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ABSTRACT
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Because of the irregular sampling pattern of raw altimeter data, many

oceanographic applications rely on information from sea surface height (SSH)

products gridded on regular grids where gaps have been filled with interpo-

lation. Today, the operational SSH products are created using the simple,

but robust, optimal interpolation (OI) method. If well tuned, the OI becomes

computationally cheap and provides accurate results at low resolution. How-

ever, OI is not adapted to produce high resolution and high frequency maps of

SSH. To improve the interpolation of SSH satellite observations, a data-driven

approach (i.e., constructing a dynamical forecast model from the data) was re-

cently proposed: analog data assimilation (AnDA). AnDA adaptively chooses

analog situations from a catalog of SSH scenes – originating from numerical

simulations or a large database of observations – which allow the temporal

propagation of physical features at different scales, while each observation is

assimilated. In this article, we review the AnDA and OI algorithms and com-

pare their skills in numerical experiments. The experiments are observing

system simulation experiments (OSSE) on the Lorenz-63 system and on an

SSH reconstruction problem in the Gulf of Mexico. The results show that

AnDA, with no necessary tuning, produces comparable reconstructions as

does OI with tuned parameters. Moreover, AnDA manages to reconstruct the

signals at higher frequencies than OI. Finally, an important additional feature

for any interpolation method is to be able to assess the quality of its recon-

struction. This study shows that the standard deviation estimated by AnDA

is flow-dependent, hence more informative on the reconstruction quality, than

the one estimated by OI.
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1. Introduction36

Satellite altimetry is an essential component of the global ocean observing system with many ap-37

plications key to climate monitoring, operations at sea and oceanic process understanding. Satellite38

altimeters provide measurements of sea surface height (SSH), a dynamical parameter that holds39

information about the upper ocean pressure field. Satellite derived SSH measurements are used40

for monitoring changes in sea-level at global and regional scales. They are also used for estimat-41

ing upper ocean circulation at scales larger than the first Rossby radius of deformation where the42

geostrophic balance holds. Satellite altimetry is therefore a key source of information for ocean43

monitoring systems, and an essential constraint in ocean forecasting systems.44

In practice, many oceanographic applications of satellite altimetry rely on gridded SSH products45

rather than on raw along-track SSH data. Satellite altimeters indeed provide SSH measurements46

along ground tracks, following a sampling pattern which depend on the satellite orbit. The existing47

constellation of altimeters combines several satellites, but the overall sampling of SSH data is48

irregular with large gaps both in space and in time, and will remain so in the near future with49

the advent of wide-swath altimetry. Still, many applications of SSH data require the tracking of50

oceanic flow features in space and time or the computation of spatial derivatives of SSH such51

as applications related to ship routing, search and rescue, oil spills, or fisheries, as detailed in52

Le Traon et al. (2019). Hence, for convenience, many applications of SSH data are currently53

based on operational data products where SSH data is interpolated on a regular spatial grid at fixed54

time intervals.55

Presently, the most commonly used operational gridded SSH products are based on static inter-56

polation methods. Operational gridded SSH L4 products, as distributed for instance by the AVISO57

data center within the Copernicus programme (Pujol et al. 2016; Le Traon et al. 2019), combine58
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information from multiple altimeters through an optimal interpolation (OI) analysis. Optimal in-59

terpolation analysis (Gandin 1965) is a static interpolation method which uses the autocorrelation60

of a field to define the relative weights given to a set of observed data for reconstructing the field at61

unobserved locations. In practice, gridded SSH products are therefore obtained as weighted sums62

of observed SSH values, derived from explicit assumptions as to the space and time autocorrelation63

structure of the SSH field.64

Although widely used, OI-based gridded SSH products are affected by several limitations and65

shortcomings. The quality of OI-based SSH reconstructions is indeed intrinsically dependent on66

the choice of the predefined autocorrelation parameters; but in practice, the chosen autocorrelation67

parameters are usually not optimal because of the tradeoffs due to the optimization of the product68

resolution at global scale (Dibarboure et al. 2011; Pujol et al. 2012). Moreover, the OI procedure69

does not provide an a priori estimation of the level of error of the reconstructed fields. Most70

importantly, OI is not state dependent and therefore does not account for the complex, non-linear71

dynamics of oceanic flows (Ubelmann et al. 2015). These limitations and shortcomings will likely72

become more problematic with the higher spatial resolution capability of upcoming wide-swath73

altimeters (Fu and Ferrari 2008; Durand et al. 2010).74

Several alternative approaches to static interpolation methods have been proposed in the context75

of ocean remote sensing. Methods have for instance been proposed for improving the represen-76

tation, and estimation of the covariance structure of the field to interpolate. This includes the77

