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An adaptive optimal interpolation based on analog forecasting: application to SSH in the Gulf of Mexico

Because of the irregular sampling pattern of raw altimeter data, many oceanographic applications rely on information from sea surface height (SSH) products gridded on regular grids where gaps have been filled with interpolation. Today, the operational SSH products are created using the simple, but robust, optimal interpolation (OI) method. If well tuned, the OI becomes computationally cheap and provides accurate results at low resolution. However, OI is not adapted to produce high resolution and high frequency maps of SSH. To improve the interpolation of SSH satellite observations, a data-driven approach (i.e., constructing a dynamical forecast model from the data) was recently proposed: analog data assimilation (AnDA). AnDA adaptively chooses analog situations from a catalog of SSH scenes -originating from numerical simulations or a large database of observations -which allow the temporal propagation of physical features at different scales, while each observation is assimilated. In this article, we review the AnDA and OI algorithms and compare their skills in numerical experiments. The experiments are observing system simulation experiments (OSSE) on the Lorenz-63 system and on an SSH reconstruction problem in the Gulf of Mexico. The results show that AnDA, with no necessary tuning, produces comparable reconstructions as does OI with tuned parameters. Moreover, AnDA manages to reconstruct the signals at higher frequencies than OI. Finally, an important additional feature for any interpolation method is to be able to assess the quality of its reconstruction. This study shows that the standard deviation estimated by AnDA is flow-dependent, hence more informative on the reconstruction quality, than the one estimated by OI.

Introduction

Satellite altimetry is an essential component of the global ocean observing system with many applications key to climate monitoring, operations at sea and oceanic process understanding. Satellite altimeters provide measurements of sea surface height (SSH), a dynamical parameter that holds information about the upper ocean pressure field. Satellite derived SSH measurements are used for monitoring changes in sea-level at global and regional scales. They are also used for estimating upper ocean circulation at scales larger than the first Rossby radius of deformation where the geostrophic balance holds. Satellite altimetry is therefore a key source of information for ocean monitoring systems, and an essential constraint in ocean forecasting systems.

In practice, many oceanographic applications of satellite altimetry rely on gridded SSH products rather than on raw along-track SSH data. Satellite altimeters indeed provide SSH measurements along ground tracks, following a sampling pattern which depend on the satellite orbit. The existing constellation of altimeters combines several satellites, but the overall sampling of SSH data is irregular with large gaps both in space and in time, and will remain so in the near future with the advent of wide-swath altimetry. Still, many applications of SSH data require the tracking of oceanic flow features in space and time or the computation of spatial derivatives of SSH such as applications related to ship routing, search and rescue, oil spills, or fisheries, as detailed in [START_REF] Le Traon | From observation to information and users: The copernicus marine service perspective[END_REF]. Hence, for convenience, many applications of SSH data are currently based on operational data products where SSH data is interpolated on a regular spatial grid at fixed time intervals.

Presently, the most commonly used operational gridded SSH products are based on static interpolation methods. Operational gridded SSH L4 products, as distributed for instance by the AVISO data center within the Copernicus programme [START_REF] Pujol | Duacs dt2014: the new multi-mission altimeter data set reprocessed over 20 years[END_REF][START_REF] Le Traon | From observation to information and users: The copernicus marine service perspective[END_REF], combine information from multiple altimeters through an optimal interpolation (OI) analysis. Optimal interpolation analysis [START_REF] Gandin | Objective analysis of meteorological fields[END_REF]) is a static interpolation method which uses the autocorrelation of a field to define the relative weights given to a set of observed data for reconstructing the field at unobserved locations. In practice, gridded SSH products are therefore obtained as weighted sums of observed SSH values, derived from explicit assumptions as to the space and time autocorrelation structure of the SSH field.

Although widely used, OI-based gridded SSH products are affected by several limitations and shortcomings. The quality of OI-based SSH reconstructions is indeed intrinsically dependent on the choice of the predefined autocorrelation parameters; but in practice, the chosen autocorrelation parameters are usually not optimal because of the tradeoffs due to the optimization of the product resolution at global scale [START_REF] Dibarboure | Jason-2 in duacs: Updated system description, first tandem results and impact on processing and products[END_REF][START_REF] Pujol | Using high-resolution altimetry to observe mesoscale signals[END_REF]. Moreover, the OI procedure does not provide an a priori estimation of the level of error of the reconstructed fields. Most importantly, OI is not state dependent and therefore does not account for the complex, non-linear dynamics of oceanic flows [START_REF] Ubelmann | Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping[END_REF]. These limitations and shortcomings will likely become more problematic with the higher spatial resolution capability of upcoming wide-swath altimeters [START_REF] Fu | Observing oceanic submesoscale processes from space[END_REF][START_REF] Durand | The surface water and ocean topography mission: Observing terrestrial surface water and 33 Accepted for[END_REF].

Several alternative approaches to static interpolation methods have been proposed in the context of ocean remote sensing. Methods have for instance been proposed for improving the representation, and estimation of the covariance structure of the field to interpolate. This includes the DINEOF method [START_REF] Beckers | EOF calculations and data filling from incomplete oceanographic datasets[END_REF], a parameter-free procedure used for interpolating sea surface temperature (SST) or surface chlorophyll (Chl). In the context of SSH mapping, approaches accounting explicitly for the nonlinear dynamics of SSH have been proposed. [START_REF] Ubelmann | Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping[END_REF] relies for instance on a dynamical propagator based on quasi-geostrophic theory. Alternatively, [START_REF] Lguensat | Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation[END_REF] proposes to use analog forecasting for accounting for ocean 5 Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-20-0001.1.

