinguish three inflation methods: multiplicative, additive and relaxation-to-prior. In the338

multiplicative case, the forecast error covariance matrix P f is usually multiplied by a scalar coeffi-339

cient greater than 1 (Anderson and Anderson 1999). Using innovation statistics in the observation340

space, adaptive procedures to estimate this coefficient have been proposed by Wang and Bishop341

(2003), Anderson (2007), Anderson (2009) conditionally to the spatial location, Li et al. (2009),342

Miyoshi (2011), Bocquet (2011), Bocquet and Sakov (2012), Miyoshi et al. (2013), Bocquet et al.343

19

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



(2015), El Gharamti (2018) and Raanes et al. (2019). In order to prevent excessive inflation or de-344

flation, some authors have proposed assuming a priori distribution for the multiplicative inflation345

factor. The most usual a priori distributions used by the authors are Gaussian in Anderson (2009),346

inverse-gamma in El Gharamti (2018) or inverse chi-square in Raanes et al. (2019).347

In practice, multiplicative inflation tends to excessively inflate in the data-sparse regions and348

inflate too little in the densely observed regions. As a result, the spread looks like exaggeration of349

data density (i.e., too much spread in sparsely observed regions, and vice versa). Additive inflation350

solves this problem, but requires a lot of samples for additive noise; these drawbacks and benefits351

are discussed in Miyoshi et al. (2010). In the additive inflation case, the diagonal terms of the352

forecast and analysis empirical covariance matrices is increased (Mitchell and Houtekamer 2000;353

Corazza et al. 2003; Whitaker et al. 2008; Houtekamer et al. 2009). This regularization also avoids354

the problems corresponding to the inversion of the covariance matrices.355

The last alternative is the relaxation-to-prior method. In application, this technique is more effi-356

cient than both additive and multiplicative inflations because it maintains a reasonable spread struc-357

ture. The idea is to relax the reduction of the spread at analysis. We distinguish the method pro-358

posed in Zhang et al. (2004), where the forecast and analysis ensemble perturbations are blended,359

from the one given in Whitaker and Hamill (2012), which multiplies the analysis ensemble with-360

out blending perturbations. This last method is thus a multiplicative inflation, but applied after the361

analysis, not the forecast. Finally, Ying and Zhang (2015) and Kotsuki et al. (2017b) proposed362

methods to adaptively estimate the relaxation parameters using innovation statistics. Their con-363

clusions are that adaptive procedures for relaxation-to-prior methods are robust to sudden changes364

in the observing networks and observation error settings.365

Closely connected to multiplicative inflation estimation is statistical modeling of the error vari-366

ance terms proposed by Bishop and Satterfield (2013) and Bishop et al. (2013). From numerical367
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evidence based on the 10-dimensional Lorenz-96 model, the authors assume an inverse-gamma368

prior distribution for these variances. This distribution allows for an analytic Bayesian update of369

the variances using the innovations. Building on Bocquet (2011); Bocquet et al. (2015); Ménétrier370

and Auligné (2015), this technique was extended in Satterfield et al. (2018) to adaptively tune a371

mixing ratio between the true and sample variances.372

Adaptive covariance inflations are estimation methods directly attached to a traditional filtering373

method (such as the EnKF used here), with almost negligible overhead computational cost. In374

practice, the use of this technique does not necessarily imply an additive error term η in Eq. (1).375

Thus, it is not a direct estimation of Q but rather an inflation applied to P f in order to compensate376

for model uncertainties and sampling errors in the EnKFs, as explained in Raanes et al. (2019,377

their section 4 and appendix C). Several DA systems work with an inflation method and use it for378

its simplicity, low cost, and efficiency. As an example of inflation techniques, the most straight-379

forward inflation estimation is a multiplicative factor λ of the incorrectly scaled P̃ f (k), so that the380

corrected forecast covariance is given by P f (k) = λ (k)P̃ f (k). The estimate of the inflation factor381

is given by taking the trace of Eq. (6a):382

λ̃ (k) =
do− f (k)Tdo− f (k)−Tr(R(k))

Tr
(
HkP̃ f (k)HT

k

) . (8)

The estimated inflation parameter λ̃ computed at each time k can be noisy. The use of temporal383

smoothing of the form λ (k+1) = ρλ̃ (k)+ (1−ρ)λ (k) is crucial in operational procedures. Al-384

ternatively, Miyoshi (2011) proposed calculating the estimated variance of λ (k), denoted as σ2
λ (k),385

using the central limit theorem. Then, λ (k+ 1) is updated using the previous estimate λ (k) and386

the Gaussian distribution with mean λ̃ (k) and variance σ2
λ (k). From the Desroziers diagnostics,387

at each time step k and when sufficient observations are available, an estimate of R(k) is possible388

using Eq. (6b). For instance, Li et al. (2009) proposed estimating each component of a diagonal389
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and averaged R matrix. However, the diagonal terms cannot take into account spatial correlated390

error terms, and constant values for observation errors are not realistic. Then, Miyoshi et al. (2013)391

proposed additionally estimating the off-diagonal components of the time-dependent matrix R(k).392

The Miyoshi et al. (2013) implementation is summarized in the appendix, Algorithm 1.393

The Desroziers diagnostic method has been applied widely to estimate the real observation error394

covariance matrix R in Numerical Weather Prediction (NWP). The observations are coming from395

different sources. In the case of satellite radiances, Bormann et al. (2010) applied three meth-396

ods, including the Desroziers diagnostic and the method detailed in Hollingsworth and Lönnberg397

(1986) to estimate a constant diagonal term of R using the innovation do− f and its correlations398

in space, assuming that horizontal correlations in do− f samples are purely due to P f . Weston399

et al. (2014) and Campbell et al. (2017) then included the inter-channel observation error correla-400

tions of satellite radiances in DA and obtained improved results compared with the case using a401

diagonal R. For spatial error correlations in R, Kotsuki et al. (2017a) estimated the horizontal ob-402

servation error correlations of satellite-derived precipitation data. Including horizontal observation403

error correlations in DA for densely-observed data from satellites and radars is more challenging404

than including inter-channel error correlations in DA. Indeed, the number of horizontally error-405

correlated observations is much larger, and some recent studies have been tackling this issue (e.g.,406

Guillet et al. (2019)).407

To conclude, the Desroziers diagnostic is a consistency check and makes it possible to detect if408

the error covariances P f and R are incorrect. When and how this method can result in accurate409

or inaccurate estimates, and convergence properties, have been studied in depth by Waller et al.410

(2016) and Ménard (2016). The Desroziers diagnostic is also useful to estimate off-diagonal terms411

of R, for instance taking into account the spatial error correlations. However, covariance localiza-412
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tion used in the ensemble Kalman filter might induce erroneous estimates of spatial correlations413

(Waller et al. 2017).414

b. Lag innovation between consecutive times415

Another way to estimate error covariances is to use multiple equations involving Q and R,416

exploiting cross-correlations between lag innovations. More precisely, it involves the current in-417

novation d(k) = do− f (k) defined in Eq. (4b) and past innovations d(k− 1), . . . , d(k− l). Lag418

innovations were introduced by Mehra (1970) to recover Q and R simultaneously for Gaussian,419

linear and stationary dynamic systems. In such a case, {d(k)}k≥1 is completely characterized by420

the lagged covariance matrix Cl = Cov(d(k),d(k− l)), which is independent of k. In other words,421

the information encoded in {d(k)}k≥1 is completely equivalent to the information provided by422