DINEOF method (Beckers and Rixen 2003), a parameter-free procedure used for interpolating78

sea surface temperature (SST) or surface chlorophyll (Chl). In the context of SSH mapping, ap-79

proaches accounting explicitly for the nonlinear dynamics of SSH have been proposed. Ubelmann80

et al. (2015) relies for instance on a dynamical propagator based on quasi-geostrophic theory. Al-81

ternatively, Lguensat et al. (2019) proposes to use analog forecasting for accounting for ocean82
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dynamics in SSH mapping algorithms. Research have also focused on exploiting synergies be-83

tween different sensors for improving SSH mapping algorithms (as for instance with SST, see84

Fablet et al. 2018a).85

Because it is parameter-free and state dependent, Analog Data Assimilation appears as a promis-86

ing approach for improving SSH mapping algorithms. Analog Data Assimilation (AnDA), also87

known as empirical dynamical modelling, is a state estimation procedure which combines data as-88

similation and analog forecasting (Tandeo et al. 2015; Lguensat et al. 2017). AnDA uses a catalog89

of trajectories in the system state space, which can be drawn from observations or from numerical90

model simulations. The catalog is used for inferring the system dynamics and for building esti-91

mates of the system state at unobserved locations and times. Realistic applications to oceanic data92

include the interpolation of SST (Fablet et al. 2018b) and the interpolation of SSH (Lguensat et al.93

2019). Lguensat et al. (2019) have shown in particular how AnDA can be used for improving OI-94

based SSH fields at fine scale. Still, to date, a comparison of the respective skills and performances95

of OI versus AnDA in the context of SSH mapping is still missing.96

In this study, we investigate how AnDA performs as compared to OI for the reconstruction of97

SSH maps from along-track SSH data. Our aim is to document the potential benefits of AnDA in98

the context of the design of operational gridded L4 SSH products. We present results based on99

Observing System Simulation Experiments (OSSE) over the Gulf of Mexico where the true state100

and the catalog of scenes are drawn from different members of a 50 members, ensemble model101

simulation run at 1/4◦ resolution. Our analysis focuses in particular on the relative performance102

of AnDA and OI in reconstructing the time variability of SSH signals, on the sensitivity of the103

reconstruction to the size of the catalog and the ability of the methods to estimate the quality of104

their recontructions.105
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Within the limitations of our OSSE experiments, our results show that : (i) AnDA provides106

estimates of SSH with error levels comparable to an optimally tuned OI but without the need to a107

priori tune the covariance parameters; (ii) AnDA can reconstruct more reliably high frequency SSH108

fluctuations than OI, which shows limited skill for time-scales faster than the pre-tuned temporal109

correlation (iii) AnDA provides a reliable a priori estimate of the absolute error of the reconstructed110

SSH field, therefore allowing to detect when the quality of the reconstruction is poor. Our results111

therefore suggest that applications of AnDA to the mapping of SSH are worth investigating further.112

This paper is organized as follows. In section 2, OI and AnDA algorithms are respectively113

reviewed, and details are given on how to tune the parameters. Then, both methods are applied to114

the Lorenz-63 system in section 3. Finally, in section 4, AnDA and OI are implemented on the115

SSH mapping problem in the region of the Gulf of Mexico. Section 5 brings a summary and a116

final discussion and conclusions. The code and data for reproducing the numerical results of the117

SSH experiments are available online (Zhen et al. 2019).118

2. Description of the interpolation algorithms119

OI is a widely used method for interpolating sparse and noisy observations. On the other hand,120

a data-driven interpolation method (i.e., constructing a dynamical forecast model from the data)121

AnDA has been introduced by Tandeo et al. (2015) and described in details by Lguensat et al.122

(2017). The details of these two algorithms are the following.123

a. Optimal interpolation124

OI is written as a linear inverse problem such as x = xb +ηb (1)

y = Hx+ε (2)
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with xb the background or a priori information, H the transformation from state x to observations125

y, ηb ∼N (0,B) the background error and ε ∼N (0,R) the observation error. Here, xb, B and126

R are prescribed by the users. OI is a reanalysis and has a direct Gaussian solution given by127

N (xs,Ps) such that128

xs = xb +K
(

y−Hxb
)

Ps = B−KHB
(3)

with K = BH>
(
HBH>+R

)−1
the gain controlling the influence of the observations and the129

background.130

The quality of OI results largely depends on the choice of the B and R matrices (Tandeo et al.131