Downloaded from http://journals.ametsoc.org/jtech/article-pdf/doi/10.1175/JTECH-D-20-0001.1/4990930/jtechd200001.pdf by guest on 24 August 2020 dynamics in SSH mapping algorithms. Research have also focused on exploiting synergies between different sensors for improving SSH mapping algorithms (as for instance with SST, see Fablet et al. 2018a).

Because it is parameter-free and state dependent, Analog Data Assimilation appears as a promising approach for improving SSH mapping algorithms. Analog Data Assimilation (AnDA), also known as empirical dynamical modelling, is a state estimation procedure which combines data assimilation and analog forecasting [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system[END_REF][START_REF] Lguensat | The Analog Data Assimilation[END_REF]. AnDA uses a catalog of trajectories in the system state space, which can be drawn from observations or from numerical model simulations. The catalog is used for inferring the system dynamics and for building estimates of the system state at unobserved locations and times. Realistic applications to oceanic data include the interpolation of SST (Fablet et al. 2018b) and the interpolation of SSH [START_REF] Lguensat | Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation[END_REF]. [START_REF] Lguensat | Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation[END_REF] Within the limitations of our OSSE experiments, our results show that : (i) AnDA provides estimates of SSH with error levels comparable to an optimally tuned OI but without the need to a priori tune the covariance parameters; (ii) AnDA can reconstruct more reliably high frequency SSH fluctuations than OI, which shows limited skill for time-scales faster than the pre-tuned temporal correlation (iii) AnDA provides a reliable a priori estimate of the absolute error of the reconstructed SSH field, therefore allowing to detect when the quality of the reconstruction is poor. Our results therefore suggest that applications of AnDA to the mapping of SSH are worth investigating further. This paper is organized as follows. In section 2, OI and AnDA algorithms are respectively reviewed, and details are given on how to tune the parameters. Then, both methods are applied to the Lorenz-63 system in section 3. Finally, in section 4, AnDA and OI are implemented on the SSH mapping problem in the region of the Gulf of Mexico. Section 5 brings a summary and a final discussion and conclusions. The code and data for reproducing the numerical results of the SSH experiments are available online [START_REF] Zhen | 3da code and data[END_REF].

Description of the interpolation algorithms

OI is a widely used method for interpolating sparse and noisy observations. On the other hand, a data-driven interpolation method (i.e., constructing a dynamical forecast model from the data) AnDA has been introduced by [START_REF] Tandeo | Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system[END_REF] and described in details by [START_REF] Lguensat | The Analog Data Assimilation[END_REF]. The details of these two algorithms are the following.

a. Optimal interpolation

OI is written as a linear inverse problem such as

   x = x b + η b (1) y = Hx + (2)
with x b the background or a priori information, H the transformation from state x to observations y, η b ∼ N (0, B) the background error and ∼ N (0, R) the observation error. Here, x b , B and R are prescribed by the users. OI is a reanalysis and has a direct Gaussian solution given by N (x s , P s ) such that

x s = x b + K y -Hx b P s = B -KHB (3) 
with K = BH HBH + R -1 the gain controlling the influence of the observations and the background.

The quality of OI results largely depends on the choice of the B and R matrices [START_REF] Tandeo | Joint estimation of model and observation error covariance matrices in data assimilation: a review[END_REF]. The matrix R represents the error covariances in the observational model. It can be measured or estimated off-line if we assume that the observation error is stationary, which is the case in this article. However, in realistic applications, R can be non-stationary and should be estimated online [START_REF] Minamide | Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance[END_REF]. The matrix R is not necessarily diagonal, i.e., the observation errors can be correlated. But, in practice, R is often assumed diagonal in order to reduce computational costs [START_REF] Miyoshi | Estimating and including observation-error correlations in data assimilation[END_REF]. In our experiment, we set

R = rI, (4) 
where r is a scalar and I is the identity matrix.

The choice of B should be consistent with the choice of x b . If x b is chosen to be the climatological mean state field x, then it is reasonable to choose B as the spatial-temporal climatology background covariance matrix. However, saving the complete spatial-temporal climatology covariances is not possible in large dimensional applications because of the prohibitive requirement for storage space. Therefore, a parameterized covariance matrix is often used to substitute the complete climatology covariances [START_REF] Wu | Compactly supported positive definite radial functions[END_REF][START_REF] Gaspari | Construction of correlation functions in two and three dimensions[END_REF] the following form:

B(x i,t 1 , x j,t 2 ) = B spatial (i, j) f (d t /L t ), (5) 
with dt = |t 1t 2 | and where B spatial (i, j) is the (i, j)-th component of a pre-determined symmetric positive-definite matrix that represents the spatial climatology distribution of the state variable x, f is a pre-determined function that defines the shape of the temporal correlation of each component of x and L t is a prescribed parameter that defines a uniform decay rate for the temporal correlation.

The matrix B spatial can be a parametrized matrix or the sample covariances computed from a long time series of x. Technically, B must be a symmetric positive-definite matrix. Hence, the choice of f can not be arbitrary. When the dimension of x is large, directly inverting the full matrix HBH + R is numerically demanding. In the present study, we implement OI locally in the spatial dimension, as presented in Algorithm 1. The choice of B spatial and f depends on the application problem and will be discussed in each experimental section. Note that OI can also be implemented locally in both spatial and temporal dimensions.

b. Analog data assimilation

AnDA is a combination of analog forecasting and data assimilation. For the part of data assimilation, we use the ensemble Kalman smoother (EnKS), which is commonly used in many classic data assimilation problems (see for instance [START_REF] Compo | The Twentieth Century Reanalysis Project[END_REF]. The EnKS requires an ensemble run of N e simulations starting from different initial states. This ensemble run provides sample covariances for data assimilation at every time step. The EnKS consists of a forward filter and a backward smoother. In the forward process, the forecast of each ensemble member is calculated separately. And each member is updated by ensemble Kalman filter whenever observations are available. In the backward smoother, each member is updated recursively in the backward direc- Let N b be the collection of grid points whose distance from the i x -th grid point is less than L x .