{Cl}l≥0. Moreover, for linear systems in a steady state, analytic relations exist between Q, R and423

E
[
d(k)d(k− l)T]. However, these linear relations can be dependent and redundant for different424

lags l. Therefore, as stated in Mehra (1970), only a limited number of Q components can be425

recovered.426

Bélanger (1974) extended these results to the case of time-varying linear stochastic processes,427

taking d(k)d(k− l)T as “observations” of Q and R and using a secondary Kalman filter to update428

them iteratively. On the one hand, considering the time-varying case may increase the number of429

components in Q that can be estimated. On the other hand, as pointed out in Bélanger (1974),430

this method would no longer be analytically exact if Q and R were updated adaptively at each431

time step. One numerical difficulty of Bélanger’s method is that it needs to invert a matrix of size432

m2×m2, where m refers to the dimension of the observation vector. However, this difficulty has433

been largely overcome by Dee et al. (1985) in which the matrix inversion is reduced to O(m3), by434

taking the advantage of the fact that the big matrix comes from some tensor product.435
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More recent work have focused on high-dimensional and nonlinear systems using the extended436

or ensemble Kalman filters. Berry and Sauer (2013) proposed a fast and adaptive algorithm in-437

spired by the use of lag innovations proposed by Mehra. Harlim et al. (2014) applied the original438

Bélanger algorithm empirically to a nonlinear system with sparse observations. Zhen and Harlim439

(2015) proposed a modified version of Bélanger’s method, by removing the secondary filter and440

alternatively solving Q and R in a least-squares sense based on the averaged linear relation over a441

long term.442

Here, we briefly describe the algorithm of Berry and Sauer (2013), considering the lag-zero and

lag-one innovations. The following equations are satisfied in the linear and Gaussian case, for

unbiased forecast and observation when P f (k) and R(k) are correctly specified:


E
[
d(k)d(k)T]= HkP f (k)HT

k +R(k) =Σ(k) (9a)

E
[
d(k)d(k−1)T]= HkMkP f (k−1)HT

k−1

−HkMkK f (k−1)Σ(k−1). (9b)

Equation (9a) is equivalent to Eq. (6a). Moreover, Eq. (9b) results from the fact that developing443

the expression of d(k) using consecutively Eqs. (2), (1), (4a), and (4d), the innovation can be444

written as445

d(k) =y(k)−Hkx f (k)

=Hk

(
x(k)−x f (k)

)
+ε(k)

=Hk

(
Mkx(k−1)−x f (k)+η(k)

)
+ε(k)

=Hk (Mk (x(k−1)−xa(k−1))+η(k))+ε(k)

=HkMk

(
x(k−1)−x f (k−1)−K f (k−1)d(k−1)

)
+Hkη(k)+ε(k). (10)
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Hence, the innovation product d(k)d(k−1)T between two consecutive times is given by446

HkMk

(
x(k−1)−x f (k−1)

)
d(k−1)T

−HkMk

(
K f (k−1)d(k−1)

)
d(k−1)T

+Hkη(k)d(k−1)T +ε(k)d(k−1)T, (11)

and assuming that the model η and observation ε error noises are white and mutually uncorrelated,447

then E
[
η(k)d(k−1)T] = 0 and E

[
ε(k)d(k−1)T] = 0. Finally, developing E

[
d(k)d(k−1)T],448

Eq. (9b) is satisfied.449

The algorithm in Berry and Sauer (2013) is summarized in the appendix, Algorithm 2. It is450

based on an adaptive estimation of Q(k) and R(k), which satisfies the following relations in the451

linear and Gaussian case:452

P̃(k) =(HkMk)
−1 d(k)d(k−1)TH−T

k−1,

+K f (k−1)d(k−1)d(k−1)TH−T
k−1 (12a)

Q̃(k) =P̃(k)−Mk−1Pa(k−2)MT
k−1, (12b)

R̃(k) =d(k)d(k)T−HkP f (k)HT
k . (12c)

In operational applications, when the number of observations is not equal to the number of453

components in state x, H is not a square matrix and Eq. (12a) is ill-defined. To avoid the inversion454

of H, Berry and Sauer (2013) proposed considering parametric models for Q and then solving a455

linear system associated with Eqs. (12a) and (12b). It is written as a least-squares problem such456
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that457

Q̃(k) =argmin
Q
||d(k)d(k−1)T

+HkMkK f (k−1)d(k−1)d(k−1)T

−HkMkMk−1Pa(k−2)MT
k−1HT

k−1

−HkMkQHT
k−1||. (13)

In this adaptive procedure, joint estimations of Q̃(k) and R̃(k) can abruptly vary over time.458

Thus, the temporal smoothing of the covariances being estimated becomes crucial. As suggested459

by Berry and Sauer (2013), such temporal smoothing between current and past estimates is a460

reasonable choice:461

Q(k+1) = ρQ̃(k)+(1−ρ)Q(k), (14a)

R(k+1) = ρR̃(k)+(1−ρ)R(k) (14b)

with Q(1) and R(1) the initial conditions and ρ the smoothing parameter. When ρ is large (close462

to 1), weight is given to the current estimates Q̃ and R̃, and when ρ is small (close to 0) it gives463

smoother Q and R sequences. The value of ρ is arbitrary and may depend on the system and how464

it is observed. For instance, in the case where the number of observations equals the size of the465

system, Berry and Sauer (2013) uses ρ = 5× 10−5 in order to estimate the full matrix Q for the466

Lorenz-96 model.467

The algorithm in Berry and Sauer (2013) only considers lag-zero and lag-one innovations. By468

incorporating more lags, Zhen and Harlim (2015) and Harlim (2018) showed that it makes it469

possible to deal with the case in which some components of Q are not identifiable from the method470

in Berry and Sauer (2013). For instance, let us consider the two-dimensional system with any471

stationary operator M and H = [1,0], meaning that only the first component of the system is472
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observed. This is a linear, Gaussian, stationary system, and Mehra’s theory implies that two473

parameters of Q are identifiable. However, using only lag-one innovations as in Berry and Sauer474

(2013), Eq. (13) becomes a scalar equation and only one parameter of Q can be determined. The475

idea of considering more lag innovations to estimate more components of Q was tested in Zhen476

and Harlim (2015). Numerical results show that considering more than one lag can improve the477

estimates of Q and R. For instance, Zhen and Harlim (2015) focused on the Lorenz-96 model.478

Results show that when Q is stationary, the trace of Q and R are equal, and when observations are479

taken at twenty fixed equally spaced grid points for every five integration time steps, the optimal480

RMSE of the estimates of Q and R is achieved when four time lags are considered. But with more481

lags, the performance is degraded.482

To summarize, methods based on lag innovation between consecutive times have been studied483

for a long time in the signal processing community. The original methods (Mehra 1970; Bélanger484