3:

Get x b loc : restrict our attention to N b . Construct x b loc based on the climatology mean x and N b , which represents the background estimate at all the grid points inside N b , from t = 1 to t = T .

4:

Get B loc : construct B loc which is the restriction of B to the state variables inside N b .

5:

Get y loc and R loc : construct the corresponding y loc , which consists of all the observations located inside N b from t = 1 to t = T . Construct the corresponding R loc = rI loc , where the dimension of I loc equals the dimension of y loc .

6:

Get H loc : construct the corresponding H loc , which maps x b loc to the space of y loc 7:

Calculate xs loc and P s loc based on x b loc , y loc , H loc , B loc , and Eq. (3).

8:

Assign the value of xs loc at the i x -th grid point to the i x -th component of xs .

9:

Assign the i x -th diagonal component of Ps the variance of state variable at the i x -th grid point inferred by Ps loc .

time, and the superscripts p, f , a, s refer to the foreacast without noise, forecast with noise, analysis, and reanalysis, respectively. In the forward Kalman filter, ε i,t is artificially created and added 168 to y t to compensate for the loss of variance [START_REF] Houtekamer | Data assimilation using an ensemble Kalman filter technique[END_REF] prescribed spatial covariance localization matrix (e.g., the Gaussian function or the Gaspari-Cohn matrix, [START_REF] Gaspari | Construction of correlation functions in two and three dimensions[END_REF]. In AnDA, the forecasting operator F in line 7 of Algorithm 2 is replaced by the analog-forecasting.

The major difference between AnDA and the classic data assimilation is that AnDA uses the technique of analog forecasting to predict the state at the next time step, instead of running the numerical model. In many applications, the analog forecast method could be an interesting alternative since it can simulate variable dynamics that are not necessarily represented in a numerical model. For instance, if an underlying variable of the system is not modeled by the numerical model but is present in the analog database, the analog forecast will be able to describe its relationship to other variables and predict its evolution. To insure the good performances of the analog forecast method and consequently of AnDA, a large historical dataset of state variables is needed:

the catalog.

The quality of the analog forecasting procedure highly depends on the quality and the space of the catalog. Firstly, the catalog has to be as rich as possible to cover all the possible situations.

Larger catalogs usually lead to better performance of AnDA. Secondly, the analogs have to live in an informative space. In practice, it can be a subspace to reduce the dimensionality of the problem (e.g., the EOF space used in section 4) or an augmented space when the dimension of the system is too low to distinguish situations that are not real analogs (e.g., the time delayed state space used in section 3). The catalog is then saved in a k-dimensional tree structure so that the relevant analogs at each time step can be accessed efficiently [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF]. The technique of analog forecasting Algorithm 2 Ensemble Kalman Smoother (with Covariance Localization) t = 1, ..., T and i = 1, ..., N e .

Input:

x f i,1 , H t , R, F(•), y t ,C loc Output:x s t , P s t
The forward ensemble Kalman filter 1: for t = 1, 2, ..., T do:

2: x f t ← 1 N e N e ∑ i=1 x f i,t 3: P f t ← 1 N e -1 N e ∑ i=1 (x f i,t - x f t )(x f i,t - x f t )
4:

P f t ← P f t • C loc (covariance localization) 5: K t ← P f t H t (R + H t P f t H t ) -1 6: Draw ε i,t ∼ N (0, R) 7: x a i,t ← x f i,t + K t (y t -H t x f i,t + ε i,t ) 8:
x f i,t+1 , x p i,t+1 ← F(x a i,t ), forecast the state at t + 1. x p i,t+1 is the forecast without adding noises. When EnKS is applied within AnDA, F is replaced by the analog forecast.

The backward ensemble Kalman smoother 9: x s i,T ← x a i,T 10: for t=T-1,T-2,...,1 do:

11: xa t ← 1 N e N e ∑ i=1 x a i,t 12: xp t+1 ← 1 N e N e ∑ i=1
x p i,t+1

13:

S a t = (x a 1,t -xa , ..., x a N e ,t -xa ) 14: S p t+1 = (x p 1,t+1 -xp , ..., x p N e ,t+1 -xp )
15:

P a t ← S a t (S a t ) /(N e -1)
12
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F t+1 ← S p t+1 (S a t ) † 18: A t ← P a t (F t+1 ) 19: J t ← A t (P f t ) -1 20: x s i,t ← x a i,t + J t (x s i,t+1 -x f i,t+1 ) 21: xs t ← 1 N e N e ∑ i=1
x s i,t 22:

P s t ← 1 N e -1 N e ∑ i=1 (x s i,t -xs t )(x s i,t -xs t )
•

Step 1: for a given state estimate x t , search for k analogs (A 1 , ..., A k ) that are nearest to x t within the catalog, where k is pre-chosen. At the same time, we are also given the successors of A i 's, denoted by S 1 , ..., S k . Here S i is the physical state at one time step later than A i .

• Step 2: build a local model M t between A 1 , ..., A k and S 1 , ..., S k , i.e. S i = M t (A i ) + η i,t ,
where η i,t is assumed to be some white and independent identically distributed noise, the distribution of which can be calculated from A i 's and S i 's.

• Step 3: apply the local model M t to x t : x t+1 ← M t (x t ) + η t , where η t , describing the model error of M t , is drawn randomly and follows the same distribution as η i,t .

It has been pointed out in [START_REF] Lguensat | The Analog Data Assimilation[END_REF] that there are various choices of local models in the second step. Lguensat et al. ( 2019) compared these local models and the numerical results

show that the locally linear model outperforms the others. In our applications, the local model M t

is the locally linear model that regresses S i over the anomalies of analogs A i = A i -Ā, where Ā refers to the weighted mean of A i 's. Or equivalently, the local model we choose is the linear model that regresses the anomalies of successors S i = S i -S over A i . In the numerical implementation, this linear regression can be done with respect to the leading components of A i . In the case that

x t represents the full state, this local model can be thought of as an approximation of the tangent linear model restricted on the attractor if the current state estimate x t lies on the attractor and the distribution of analogs is dense enough. Furthermore, the distribution of the residuals η i,t is always assumed to be Gaussian in our applications. Hence, η t ∼ N (0, Q t ), where Q t is the weighted covariance matrix of the residues S i -M t (A i ), mentioned in step 3. The details of analog forecast with locally linear model is described in Algorithm 3.

c. Conceptual differences

In this subsection we discuss, from a conceptual point of view, the differences between AnDA and OI based on the formulations of these two algorithms. These differences are then assessed in sections 3 and 4 on numerical experiments.

The OI is a purely spatial-temporal interpolation method. The performance of OI completely relies on the choice of the static matrices B and R. Hence, the interpolation does not account for the dynamics of the underlying state variable. As a consequence, the estimated posterior variance of the OI reanalysis shall only depend on the positions of observations and the physical locations of the state variables. On the other hand, AnDA automatically learns the dynamics from the catalog at every time step. Hence, the posterior variance of AnDA should be flow-dependent.

In operational usages of OI, it is usually not realistic to construct the full spatial-temporal climatological covariance. Hence, B is often assumed to be the tensor product of a spatial covariance matrix and a temporal correlation matrix. The temporal correlation matrix is uniquely determined by a scalar parameter L t which defines the temporal correlation scale. Numerically, this artificial temporal correlation smooths out the temporal fluctuations of the reanalysis that have periods shorter than L t . Hence, the OI should not be able to reconstruct the signal for modes of periods less Algorithm 3 Analog forecast Assume all the vectors are row vectors.

Input:x(t), k, A , S , Output:x f (t + 1), x p (t + 1)

1: Find the k analogs from A that are closest to x(t), denoted as A 1 , ..., A k . And the distances d i between A i and x(t).

2: Find from S the successors of each A i , denoted as S i .

3: Define the weight w i for each A i based on the distance d i .

4: Ā ← k ∑ i=1 w i A i 5: A i ← A i -Ā, let A = ((A 1 ) , ..., (A k ) ) 6: S ← k ∑ i=1 w i S i 7: S i ← S i -S, let S = ((S 1 ) , ..., (S k ) )
8: Find the singular value decomposition of the matrix A 9: Remove the small diagonal components of S and the corresponding columns to get S red . Remove the corresponding rows of V to get V red . Therefore, A red = US red V red is an approximation of A.

10: W ← diag(w 1 , ..., w k ) 11: C xx ← (A red ) WA red 12: C xx2 ← (A red ) W 2 A red 13: C xy ← (A red ) WS 14: M ← (C xx ) -1 C xy 15: η i ← S i -S -A i M 16: Q ← k ∑ i=1 w i (η i η i )/(1 -tr(C xx2 C -1 xx )) 17: x p (t + 1) ← (x(t) -Ā)M + S 18: x f (t + 1) ← x p (t + 1) + N (0, Q) than L t .
In contrast, AnDA does not have this limitation since the state variables are propagated under the dynamics learned from the catalog.

Application to the Lorenz-63 system

In this section, we compare the reanalysis means and variances produced by AnDA with those produced by OI, using the classic three-dimensional Lorenz-63 (L63) chaotic system [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF]):

dx t dt = 10 (y t -x t ) , dy t dt = x t (28 -z t ) -y t , dz t dt = x t y t - 8 3 z t . ( 6 
)
The system is integrated with dt = 0.01 using the 4-th order Runge-Kutta method. The first component x(t) is observed for every 10 time steps (i.e. dt obs = 0.1), with an additive white Gaussian noise of variance R = 2. After model spin-up, we first run the model for 10 3 time steps to generate the truth, and then we continue to run the model for 10 4 time steps to generate the catalog for AnDA. Our goal is to calculate the reanalysis of x together with its uncertainty estimate, based on the simulated observations. In this experiment we pretend that we have no knowledge of y and z. Therefore, we can not directly apply the L63 equations for forecasting, which is the scenario that AnDA is designed for.

a. Implementation of AnDA

Applying AnDA directly on the first L63 component can not lead to a good estimation. Indeed, if x t = a, the intersection of the section x = a and the L63 attractor has two branches, which is the case for a large proportion of possible values of a. Then whether x t+1 would be greater than or smaller than x t depends on which branch the full state variable (x t , y t , z t ) lies on. Hence, it is 16
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roughly equally likely for x t to increase or decrease in the next time step. Therefore, we would not be able to have an informative prediction of x t+1 by merely looking at the analogs of x t . A solution to this problem is to consider the time-delayed states x t = (x t , x t-τ , x t-2τ ) for the implementation of AnDA. Experimentally, we find the optimal τ = 11 value. Figure 1 shows the original attractor and the attractor of the time-delayed state variable. By using the time-delayed states as analogs, the details of the implementation of AnDA shall change correspondingly, which is explained in detail in the Appendix. We use an ensemble of size N e = 50. At each time step, we apply analog forecasting separately to each ensemble member with k = 50, which is the parameter mentioned in step 1 of analog forecasting. For the Kalman smoother, we use R = 2, which is the same as the observation error variance used to create the observations.

b. Implementation of OI

Since we only consider the first component x of the full system, we choose the following prior background covariance:

B(x t 1 , x t 2 ) = B 11 exp{-|t 1 -t 2 | 2 /L 2 t }, (7) 
where B 11 is the climatology covariance of x, which can be calculated from a long-time simulation.