1974) were analytically established for linear systems with Gaussian noises. Inspired by these485

foundational ideas, empirical methods have been established for nonlinear systems in DA (Berry486

and Sauer 2013; Harlim et al. 2014; Zhen and Harlim 2015). Although these methods have not487

been tested in any operational experiment, the idea of using lagged innovations seems to have488

significant potential.489

4. Likelihood-based methods490

This section focuses on methods based on the likelihood of the observations, given a set of491

statistical parameters. The conceptual idea behind what we refer to as likelihood-based methods492

is to determine the optimal statistical parameters (i.e., Q and R) that maximize the likelihood493

function for a given set of observations which may be distributed over time. In this way, the aim494
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is to derive estimation methods that use the observations to find the most suitable, or most likely495

parameters.496

Early studies in Dee (1995), Blanchet et al. (1997), Mitchell and Houtekamer (2000) and Liang497

et al. (2012) proposed finding the optimal Q and R that maximize the current innovation likelihood498

at time k. Unfortunately, if only the current observations are used, the joint estimation of Q and R499

is not well constrained (Todling 2015). To tackle this issue, several solutions have been recently500

proposed where the likelihood function considers observations distributed in time over several501

assimilation cycles.502

The likelihood-based methods are broadly divided into two categories. One approach uses a503

Bayesian framework. It assumes a priori knowledge about the parameters and estimate jointly the504

posterior distribution of Q and R together with the state of the system, or alternatively to estimate505

them in a two-stage process2. The second one is based on the frequentist viewpoint and attempts506

a point estimate of the parameters by maximizing a total likelihood function.507

a. Bayesian inference508

In the Bayesian framework, the elements of the covariance matrices Q and R are assumed to509

have a priori distributions which are controlled by hyperparameters. In practice, it is difficult to510

have prior distributions for each element of Q and R, especially for large DA systems. Instead,511

parametric forms are used for the matrices, typically describing the shape and level noise. We512

denote the corresponding parameters as θ.513

2Some of the methods presented in section 3 also use the Bayesian philosophy; for instance they assume a priori distribution for the multiplicative

inflation parameter λ (Anderson 2009; El Gharamti 2018).
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The inference in the Bayesian framework aims to determine the posterior density p(θ|y(1 : k)).514

Two techniques have appeared, the first based on a state augmentation and the second based on a515

rigorous Bayesian update of the posterior distribution.516

1) STATE AUGMENTATION517

In the Bayesian framework, θ is a random variable such that the state is augmented with these518

parameters by defining z(k) = (x(k),θ). To define an augmented state-space model, one has to519

define an evolution equation for the parameters. This leads to a new state-space model of the form520

of Eqs. (1) and (2) with x replaced by z. Therefore, the state and the parameters are estimated521

jointly using the DA algorithms.522

State augmentation was first proposed in Schmidt (1966) and is known as the Schmidt–Kalman523

filter. This technique was mainly used to estimate both the state of the system and additional pa-524

rameters, including bias, forcing terms and physical parameters. These kinds of parameters are525

strongly related to the state of the system (Ruiz et al. 2013a). Therefore, they are identifiable526

and suitable for an augmented state approach. However, Stroud and Bengtsson (2007) and later527

Delsole and Yang (2010) formally demonstrated that augmentation methods fail for variance pa-528

rameters like Q and R. The explanation is that in the EnKF, the empirical forecast covariance P f
529

is computed using all the ensemble members, each one with a different realization of the random530

variable θ. Thus, P f and consequently the Kalman gain K f , are mixing the effects of Q and R531

parameters contained in θ. Therefore, after applying Eq. (4d), the update of z corresponding to532

the θ parameters is the same for all the parameters. To capture the impact of a single variance533

parameter on the prediction covariance and circumvent the limitation of the state augmentation,534

Scheffler et al. (2019) proposed to use an ensemble of states integrated with the same variance535

parameter. The choice of an ensemble of states for each variance parameter leads to two nested536
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ensemble Kalman filters. The technique performs successfully under different model error covari-537

ance structures but has an important computational cost.538

Another critical aspect of state augmentation is that one needs to define an evolution model for539

the augmented state z(k) = (x(k),θ(k)). If persistence is assumed in the parameters such that they540

are constant in time, this leads to filter degeneracy, since the estimated variance of the error in θ541

is bound to decrease in time. To prevent or at least mitigate this issue, it was suggested to use an542

independent inflation factor on the parameters (Ruiz et al. 2013b) or to impose artificial stochastic543

dynamics for θ, typically a random walk or AR(1) model, as introduced in Eq. (3) and proposed544

in Liu and West (2001). The tuning of the parameters introduced in these artificial dynamics may545

be difficult, and this introduces bias into the procedure, which is hard to quantify.546

2) BAYESIAN UPDATE OF THE POSTERIOR DISTRIBUTION547

Instead of the inference of the joint posterior density using a state augmentation strategy, the548

state x(k) and parameters θ can be divided into a two-step inference procedure using the following549

formula:550

p(x(k),θ|y(1 : k)) =

p(x(k)|y(1 : k),θ) p(θ|y(1 : k)) , (15)

which is a direct consequence of the conditional density definition. In Eq. (15), p(x(k)|y(1 : k),θ)551

represents the posterior distribution of the state, given the observations and the parameter θ. It can552

be computed using a filtering DA algorithm. The second term on the right-hand side of Eq. (15)553

corresponds to the posterior distribution of the parameters, given the observations up to time k.554
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The latter can be updated sequentially using the following Bayesian hierarchy:555

p(θ|y(1 : k)) ∝

p(y(k)|y(1 : k−1),θ) p(θ|y(1 : k−1)) , (16)

where p(y(k)|y(1 : k−1),θ) is the likelihood of the innovations.556

Different approximations have been used for p(θ|y(1 : k)) in Eq. (16); these include parametric557

models based on Gaussian (Stroud et al. 2018), inverse-gamma (Stroud and Bengtsson 2007) or558

Wishart distributions (Ueno and Nakamura 2016), particle-based approximations (Frei and Künsch559

2012; Stroud et al. 2018) and grid-based approximation (Stroud et al. 2018).560

The methods proposed in the literature also differ by the approximation used for the likelihood561

of the innovations. We emphasize that p(y(k)|y(1 : k−1),θ) needs to be evaluated for different562

values of θ at each time step, and that this requires applying the filter from the initial time with563

a single value of θ, which is computationally impossible for applications in high dimensions. To564

reduce computational time, it is generally assumed that x f and P f are independent of θ, and only565

observations y(k− l : k− 1) in a small time window from the current observation are used when566

computing the likelihood of the innovations (see Ueno and Nakamura (2016); Stroud et al. (2018)567

for a more detailed discussion). A summary of the Bayesian method from Stroud et al. (2018) is568

given in the appendix, Algorithm 3. It was implemented within the EnKF framework and is one569

of the most recent studies based on the Bayesian approach.570

Applications of the Bayesian methodology in the DA context are now discussed. It has mainly571

been used to estimate shape and noise parameters of Q and R error covariance matrices. For572

instance, Purser and Parrish (2003) and Solonen et al. (2014) estimated statistical parameters con-573

trolling the magnitude of the variance and the spatial dependencies in the model error Q, assuming574

that R is known. There are also applications aimed at estimating parameters governing the shape575
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of the observation error covariance matrix R only: Frei and Künsch (2012) and Stroud et al. (2018)576

in the Lorenz-96 system, Winiarek et al. (2012, 2014) for the inversion of the source term of air-577

borne radionuclides using a regional atmospheric model, and Ueno and Nakamura (2016) using a578

shallow-water model to assimilate satellite altimetry.579

As pointed out in Stroud and Bengtsson (2007), Bayesian update algorithms work best when the580

number of unknown parameters in θ is small. This limitation may explain why the joint estimation581

of parameters controlling both model and observation error covariances is not systematically ad-582

dressed. For instance, Stroud and Bengtsson (2007) used the EnKF with the Lorenz-96 model for583

the estimation of a common multiplicative scalar parameter for predefined matrices Q and R. Al-584

ternatively, Stroud et al. (2018) tested the Bayesian method on different spatio-temporal systems585

to estimate the signal-to-noise ratio between Q and R. Nevertheless, based on the experiments586

about the importance of the signal-to-noise ratio
∥∥P f

∥∥/‖R‖ presented in Fig. 2, we know that this587

estimation of the ratio is not optimal.588

Widely used in the statistical community, the Bayesian framework is useful incorporating phys-589

ical knowledge about error covariance matrices and constraining their estimation process. In the590

DA literature, authors have used a priori distributions for the shape and noise parameters of Q591

or R, but rarely both. Operationally, only a limited number of parameters can be estimated. To592

address this issue, Stroud and Bengtsson (2007) suggested combining Bayesian algorithms with593

other techniques.594

b. Maximization of the total likelihood.595

The innovation likelihood at time k, p(y(k)|y(1 : k−1),θ) in Eq. (16), can be maximized to596

find the optimal θ (i.e., Q and R matrices or parameterizations of them). In practice, when this597

maximization is done at each time step, two issues arise. Firstly, the innovation covariance matrix598
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Σ(k) = HkP f (k)HT
k +R(k) combines the information about R and Q, the latter being contained599

in P f . When using only time k, it is difficult to disentangle the model and observation error600

covariances; in application, the aforementioned studies only estimated one of them. Secondly,601

the number of observations at each time step is in general limited and, as pointed out by Dee602

(1995), available observations should exceed “the number of tunable parameters by two or three603

orders of magnitude”. To overcome these limitations, a reasonable alternative is to use a batch of604

observations within a time window and to assume θ to be constant in time. The resulting total605

likelihood expressed sequentially through conditioning is given by606

p(y(1 : K)|θ) =
K

∏
k=1

p(y(k)|y(1 : k−1),θ) . (17)

Because it is an integration of innovation likelihoods over a long period of time from k = 1 to k =607

K, Eq. (17) provides more observational information to estimate Q and R. The maximization of608

this total likelihood has been applied for the estimation of deterministic and stochastic parameters609

(related to Q) using a direct sequential optimization procedure (Delsole and Yang 2010). Ueno610

et al. (2010) used a grid-based procedure to estimate noise levels and spatial correlation lengths of611

Q and a noise level for R. This grid-based method uses predefined sets of covariance parameters612

and evaluates the different combinations to find the one that maximizes the likelihood criterion.613

Brankart et al. (2010) also proposed a method using the same criterion but adding (at the initial614

time) information on scale and correlation length parameters of Q and R. This information is only615

given the first time, and is progressively forgotten over time, using a decreasing exponential factor.616

The marginalization of the hidden state in Eq. (17) considers all the previous observations, and it617

requires the use of a filter. The maximization of the total likelihood p(y(1 : K)|θ) to estimate618

model error covariance Q was conducted in Pulido et al. (2018), where they used a gradient-based619

optimization technique and the EnKF.620
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The likelihood function given in Eq. (17) only depends on the observations y. This likelihood621

can be written in a different way, taking into account both the observations and the hidden state x.622

Indeed, the marginalization of the hidden state to obtain the total likelihood can be produced using623

the whole trajectory of the state from k = 0 to the last time step K all at once. It is given by624

p(y(1 : K)|θ) =
∫

p(x(0 : K),y(1 : K)|θ)dx(0 : K). (18)

The maximization of the total likelihood as a function of statistical parameters θ is not possible,625

since the total likelihood cannot be evaluated directly, nor its gradient with regard to the parameters626

(Pulido et al. 2018). Shumway and Stoffer (1982) proposed using an iterative procedure based on627

the expectation–maximization algorithm (hereinafter denoted as EM). They applied it to estimate628

the parameters of a linear state-space model, with linear dynamics, and a linear observational629

operator and Gaussian errors. The EM algorithm was introduced by Dempster et al. (1977).630

Each iteration of the EM algorithm consists of two steps. In the expectation step (E-step), the631

posterior density p(x(0 : K)|y(1 : K),θ(n)) is determined conditioned on the batch of observations632

y(1 : K) and given the parameters θ(n) =
(
Q(n),R(n)

)
from the previous iteration or initial guess.633

This is obtained through the application of a smoother like the EnKS. Then, the M-step relies on634

the maximization of an intermediate function, depending on the posterior density obtained in the635

E-step. The intermediate function is defined by the conditional expectation636

E
[
log(p(x(0 : K),y(1 : K)|θ)) |y(1 : K),θ(n)

]
. (19)

If as in Eqs. (1) and (2) the observational and model errors are assumed to be additive, unbiased637

and Gaussian, the expression for the logarithm of the joint density in Eq. (19) is given by638

−1
2
{

K

∑
k=1
‖x(k)−M (x(k−1))‖2

Q + log |Q|

+‖y(k)−H (x(k))‖2
R + log |R|}+ c (20)
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where ‖v‖2
A is defined to be equal to vTA−1v and c is a constant independent of Q and R. In this639

case, an analytic expression for the optimal error covariances at each iteration of the EM algorithm640

can be obtained. The estimators of the parameters that maximize Eq. (19) using Eq. (20) are641

Q(n+1) =
1
K

K

∑
k=1

E[(x(k)−M (x(k−1)))

(x(k)−M (x(k−1)))T|y(1 : K),θ(n)] (21a)

and642

R(n+1) =
1
K

K

∑
k=1

E[(y(k)−H (x(k)))

(y(k)−H (x(k)))T|y(1 : K),θ(n)]. (21b)

The application of the EM algorithm for the estimation of Q and R is rather straightforward.643

Starting from Q(1) and R(1), an ensemble Kalman smoother is applied with this first guess and644

the batch of observations y(1 : K) to obtain the posterior density p(x(0 : K)|y(1 : K),θ(1)). Then645

Eqs. (21a) and (21b) are used to update and obtain Q(2) and R(2). Next, a new application of646

the smoother is conducted using the parameters Q(2) and R(2) and the observations y(1 : K), the647

new resulting states are used in Eqs. (21a) and (21b) to estimate Q(3) and R(3), and so on. As648

a diagnostic of convergence or as a stop criterion, the product of innovation likelihood functions649

given in Eq. (17) is evaluated using a filter. The EM algorithm guarantees that the total likelihood650

increases in each iteration and that the sequence θ(n) converges to a local maximum (Wu 1983).651

A summary of the EM method (using EnKF and EnKS) from Dreano et al. (2017) is given in the652

appendix, Algorithm 4.653

EM is a well-known algorithm used in the statistical community. This procedure is parameter-654

free and robust, due to the large number of observations used to approximate the likelihood when655

using a long batch period (Shumway and Stoffer 1982). Although the use of the EM algorithm is656
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still limited in DA, it is becoming more and more popular. Some studies have implemented the EM657

algorithm for estimating only the observation error matrix R. For instance, Ueno and Nakamura658