The parameters of OI, namely r and L t as indicated by Eqs. (4,7), are tuned to guarantee that OI algorithm produces the minimal RMSE: here we set r = 2 and L t = 0.2.

c. Comparison of mean estimates

Let x be the reanalysis estimates of AnDA or OI, and x true be the truth such that x true and x exist for t 1 ,t 2 , ...,t T . Suppose that x = ( x j ) 1,...,n x and x true = (x true j ) 

RMSE = 1 T 1 n x T ∑ i=1 n x ∑ j=1 x j (t i ) -x true j (t i ) 2 . ( 8 
)
Although the x t we use for analog forecast with time-delayed states has three components, we only take the first component x t to compute the RMSE. The time-delayed estimates (i.e. the second and the third components of the state reanalysis) are not used to evaluate the performance.

The RMSE for AnDA is 0.77, and the minimal (after tuning the parameters) RMSE for OI is 1.177. The top panel of Figure 2 shows the trajectory of the truth, the observation, and the reanalysis estimates of the L63 first component. The state reanalysis produced by OI apparently has large errors when the state is near the origin. In contrast, the trajectory of AnDA manages to reproduce the L63 dynamics even when the observation errors are large. In this experiment, we do not meet the curse of dimensionality, since we have 10 4 samples in the catalog while the Hausdorff dimension [START_REF] Schleicher | Hausdorff dimension, its properties, and its surprises[END_REF] of the L63 attractor is around 2.06. Therefore, the dynamics represented by the analog forecast method approximates the true dynamics very well.

d. Comparison of estimated standard deviations

Another interesting way of comparing AnDA and OI is assessing the quality of the estimated standard deviation of the state reanalysis versus the true absolute error. Indeed, the absolute error directly quantifies how far the estimate is from the truth. However, the truth is usually unknown hence the absolute error is often not accessible. When this is the case, estimated standard devi- for a reconstruction method. These quantities are defined as follows

stdev = diag(P s ) ∈ R n x (9) abs error = |x -x true | ∈ R n x . ( 10 
)
It is not surprising to see that the OI algorithm produces a periodic estimate of standard deviation (Fig. 2, bottom panel). Indeed, the estimated error is only based on the observation sampling. This is a strong limitation of OI. In contrast, the estimated standard deviation of AnDA is much more flow-dependent (Fig. 2, middle panel). The absolute error of AnDA increases each time the state variable is close to the bifurcation point or the furthest points of the two wings. At those times, the AnDA estimated standard deviation manages to inform on the error made as the complexity of the L63 dynamics renders the state estimation harder.

Application to the interpolation of along-track SSH

a. Targeted region and dataset:

In this section we test the OI and AnDA algorithms in an observing system simulation experiment (OSSE) aiming at interpolating along-track SSH onto gridded SSH maps. We focus here on a 10 • × 10 • region in the eastern Gulf of Mexico (centering at 85 • W, 25 • N, see Fig. 3). In terms of grid points, the region of interest is 41 × 41 large, including n x = 1353 ocean grid points in total (the rest being land masses) thus giving the dimension of the state variable x.

The ocean circulation in this region features the Loop Current (LC), an anti-cyclonic flowing meander entering the Gulf through the Yucatan channel (Yucatan current), and exiting along the southern tip of the Florida peninsula (Florida current). The Loop Current is known as an unstable system and episodically sheds large anti-cyclonic eddy rings of scale 200-400 km with periods ranging from about 100 to 450 days (see Fig. 3). The shedding of these Loop Current Eddies is 19

Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-20-0001.1.

a complicated process as eddies can detach and reattach to the Loop Current, before propagating westward across the Gulf. SSH variability in the region is also related to smaller-size cyclonic eddies (80-120 km) that are observed moving along the outer edge of the LC (Loop Current frontal eddies, LCFEs), both on subannual and submonthly timescales, and to coastally-trapped waves that responds to wind variability, and especially to winter cold surges (see [START_REF] Jouanno | Loop current frontal eddies: Formation along the campeche bank and impact of coastally trapped waves[END_REF], for a review).

We perform the OSSE using daily SSH maps from one of the OCCIPUT ensemble simulations [START_REF] Penduff | Ensembles of eddying ocean simulations for climate[END_REF][START_REF] Bessières | Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution[END_REF]. This is a regional North-Atlantic ocean/sea-ice 50member ensemble simulation performed at eddy-permitting horizontal resolution (1/4 • ). After a common 20-year spinup, the 50 members are restarted from slightly perturbed initial conditions and forced over 20 years (1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012) with identical surface forcing. In the following, the SSH of the last year of the first ensemble member is taken as the ground truth. We then use the lo- First we reduce the dimension of the state variable. We take the coefficients of the first 100 leading EOFs as the reduced state x red ∈ R 100 . In practice, we calculate the spatial climatology covariance B clim ∈ R 1353×1353 based on the OCCIPUT simulation:

B clim = 1 365000 20 ∑ i Y =1 50 ∑ i N =1 365 ∑ t=1 (x i N ,i Y (t) -x)(x i N ,i Y (t) -x) ,
where x i N ,i Y (t) refers to the SSH on the t-th day of year i Y of the i N -th ensemble member. The EOFs (denoted by e i ) are the eigenvectors of B clim :

B clim e i = λ i e i , for i = 1, 2, ..., 1353. Then for a given state variable x ∈ R 1353 , the reduced state is defined by

x red = (< x, e 1 >, < x, e 2 >, ..., < x, e 100 >) ∈ R 100 .
The first 100 EOFs explains more than 99% of the variance of SSH. This explained variance is stable over the whole time series of 20 years.

AnDA is implemented with respect to x red . Our catalog consists of the x red that were calculated using 49 members (member 2 to member 50), from Year 1 to Year 19. Therefore, the catalog and the truth come from different members and years. By dimension reduction, the corresponding observation operator H red is different from the original H:

H red x red = 100 ∑ i=1 x red i He i .
And the corresponding observation error variance R red obs is no longer zero since the small components (i.e. < x, e 101 >, ..., < x, e 1353 >) are missing in the reduced state variable. In this reduced space, covariance localization is implemented as T -1 (T (P)

• C loc ) in line 4 of Algorithm 2,
where T transforms the covariances of x red to the covariances of the original physical state x.
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We choose N e = 1000 (ensemble size for data assimilation), k = 1000 (the parameter mentioned in Algorithm 3) and R = 4cm 2 . A different choice of analogs was made in [START_REF] Lguensat | Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation[END_REF] where the analogs and successors were chosen to represent only the small-scale modes of the complete simulated SSH. The large-scale modes of SSH were first reconstructed using the OI method.

Then the small-scale modes were reconstructed using AnDA. Although this space reduction strategy was shown to be promising, its success requires a catalog of high resolution SSH data which is not often available.

c. Implementation of OI

We considered the following background covariance matrix:

B(x i,t 1 , x j,t 2 ) = B i j exp{-d 2 t /L 2 t }, (11) 
where i, j = 1, 2, ..., dim(x), d i j refers to the physical distance between x i and x j ,

d t = |t 1 -t 2 |, B i j =
Cov(x i , x j ) refers to the spatial climatology covariance, and L t is the scalar parameter defining the temporal scales of the covariance matrices.

The parameters B i j are directly calculated from the SSH dataset and the parameter L t is tuned so that the OI algorithm produces the minimal RMSE. Often in real applications, when the true spatial climatology covariances are not accessible, they are also parametrized and the background covariance matrix is approximated by B(x i (t 1 ),

x j (t 2 )) = B ii B j j exp{-d 2 i j /L 2 x -d 2 t /L 2 t }, with L x
a scalar parameter defining the spatial scales of the covariance matrices. However, for the sake of a fair comparison between OI and AnDA and since the simulated dataset in our experiments is large enough, we are able to estimate the spatial climatology covariances B i j and fully compute Eq. ( 11). This formulation indeed yields the best results in the experiments of the present section (comparison not shown).
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In this study, we also consider an OI optimized with conventional objective analysis [START_REF] Le Traon | An improved mapping method of multisatellite altimeter data[END_REF]) and here named OI COA . The OI COA experiment is used as a point of comparison in order to show that (i) an OI is difficult to tune (conventional objective analysis fails to do so) and

(ii) an incorrectly tuned OI can lead to significant errors. The covariance function B COA is chosen to be:

B COA (x i,t 1 , x j,t 2 ) = B ii B j j C COA i j exp{-d 2 t /L 2 t }, (12) 
where

C COA i j = (1 + αd i j L x + (αd i j ) 2 6L 2 x - (αd i j ) 3 6L 3 x ) exp{ -αd i j L x }, (13) 
with α = 3.34. In Le [START_REF] Le Traon | An improved mapping method of multisatellite altimeter data[END_REF], the parameters are chosen to be L x = 150 km, L t = 20 days. We tune R so that the method produces the minimal RMSE based on the given L x and L t .

A sensitivity test (not shown here) demonstrated that the difference between OI computed from Eq. ( 11) and OI COA is mainly due to the difference in the parameter L t . The correlation functions are also different but do not make a significant difference in our numerical results.

d. RMSE results

The RMSE values for SSH, vorticity and velocity reconstructed with the 3 methods (AnDA, OI and OI COA ) are summarized in Table 1. Here, the velocity refers to the two-dimensional vector of the geostrophic velocities which is defined as (u, v) = (-∂ ssh ∂ y , ∂ ssh ∂ x )g/ f and the vorticity is defined

as q = ( ∂ v ∂ x -∂ u ∂ y )g/ f
, where g = 9.81m/s 2 is the gravity acceleration and f is the Coriolis force.

Table 1 shows that AnDA does as good as the best-tuned OI (i.e. tuned and optimized specifically for the region of interest) for these 3 variables, resulting in very similar RMSE values for the two methods in the full region of interest. In the case of SSH, the RMSE value for AnDA is smaller than the one for OI (1.40 cm vs 1.68 cm, resp.). However, this difference fades off when the RMSE is computed over the central region only, i.e. excluding coastal areas. In the following, we will show that this is due to the fact that AnDA can reconstruct the high-frequency SSH fluctuations of the coastal areas much better than OI. These SSH high-frequency fluctuations are likely related to the coastally-trapped waves responding to winter wind storm surges as mentioned in [START_REF] Jouanno | Loop current frontal eddies: Formation along the campeche bank and impact of coastally trapped waves[END_REF].

It is also clear from Table 1 that OI COA is systematically less accurate than AnDA and OI in terms of RMSE. The time series of the reconstructed SSH at two example grid points, displayed in Fig. 4, provide an illustration to why this is the case. With parameter L t set to 20 days for the temporal correlation scale of OI COA , the reconstructed SSH misses the high-fluctuations of the signal. These high-frequency fluctuations are particularly strong near the Florida coast (bottom panel), while in the Loop Current (top panel), the large amplitude fluctuations appear to be of monthly and sub-annual timescales as they are associated with the fluctuations of the LC meander and LCE shedding. On the other hand, the tuning of the best-tuned OI with L t = 6 days results in a better behavior of the reconstructed SSH in the high-frequencies. We quantify this further in the following with a dedicated temporal spectral analysis. At this point, we wish to emphasize the fact that AnDA is as accurate as the best-tuned OI, without the need to explicitly tune the parameters L x and L t . In AnDA, the information is implicitly provided by the historical catalog.