(2014) used the model proposed in Zebiak and Cane (1987) and satellite altimetry observations,659

whereas Liu et al. (2017) used an air quality model for accidental pollutant source retrieval. But660

the estimation of only the observation error covariance is limited, and other studies have tried661

to jointly estimate model error Q and R matrices, for instance as in Tandeo et al. (2015) for an662

orographic subgrid-scale nonlinear observation operator. Then, Dreano et al. (2017) and Pulido663

et al. (2018) used the EM procedure to produce joint estimation of Q and R matrices in the Lorenz-664

63 and stochastic parameters of the Lorenz-96 systems, respectively. Recently, Yang and Mémin665

(2019) extended the EM procedure for the estimation of physical parameters in a one-dimensional666

shallow water model, more specifically for the identification of stochastic subgrid terms. Lastly,667

an online adaptation of the EM algorithm for the estimation of Q and R at each time step, after the668

filtering procedure, has been proposed in Cocucci et al. (2020). In this adaptive case, the likelihood669

is averaged locally over time, see Cappé (2011) for more details.670

To our knowledge, EM has not been tested yet on operational systems with large observation-671

and state-space. In that case, the use of parametric forms for the matrices Q and R is essential to672

reduce the number of statistical parameters θ to estimate. For instance, Dreano et al. (2017) and673

Liu et al. (2017) showed that in the particular cases where covariances are diagonal or of the form674

αA with A a positive definite matrix, expressions in Eq. (21a) and Eq. (21b) are simplified, and a675

suboptimal θ in the space of the parametric covariance form can be obtained.676

5. Other methods677

In this section, we describe other methods that have been used to estimate Q and R, and that678

cannot be included in the categories presented in the previous sections. In particular, we report679
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here about methods that are applied either a posteriori, after DA cycles, or without applying any680

DA algorithms.681

a. Analysis (or reanalysis) increment approach682

This first method is based on previous DA outputs. The key idea here is to use the analysis683

(or reanalysis) increments to provide a realistic sample of model errors from which statistical684

moments, such as the covariance matrix Q, can be empirically estimated. This assumes that the685

sequence of reanalysis xs (or analysis xa) is the best available representation of the true process x.686

In that case, the following approximation in Eq. (1) is made:687

η(k) =M (x(k−1))−x(k)

≈M (xs(k−1))−xs(k). (22)

In this approximation, it is implicitly assumed that the estimated state is the truth, so that the initial688

condition at time k− 1 is neglected. A similar approximation of the true process by xa or xs in689

Eq. (2) can be used to estimate the observation error covariance matrix R.690

Operationally, the analysis (or reanalysis) increment method is applied after a DA filter (or691

smoother) to estimate the Q matrix. This method was originally introduced by Leith (1978), and692

later used to account for model error in the context of ensemble Kalman filters, using analysis and693

reanalysis increments by Mitchell and Carrassi (2015), and in the context of weak-constraint vari-694

ational assimilation by Bowler (2017). Along this line, Rodwell and Palmer (2007) also proposed695

evaluating the average of instantaneous analysis increments to represent the systematic forecast696

tendencies of a model.697
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b. Covariance matching698

The covariance matching method was introduced by Fu et al. (1993). It involves matching699

sample covariance matrices to their theoretical expectations. Thus, it is a method of moments,700

similar to the work in Desroziers et al. (2005), except that covariance matching is performed701

on a set of historical observations and numerical simulations (noted xsim), without applying any702

DA algorithms. It has been extended by Menemenlis and Chechelnitsky (2000) to time-lagged703

innovations, as first considered in Bélanger (1974).704

In the case of a constant and linear observation operator H, the basic idea in Fu et al. (1993) is

to assume the following system
xsim(k) = x(k)+ηsim(k), (23a)

ηsim(k) = Aηsim(k−1)+η(k), (23b)

Hxsim(k)−y(k) = Hηsim(k)+ε(k), (23c)

with A a transition matrix close to the identity matrix, assuming slow variations of the numerical705

simulation errors (noted ηsim). In Eq. (23b) and Eq. (23c), the definitions of η and ε errors remain706

similar, as in the general Eqs. (1) and (2).707

Assuming that Q and R are constant over time, ε is uncorrelated from x and from ηsim, then708

Eq. (23c) and Eq. (23a) yield to the following estimates of R and Psim (the latter represents the709

error covariance of the numerical simulations):710

R̂ =
1
2
{E[(y−Hxsim)(y−Hxsim)T]

−E[(Hxsim)(Hxsim)T]+E[yyT]}, (24a)

HP̂simHT =
1
2
{E[(y−Hxsim)(y−Hxsim)T]

+E[(Hxsim)(Hxsim)T]−E[yyT]}. (24b)
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where E is the expectation operator over time. Then, an estimate of Q is obtained using Eq. (23b),711

Eq. (24b) and assuming that Psim has a unique time-invariant limit.712

c. Forecast sensitivity713

In operational meteorology, it is critical to learn the sensitivity of the forecast accuracy to various714

parameters of a DA system, in particular the error statistics of both the model and the observations.715

This is why a significant portion of literature considers the tuning problem of R and Q through the716

lens of the sensitivity of the forecast to these parameters. The computation of those sensitivities can717

be seen as a first-order correction or diagnostic for such an estimation. The forecast sensitivities are718

computed either using the adjoint model (Daescu and Todling 2010; Daescu and Langland 2013)719

in the context of variational methods, or a forecast ensemble (Hotta et al. 2017) in the context of720

the EnKF.721

The basic idea is to compute at each assimilation cycle an innovation between forecast and anal-722

ysis, noted d f−a(k) = x f (k)−xa(k). Then, the forecast sensitivity is given by d f−a(k)TSd f−a(k)723

with S a diagonal scaling matrix, to normalize the components of d f−a. Q and R estimates are the724

matrices that minimize d f−a(k). The adjoint or the ensemble are thus used to compute the partial725

derivatives of this forecast sensitivity. w.r.t. Q and R.726

6. Conclusions and perspectives727

As often considered in data assimilation, this review paper also deals with model and observation728

errors that are assumed additive and Gaussian with covariance matrices Q and R. The model error729

corresponds to the dynamic model deficiencies to represent the underlying physics, whereas the730

observation error corresponds to the instrumental noise and the representativity error. Model and731

39

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



observation errors are assumed to be uncorrelated and white in time. The model and observations732

are also assumed unbiased, a strong assumption for real data assimilation applications.733

The discussion starts with the aid of an illustration of the individual and joint impacts of im-734

properly calibrated covariances using a linear toy model. The experiments clearly showed that735

to achieve reasonable filter accuracy (i.e., in terms of root mean squared error), it is crucial to736

carefully define both Q and R. The effect on the coverage probability of a mis-specification of737

Q or R is also highlighted. This coverage probability is related to the estimated covariance of738

the reconstructed state, and thus to the uncertainty quantification in data assimilation. After the739

one-dimensional illustration, the core of the paper gives an overview of various methods to jointly740

estimate the Q and R error covariance matrices: they are summarized and compared below.741

a. Comparison of existing methods for estimating Q and R742

We mainly focused in this review on four methodologies for the joint estimation of the error co-743

variances Q and R. The methods are summarized in Table 1. They correspond to classic estimation744

methods, based on statistical moments or likelihoods. The main difference between the four meth-745

ods comes from the innovations taken into account: the total innovation, as in the EM algorithm746

proposed by Shumway and Stoffer (1982); lag innovations, following the idea given in Mehra747