It should be reminded, however, that these results are produced in the context of an OSSE with pseudo-observations derived from the simulated truth, and so the historical catalog from which 24
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An additional sensitivity test has been performed in order to assess the impact of the catalog size on the reconstruction performances. Three other catalog sizes have been implemented: using 1 member (19×365 daily SSH maps), 20 members (20×19×365 daily SSH maps) and 30 members (30×19×365 daily SSH maps) of the 19 year OCCIPUT ensemble and compared to the current catalog using 49 members (49×19×365 daily SSH maps). The resulting SSH reconstruction RMSE are respectively: 1.82, 1.46, 1.45 and 1.40 cm. As expected, the performance of AnDA are improved by a larger catalog. However, the dependence is not linear and the difference between using 20 members, 30 members and 49 members is relatively small. In fact, both the 20 member catalog and the 30 member catalog also lead to smaller RMSE than OI.

e. Temporal spectral results

The top panel of Figure 5 shows the temporal power spectral densities (PSD) averaged over the entire domain for the reconstructed SSH with the three methods and for the true SSH. The PSD of the three reconstructed signals are very close to the PSD of the truth at timescales longer than about 30 days, confirming that all three methods produce equivalent energy reconstructions of the monthly-to-sub-annual fluctuations. But at higher frequencies, we find that only the PSD for the AnDA-reconstructed SSH stays close to the truth. A drop-off in the PSD is clearly seen for the OI-and OI COA -reconstructed SSH at approximately 6 and 20 days respectively which is consistent with the values set for L t in each case.

We also check the noise-to-signal ratio between the reconstructed signals and the truth (Fig. 5bottom panel). For this purpose, and following [START_REF] Dufau | Mesoscale resolution capability of altimetry: Present and future[END_REF] and [START_REF] Ballarotta | On the resolutions of ocean altimetry maps[END_REF], we compute the spectral noise-to-signal ratio as:

R = 1 -PSD Error PSD Truth ,
where PSD Error is the PSD of the difference between the reconstructed SSH and the truth, and PSD Truth is the PSD of the true signal. This metric provides a measure of the coherence between the two signals that takes into account differences in both amplitude and phase [START_REF] Ballarotta | On the resolutions of ocean altimetry maps[END_REF]. Figure 5-bottom panel shows that the spectral noise-to-signal ratio for AnDA remains far above 0.5 down to time scales of ∼5 days, which confirms that a good coherence exists between the AnDA-reconstructed and the true SSH. The coherence is not as good for the two reconstructed SSH signals of OI and OI COA . For the best-tuned OI, R drops below 0.5 at time scales of ∼15 days, even if the PSD drops off only around 6 days. In other words, the OI method manages to reconstruct enough energy at high-frequencies (although not below 6 days) yet fails to produce a coherent signal at those scales. As for OI COA , both PSD and R drop off at time-scales of about 25 days.

We thus find confirmation in Fig. 5 that AnDA is able to reconstruct an SSH signal with good coherence to the truth at higher frequencies than OI, and so even when AnDA is compared with the OI specifically tuned for the region of interest. This is consistent with what we had already pointed out from the example grid-point timeseries in Fig. 4. As already discussed, in the domain we examine here, sub-monthly fluctuations are the strongest in coastal regions because of the response to wind bursts [START_REF] Jouanno | Loop current frontal eddies: Formation along the campeche bank and impact of coastally trapped waves[END_REF]. Operational systems such as DUACS, based on OI, are not able to capture well those fast fluctuations, but can partially get around this limitation by using additional products such as the AVISO-DAC (Dynamic Atmosphere Correction) to propose an a posteriori correction for the missed and aliased part of the signal corresponding to the dynamical high-frequency ocean response to wind and pressure forcing (e.g. [START_REF] Ponte | Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides[END_REF]. Note that this correction, however, is only based on this specific source of high-frequency fluctuations, while our study shows that a method such as AnDA is able to capture high-frequency signals originating from all kind of sources (to the extent that the fluctuations are well represented in the historical catalog). We find indeed that the spectral results shown in Fig. 5 remain robust also when restricting the area of the spectral analysis to the central ocean-only region (not shown here), meaning that AnDA is able to capture high-frequency fluctuations of any kind, and not only the coastally-trapped waves.

f. Estimated standard deviation results

Another interesting result of this study is that, consistently with the L63 application in section 3, AnDA produces a more informative estimated standard deviation. Indeed, it has similar spatial patterns as the absolute error (i.e. the difference with the true signal), and does not only depend on the tracks of the observations to interpolate. This is illustrated in Fig. 6 where estimated standard deviation and absolute error are averaged over a one month period on two example dates (March 8th, 2004 andSeptember 8th, 2004) for AnDA, OI, and OI COA . For visual purposes, we show the monthly averaged distribution of the absolute error as it presents a clearer flow-dependent feature than the daily distribution.

Figure 6 shows that the absolute error of AnDA on March 9 and September 9 is smaller than that of OI and OI COA , especially along the Florida coast and in the loop current. It means that on that dates, the AnDA-reconstructed SSH is closer to the truth, which is consistent with time series given in Fig. 4. For instance, on September 9, the absolute errors concentrate near the anticyclonic flowing meander. And it is clear that in this region, the absolute error of AnDA is smaller than that of OI and OI COA .