(1970); or different type of innovations in the observation space, as in Desroziers et al. (2005).748

Additionally, to constrain the estimation, hierarchical Bayesian approaches use prior distributions749

for the shape parameters of Q and R.750

Most of the methods estimate the model error Q. The exception is the one using the Desroziers751

diagnostic, dealing with different type of innovations in the observation space, which instead esti-752

mates an inflation factor for P f . Moreover, the methods are mainly defined online, meaning that753

they aim to estimate Q and R adaptively, together with the current state of the system. Conse-754
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quently, these methods require additional tunable parameters to smooth the estimated covariances755

over time. However, most of the methods presented in this review also have an offline variant. In756

that case, a batch of observations is used to estimate Q and R. In some methods, such as the EM757

algorithm, the parameters are determined iteratively. These offline approaches avoid the use of758

additional smoothing parameters.759

Throughout this review paper, as usually stated in DA, it is assumed that model error η and760

observation error ε, defined in Eqs. (1) and (2), are Gaussian. Consequently, the distribution of the761

innovations are also Gaussian. The four presented methods use this property to build estimates of762

Q and R adequately. But, if η and ε are non-Gaussian, Desroziers diagnostic and lag-innovation763

methods are not suitable anymore. However, the EM procedures and Bayesian methods are still764

relevant, although they must be used with an appropriate filter (e.g., particle filters), not Kalman-765

based algorithms (i.e., assuming a Gaussian distribution of the state). Recently, the treatment of766

non-Gaussian error distributions in DA has been explored in Katzfuss et al. (2019), using hierarchi-767

cal state-space models. This Bayesian framework allows to handle unknown variables that cannot768

be easily included in the state vector (e.g., parameters of Q and R) and to model non-Gaussian769

observations.770

The four methods have been applied at different levels of complexity. For instance, Bayesian771

inference methods (due to their algorithm complexity) and the EM algorithm (due to its computa-772

tional cost) have so far only been applied to small dynamic models. However, the online version of773

the EM algorithm is less consuming and opens new perspectives of applications on larger models.774

On the other hand, methods using innovation statistics in the observation space have already been775

applied to NWP models.776
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The four methods summarized in Table 1 show differences in maturity in terms of applications777

and methodological aspects. This review also shows that there are still remaining challenges and778

possible improvements for the four methods.779

b. Remaining challenges for each method780

The first challenge concerns the improvements of adaptive techniques regarding additional pa-781

rameters that control the variations of Q and R estimates over time. Instead of using fixed values782

for these parameters, for instance fixed ρ in the lag innovations or σ2
λ

in the inflation methods,783

we suggest using time-dependent adaptations. This adaptive solution could avoid the problems784

of instabilities close to the solution. Another option could be to adapt these procedures, working785

with stable parameter values (small ρ , low σ2
λ

) and iterating the procedures on a batch of obser-786

vations, as in the EM algorithm. This offline variant was suggested and tested in Desroziers et al.787

(2005) with encouraging results. To the best of our knowledge, it has not yet been tested with788

lag-innovation methods.789

The second challenge concerns considering time-varying error covariance matrices. The adap-790

tive procedures, based on online estimations with temporal smoothing of Q and R, are supposed791

to capture slowly evolving covariances. On the contrary, offline methods like the EM algorithm792

are working on a batch of observations, assuming that Q and R are constant over the batch period.793

Online solutions for the EM algorithm, with the likelihood averaged locally over time (Cocucci794

et al. 2020), could also capture slow evolution of the covariances. Another simple solution could795

be to work on small sets of observations, named as mini-batches, and to apply the EM algorithm796

in each set using the previous estimates as an initial guess. These intermediate schemes are of797

common use in machine learning.798
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A third challenge has to do with the assumption, used by all of the methods described herein, that799

observation and model errors are mutually independent. Nevertheless, as pointed out in Berry and800

Sauer (2018), observation and model error are often correlated in real data assimilation problems801

(e.g., for satellite retrieval of Earth observations that uses model outputs in the inversion process).802

Methods based on Bayesian inference can, in principle, exploit existing model-to-observation cor-803

relations by using a prior joint distribution (i.e., not two individual ones). The explicit taking into804

account of this correlation can then constrain the optimization procedure. This is not possible in805

the other approaches described in this review, at least not in their standard known formulations,806

and the presence of model-observation correlation can deteriorate their accuracy.807

A fourth challenge is common to all the methods presented in this review. Iterative versions808

of the presented algorithms need initial values or distributions for R and Q (or B = P f in the809

case of Desroziers). But, as mentioned in Waller et al. (2016) for the Desrorziers diagnostics,810

there is no guarantee that the algorithms will converge to the optimal solution. Indeed, in such811

an optimization problem, there are possibly several local and non-optimal solutions. Suboptimal812

specifications of R, Q, or B in the initial DA cycle will affect the final estimation results. There813

are several solutions to avoid this convergence problem: initialize the covariance matrices using814

physical expertise, execute the iterative algorithms several times with different initial covariance815

matrices, or use stochastic perturbations in the optimization algorithms to avoid to be trapped in816

local solutions. These aspects of convergence and sensitivity to initial conditions have so far been817

poorly addressed. It is therefore necessary to check which method is robust operationally.818

The last remaining challenge concerns the estimation of other statistical parameters of the state-819

space model given in Eqs. (1) and (2) and associated filters. Indeed, the initial conditions x(0) and820

P(0) are crucial for certain satellite retrieval problems and have to be estimated. This is the case,821

for instance, when the time sequence of observations is short (i.e., shorter than the spinup time822
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of the filter with an uninformative prior) or when filtering and smoothing are repeated on various823

iterations, as in the EM algorithm. Estimation methods should also consider the estimation of sys-824

tematic or time-varying biases, the deterministic part of η and ε. This was initially proposed by825

Dee et al. (1999a) and tested in Dee et al. (1999b) in the case of maximizing the innovation like-826

lihood, in Dee (2005) in a state augmentation formulation, and was adapted to a Bayesian update827

formulation in Liu et al. (2017) and in Berry and Harlim (2017). Recently, the joint estimation of828

bias and covariance error terms, for the treatment of brightness temperatures from the European829

geostationary satellite, has been successfully applied in Merchant et al. (2020).830

c. Perspectives for geophysical DA831

Beyond the aforementioned potential improvements in the existing techniques, specific research832

directions need to be taken by the data assimilation community. The main one concerns the real-833

ization of a comprehensive numerical evaluation of the different methods for the estimation of Q834

and R, built on an agreed experimental framework and a consensus model. Such an effort would835

help to evaluate (i) the pros and cons of the different methods (including their capability to deal836

with high dimensionality, localization in ensemble methods, and their practical feasibility), (ii)837

their effects on different error statistics (RMSE, coverage probabilities, and other diagnostics),838

(iii) the potential combination of the various methods (especially those considering constant or839

adaptive covariances), and (iv) the capability to take into account other sources of error (due for840

instance to improper parameterizations, multiplicative errors, or forcing terms).841

The use of a realistic DA problem, with a high-dimensional state-space and a limited and het-842

erogeneous observational coverage should be addressed in the future. In that realistic case, the843

observational information per degree of freedom will be significantly lower, and the estimates of844

Q and R will deteriorate. Parametric versions of these error covariance matrices will therefore be845
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necessary. Among the parameters, some of them will control the variances, and will be different846

depending on the variable. Other parameters will control the spatial correlation lengths, that could847

be isotropic or anisotropic, depending on the region of interest and the considered variable. Cross-848

correlations between variables will also have to be considered. Consequently, Q and R will be849

block-matrices with as few parameters as possible.850

A further challenge for future work is the evaluation of the feasibility of estimating non-additive,851

non-Gaussian, and time-correlated noises under the current estimation frameworks. In this way,852

the need for observational constraints for the stochastic perturbation methods in the NWP com-853

munity could be considered within the estimation framework discussed in this review.854

Acknowledgments. This work has been carried out as part of the Copernicus Marine Environment855

Monitoring Service (CMEMS) 3DA project. CMEMS is implemented by Mercator Ocean in the856

framework of a delegation agreement with the European Union. This work was also partially857

supported by FOCUS Establishing Supercomputing Center of Excellence. CEREA is a member of858

Institut Pierre Simon Laplace (IPSL). A. C. has been funded by the project REDDA (#250711) of859

the Norwegian Research Council. A. C. was also supported by the Natural Environment Research860

Council (Agreement PR140015 between NERC and the National Centre for Earth Observation).861

We thank Paul Platzer, a second-year PhD student, who helped to popularize the summary and862

the introduction, and John C. Wells, Gilles-Olivier Guégan and Aimée Johansen for their English863
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APPENDIX868

Four main algorithms to jointly estimate Q and R in data assimilation869

- initialize inflation factor (for instance λ (1) = 1);

for k in 1:K do

for i in 1:Ne do

- compute forecast x f
i (k) using Eq. (4a);

- compute innovation di(k) using Eq. (4b);

end

- compute empirical covariance P̃ f (k) of the x f
i (k);

- compute K f (k) using Eq. (4c) where P̃ f (k)H T
k and HkP̃ f (k)H T

k are inflated by

λ (k);

for i in 1:Ne do

- compute analysis xa
i (k) using Eq. (4d);

end

- compute mean innovations do− f (k) and do−a(k) with do− f
i (k) = y(k)−Hk(x

f
i (k))

and do−a
i (k) = y(k)−Hk(xa

i (k));

- update R(k) from Eq. (6b) using the cross-covariance between do− f
i (k) and do−a

i (k);

- estimate λ̃ (k) using Eq. (8) where HkP̃ f (k)H T
k is inflated by λ (k);

- update λ (k+1) using temporal smoother;

end

Algorithm 1: Adaptive algorithm for the EnKF (Miyoshi et al. 2013)
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- initialize Q(1) and R(1);

for k in 1:K do

for i in 1:Ne do

- compute forecast x f
i (k) using Eq. (4a);

- compute innovation di(k) using Eq. (4b);

end

- compute K f (k) using Eq. (4c);

for i in 1:Ne do

- compute analysis xa
i (k) using Eq. (4d);

end

- apply Eq. (12a) to get P̃(k) using linearizations of Mk and Hk given in Eqs. (5a) and

(5b);

- estimate Q̃(k) using Eq. (12b);

- estimate R̃(k) using Eq. (12c);

- update Q(k+1) and R(k+1) using temporal smoothers;

end

Algorithm 2: Adaptive algorithm for the EnKF (Berry and Sauer 2013)
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- define a priori distributions for θ (shape parameters of Q and R);

for k in 1:K do

for i in 1:Ne do

- draw samples θi(k) from p(θ|y(1 : k−1));

- compute forecast x f
i (k) using Eq. (4a) with θi(k);

- compute innovation di(k) using Eq. (4b) with θi(k);

end

- compute K f (k) using Eq. (4c);

for i in 1:Ne do

- compute analysis xa
i (k) using Eq. (4d);

end

- approximate Gaussian likelihood of innovations p(y(k)|y(1 : k−1),θ(k)) using

empirical mean d̄(k) = 1
Ne

∑
Ne
i=1 di(k) and empirical covariance

Σ(k) = 1
Ne−1 ∑

Ne
i=1
(
di(k)− d̄(k)

)(
di(k)− d̄(k)

)T with di(k) = y(k)−Hk(x
f
i (k));

- update p(θ|y(1 : k)) using Eq. (16);

end

Algorithm 3: Adaptive algorithm for the EnKF (Stroud et al. 2018)
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while p
(
y(1 : K)|θ(n)

)
− p

(
y(1 : K)|θ(n−1)

)
> ε do

for k in 1:K do

for i in 1:Ne do

- compute forecast x f
i (k) using Eq. (4a);

- compute innovation di(k) using Eq. (4b);

end

- compute K f (k) using Eq. (4c);

for i in 1:Ne do

- compute analysis xa
i (k) using Eq. (4d);

end

end

for k in K:1 do

- compute Ks(k) using Eq. (4e);

for i in 1:Ne do

- compute reanalysis xs
i (k) using Eq. (4f);

end

end

- increment n← n+1;

- estimate Q(n) using Eq. (21a);

- estimate R(n) using Eq. (21b);

end

Algorithm 4: EM algorithm for the EnKF/EnKS (Dreano et al. 2017)
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Ménétrier, B., and T. Auligné, 2015: Optimized localization and hybridization to filter ensemble-1036

based covariances. Monthly Weather Review, 143, 3931–3947.1037

Merchant, C. J., S. Saux-Picart, and J. Waller, 2020: Bias correction and covariance parameters for1038

optimal estimation by exploiting matched in-situ references. Remote Sensing of Environment,1039

237, 111 590.1040

Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Monthly1041

Weather Review, 128 (2), 416–433.1042

57

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



Mitchell, L., and A. Carrassi, 2015: Accounting for model error due to unresolved scales within1043

ensemble Kalman filtering. Quarterly Journal of the Royal Meteorological Society, 141 (689),1044

1417–1428.1045

Miyoshi, T., 2011: The Gaussian Approach to Adaptive Covariance Inflation and Its Implemen-1046

tation with the Local Ensemble Transform Kalman Filter. Monthly Weather Review, 139 (5),1047

1519–1535.1048

Miyoshi, T., E. Kalnay, and H. Li, 2013: Estimating and including observation-error correlations1049

in data assimilation. Inverse Problems in Science and Engineering, 21 (3), 387–398.1050

Miyoshi, T., Y. Sato, and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison1051

with the Japanese operational global analysis and prediction system. Monthly Weather Review,1052

138 (7), 2846–2866.1053

Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for1054

data assimilation in oceanography. Journal of Marine systems, 16 (3-4), 323–340.1055

Pulido, M., P. Tandeo, M. Bocquet, A. Carrassi, and M. Lucini, 2018: Stochastic parameterization1056

identification using ensemble Kalman filtering combined with maximum likelihood methods.1057

Tellus A: Dynamic Meteorology and Oceanography, 70 (1), 1442 099.1058

Purser, R. J., and D. F. Parrish, 2003: A Bayesian technique for estimating continuously varying1059

statistical parameters of a variational assimilation. Meteorology and Atmospheric Physics, 82 (1-1060

4), 209–226.1061

Raanes, P. N., M. Bocquet, and A. Carrassi, 2019: Adaptive covariance inflation in the ensem-1062

ble Kalman filter by Gaussian scale mixtures. Quarterly Journal of the Royal Meteorological1063