Figure 6 also illustrates the fact that the estimated standard deviation for OI depends on the satellite observation sampling (here, along-tracks) and on the background error covariance matrix B. This is consistent with the results given in Fig. 2 (bottom panel) in the case of the L63 system.

The estimated standard deviation for OI is thus non informative. In contrast, the estimated standard deviation of AnDA does not only depend on the observation sampling but also on the flow.

Therefore, its pattern is more correlated to the absolute error (see top and bottom left panels of each snapshot in Fig. 6).

Conclusion

This paper reviews the algorithms of analog data assimilation (AnDA) and optimal interpolation (OI), and presents the numerical results of interpolation with the Lorenz-63 (L63) system and with simulated sea-surface height (SSH) data. Our comparison of AnDA and OI mainly focuses on the root-mean-square error (RMSE) of the state estimate, the estimated standard deviation and the temporal spectra of the reconstructed states. In order to achieve a fair comparison, we carefully tune the parameters of OI so that the RMSE is the most reduced. As a reference we also present the numerical results of OI for a classical but suboptimal set of parameters (labeled OI COA ) in the experiments with SSH data. This setting corresponds to the seminal work described in Le Traon et al. (1998).

In the tests with the L63 model, a case where we do not meet the curse of dimensionality, we

show that AnDA produces more realistic interpolated trajectories, especially when the true state is near the center of the system attractor (see Fig. 2 top panel). Meanwhile, the standard deviation estimated by AnDA is highly correlated with the absolute error, which is unknown in practice, and is hence much more informative. On the other hand, the standard deviation estimated by OI is uncorrelated with the absolute error (see Fig. 2 middle and bottom panels) and only depends on the background and observation terms.

In the tests with simulated SSH data, AnDA and OI produce comparable RMSE for the daily SSH estimates (Table 1). However, only the interpolation using AnDA captures well the highfrequency fluctuations, including those generated in the coastal regions in response to winter wind bursts (Fig. 4). We show that the reconstructed temporal spectra of AnDA is also more consistent to that of the truth, in terms of energy and coherence, both at large and small time scales. In contrast, the OI-reconstructed temporal spectra suffers a significant loss of energy and is incoherent with the truth at small time scales (see Fig. 5). Moreover, the standard deviation estimated by AnDA is once again more informative. Indeed, compared to OI results, the AnDA estimated standard deviation is flow-dependent, evolving in space and time, and has a significant correlation with the absolute error (see Fig. 6).

To summarize, AnDA and OI are interpolation methods with slightly different formulations.

In the case of OI, parameters controlling spatial-temporal variability and levels of noise are prescribed by the user. The optimization process of these parameters is time demanding, especially for large systems. Instead, AnDA is using analogs and these parameters are adaptively learned from a catalog of data, which needs to be as rich as possible. In one sense, the construction of the catalog in AnDA is time demanding but once it is created, this procedure is very convenient as it does not need additional tuning. In terms of interpolation results, AnDA and OI differ from their mean and standard deviation estimates. Regarding the mean estimate, AnDA, based on a catalog of numerical simulations, creates realistic trajectories which capture fast and slow fluctuations at the same time. Instead, OI is linearly interpolating the observations with static parameters, which makes OI incapable of capturing time scales that are smaller than the temporal correlation parameter. Regarding the standard deviation, OI can only estimate a standard deviation that is dependent on the background and observation error covariances. AnDA is producing much more realistic standard deviation estimates, correlated with the absolute error of interpolation. This means that AnDA is able to detect when and where the interpolation is relevant or not. This point is crucial for the quantification of the uncertainty in the interpolation.

Our study demonstrates the potentiality of using AnDA as an alternative method to OI for the interpolation of along-track satellite observations. As the first step of demonstration, we have investigated for this study pure "twin" experiments, where the pseudo-observations and the AnDA historical catalog came from the same source (i.e. were fully consistent), and where a comparison to the known true SSH is possible. These twin experiments lead to encouraging results for AnDA, and call for future work to further test AnDA in the context of realistic operational applications. 
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  tion. The EnKS is summarized in Algorithm 2. The subscript i refers to the i-th member, t the Algorithm 1 Local Optimal Interpolation t = 1, ..., T , n x is the spatial dimension of x.

	Input:x,B,H,y, r, L t , L x
	Output:x s t and P s t (only the diagonal elements)
	1: for i x =1,2,...,n x do:
	2:

  . Line 4 of Algo-
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	16:	P a t ← P a

t • C loc (covariance localization) 17:
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APPENDIX

Time-delayed analog forecast

A key aspect of analog forecasting is how to choose the analogs. On one hand, the analogs need to be informative, meaning that Motivated by the mathematical theory established by [START_REF] Takens | Detecting strange attractors in turbulence. Dynamical systems and turbulence[END_REF] stating that, under certain conditions, the attractor of the original system can be embedded into the space of lagged partial state variables, we also consider using time-delayed states as the extended state variable. For the numerical experiment with Lorenz-63 system, our state estimate at time t is the 3-dimensional vector x lag (t) = (x t , x t-τ , x t-2τ ) , where x t is the first component of the Lorenz-63 full state at time t and τ is a prescribed time gap. The value of τ is discussed in section 3.a. For each t, although x(t) is represented in x lag (t),x lag (t + τ),and x lag (t + 2τ), we do not update x lag (t),x lag (t + τ),x lag (t + 2τ) at the same time. In other words, at the forecasting step at time t -1 or at the data assimilation step at time t, only x lag (t) would be updated. However, we do not apply time-delayed states in the experiment with SSH data since experimentally we do not find improvement of the quality of reanalysis.