Society, 145 (718), 53–75.1064

58

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate1065

models. Quarterly Journal of the Royal Meteorological Society, 133 (622), 129–146.1066

Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013a: Estimating model parameters with ensemble-based1067

data assimilation: A review. Journal of the Meteorological Society of Japan, 91, 79–99.1068

Ruiz, J. J., M. Pulido, and T. Miyoshi, 2013b: Estimating model parameters with ensemble-based1069

data assimilation: Parameter Covariance Treatment. Journal of the Meteorological Society of1070

Japan, 91, 453–469.1071

Rutherford, I. D., 1972: Data assimilation by statistical interpolation of forecast error fields. Jour-1072

nal of the Atmospheric Sciences, 29 (5), 809–815.1073

Satterfield, E. A., D. Hodyss, D. D. Kuhl, and C. H. Bishop, 2018: Observation-informed gener-1074

alized hybrid error covariance models. Monthly Weather Review, 146, 3605–3622.1075

Scheffler, G., J. Ruiz, and M. Pulido, 2019: Inference of stochastic parametrizations for model1076

error treatment using nested ensemble Kalman filters. Quarterly Journal of the Royal Meteoro-1077

logical Society, doi:https://doi.org/10.1002/qj.3542.1078

Schmidt, S. F., 1966: Applications of state space methods to navigation problems. Advances in1079

Control Systems, 3, 293–340.1080

Shumway, R. H., and D. S. Stoffer, 1982: An approach to time series smoothing and forecasting1081

using the EM algorithm. Journal of Time Series Analysis, 3 (4), 253–264.1082

Solonen, A., J. Hakkarainen, A. Ilin, M. Abbas, and A. Bibov, 2014: Estimating model error1083

covariance matrix parameters in extended Kalman filtering. Nonlinear Processes in Geophysics,1084

21 (5), 919–927.1085

59

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



Stroud, J. R., and T. Bengtsson, 2007: Sequential state and variance estimation within the ensem-1086

ble Kalman filter. Monthly Weather Review, 135 (9), 3194–3208.1087

Stroud, J. R., M. Katzfuss, and C. K. Wikle, 2018: A Bayesian adaptive ensemble Kalman filter1088

for sequential state and parameter estimation. Monthly Weather Review, 146 (1), 373–386.1089

Tandeo, P., M. Pulido, and F. Lott, 2015: Offline parameter estimation using EnKF and maximum1090

likelihood error covariance estimates: Application to a subgrid-scale orography parametrization.1091

Quarterly Journal of the Royal Meteorological Society, 141 (687), 383–395.1092

Todling, R., 2015: A lag-1 smoother approach to system-error estimation: sequential method.1093

Quarterly Journal of the Royal Meteorological Society, 141 (690), 1502–1513.1094

Ueno, G., T. Higuchi, T. Kagimoto, and N. Hirose, 2010: Maximum likelihood estimation of error1095

covariances in ensemble-based filters and its application to a coupled atmosphere-ocean model.1096

Quarterly Journal of the Royal Meteorological Society, 136 (650), 1316–1343.1097

Ueno, G., and N. Nakamura, 2014: Iterative algorithm for maximum-likelihood estimation of the1098

observation-error covariance matrix for ensemble-based filters. Quarterly Journal of the Royal1099

Meteorological Society, 140 (678), 295–315.1100

Ueno, G., and N. Nakamura, 2016: Bayesian estimation of the observation-error covariance matrix1101

in ensemble-based filters. Quarterly Journal of the Royal Meteorological Society, 142 (698),1102

2055–2080.1103

Wahba, G., and J. Wendelberger, 1980: Some new mathematical methods for variational objective1104

analysis using splines and cross validation. Monthly weather review, 108 (8), 1122–1143.1105

60

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



Waller, J. A., S. L. Dance, and N. K. Nichols, 2016: Theoretical insight into diagnosing obser-1106

vation error correlations using observation-minus-background and observation-minus-analysis1107

statistics. Quarterly Journal of the Royal Meteorological Society, 142 (694), 418–431.1108

Waller, J. A., S. L. Dance, and N. K. Nichols, 2017: On diagnosing observation-error statistics1109

with local ensemble data assimilation. Quarterly Journal of the Royal Meteorological Society,1110

143 (708), 2677–2686.1111

Wang, X., and C. H. Bishop, 2003: A Comparison of Breeding and Ensemble Transform Kalman1112

Filter Ensemble Forecast Schemes. Journal of the Atmospheric Sciences, 60 (9), 1140–1158.1113

Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of1114

high-resolution sounder data. Quarterly Journal of the Royal Meteorological Society, 140 (685),1115

2420–2429.1116

Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in1117

ensemble data assimilation. Monthly Weather Review, 140 (9), 3078–3089.1118

Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation1119

with the NCEP global forecast system. Monthly Weather Review, 136 (2), 463–482.1120

Winiarek, V., M. Bocquet, N. Duhanyan, Y. Roustan, O. Saunier, and A. Mathieu, 2014: Esti-1121

mation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using1122

a consistent joint assimilation of air concentration and deposition observations. Atmospheric1123

Environment, 82, 268–279.1124

Winiarek, V., M. Bocquet, O. Saunier, and A. Mathieu, 2012: Estimation of errors in the inverse1125

modeling of accidental release of atmospheric pollutant: Application to the reconstruction of1126

61

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0240.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/doi/10.1175/M
W

R
-D

-19-0240.1/4992874/m
w

rd190240.pdf by guest on 26 August 2020



the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. Journal1127

of Geophysical Research: Atmospheres, 117 (D5).1128

Wu, C. F. J., 1983: On the convergence properties of the EM algorithm. Annals of Statistics, 11 (1),1129

95–103.1130
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TABLE 1. Comparison of several methods to estimate error covariance matrices Q and R in data assimilation.

Estimation method Criteria Estimation of
covariance Q

Suitable for
non-Gaussian errors

Application to the highest
complexity model

Method of moments Innovation statistics in
the observation space

No (inflation of
P f instead)

No NWP

Method of moments Lag innovation between
consecutive times

Yes No Lorenz-96

Likelihood methods Bayesian update of the
posterior distribution

No (or joint pa-
rameter with R)

Yes (using particle
filters, not EnKF)

Shallow water

Likelihood methods Maximization of the to-
tal likelihood

Yes Yes (using particle
filters, not EnKF)

Two-scale Lorenz-96
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space of the observations y), where the observation operator H is omitted for simplicity. The ellipses represent

the forecast P f and analysis Pa error covariances, while the model Q and observation R error covariances are the

unknown entries of the state-space model in Eqs. (1) and (2). The forecast error covariance matrix is written P f

and is the sum of Pm, the forecasted state x f spread, and the model error Q. This scheme is a modified version

based on Fig. 1 from Carrassi et al. (2018).
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FIG. 2. Example of a univariate AR(1) process generated using Eq. (3) with Qt = 1 (red line), noisy observa-

tions as in Eq. (2) with Rt = 1 (black dots) and reconstructions with a Kalman smoother (black lines and gray

95% confidence interval) with different values of Q and R, from 0.1 to 10. The optimal values of RMSE and

coverage probabilities are, respectively, 0.71 and 95%.
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