2018). The matrix R represents the error covariances in the observational model. It can be mea-132

sured or estimated off-line if we assume that the observation error is stationary, which is the case133

in this article. However, in realistic applications, R can be non-stationary and should be estimated134

online (Minamide and Zhang 2017). The matrix R is not necessarily diagonal, i.e., the observa-135

tion errors can be correlated. But, in practice, R is often assumed diagonal in order to reduce136

computational costs (Miyoshi et al. 2013). In our experiment, we set137

R = rI, (4)

where r is a scalar and I is the identity matrix.138

The choice of B should be consistent with the choice of xb. If xb is chosen to be the climato-139

logical mean state field x̄, then it is reasonable to choose B as the spatial-temporal climatology140

background covariance matrix. However, saving the complete spatial-temporal climatology co-141

variances is not possible in large dimensional applications because of the prohibitive requirement142

for storage space. Therefore, a parameterized covariance matrix is often used to substitute the143

complete climatology covariances (Wu 1995; Gaspari and Cohn 1999). A popular choice of B has144
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the following form:145

B(xi,t1,x j,t2) = Bspatial(i, j) f (dt/Lt), (5)

with dt = |t1− t2| and where Bspatial(i, j) is the (i, j)-th component of a pre-determined symmetric146

positive-definite matrix that represents the spatial climatology distribution of the state variable x, f147

is a pre-determined function that defines the shape of the temporal correlation of each component148

of x and Lt is a prescribed parameter that defines a uniform decay rate for the temporal correlation.149

The matrix Bspatial can be a parametrized matrix or the sample covariances computed from a long150

time series of x. Technically, B must be a symmetric positive-definite matrix. Hence, the choice151

of f can not be arbitrary. When the dimension of x is large, directly inverting the full matrix152

HBH>+R is numerically demanding. In the present study, we implement OI locally in the spatial153

dimension, as presented in Algorithm 1. The choice of Bspatial and f depends on the application154

problem and will be discussed in each experimental section. Note that OI can also be implemented155

locally in both spatial and temporal dimensions.156

b. Analog data assimilation157

AnDA is a combination of analog forecasting and data assimilation. For the part of data assim-158

ilation, we use the ensemble Kalman smoother (EnKS), which is commonly used in many classic159

data assimilation problems (see for instance Compo et al. 2011). The EnKS requires an ensemble160

run of Ne simulations starting from different initial states. This ensemble run provides sample161

covariances for data assimilation at every time step. The EnKS consists of a forward filter and a162

backward smoother. In the forward process, the forecast of each ensemble member is calculated163

separately. And each member is updated by ensemble Kalman filter whenever observations are164

available. In the backward smoother, each member is updated recursively in the backward direc-165

tion. The EnKS is summarized in Algorithm 2. The subscript i refers to the i-th member, t the166
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Algorithm 1 Local Optimal Interpolation
t = 1, ...,T , nx is the spatial dimension of x.

Input:x̄,B,H,y, r,Lt ,Lx

Output:x̂s
t and Ps

t (only the diagonal elements)

1: for ix=1,2,...,nx do:

2: Let N b be the collection of grid points whose distance from the ix-th grid point is less

than Lx.

3: Get xb
loc: restrict our attention to N b. Construct xb

loc based on the climatology mean x̄

and N b, which represents the background estimate at all the grid points inside N b, from

t = 1 to t = T .

4: Get Bloc: construct Bloc which is the restriction of B to the state variables inside N b.

5: Get yloc and Rloc: construct the corresponding yloc, which consists of all the observations

located inside N b from t = 1 to t = T . Construct the corresponding Rloc = rIloc, where

the dimension of Iloc equals the dimension of yloc.

6: Get Hloc: construct the corresponding Hloc, which maps xb
loc to the space of yloc

7: Calculate x̂s
loc and Ps

loc based on xb
loc,yloc,Hloc,Bloc, and Eq. (3).

8: Assign the value of x̂s
loc at the ix-th grid point to the ix-th component of x̂s.

9: Assign the ix-th diagonal component of P̂s the variance of state variable at the ix-th grid

point inferred by P̂s
loc.

time, and the superscripts p, f ,a,s refer to the foreacast without noise, forecast with noise, analy-167

sis, and reanalysis, respectively. In the forward Kalman filter, εi,t is artificially created and added168

to yt to compensate for the loss of variance (Houtekamer and Mitchell 1998). Line 4 of Algo-169

rithm 2 implements covariance localization which consist in the Schur product P◦Cloc with Cloc a170
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prescribed spatial covariance localization matrix (e.g., the Gaussian function or the Gaspari-Cohn171

matrix, Gaspari and Cohn 1999). In AnDA, the forecasting operator F in line 7 of Algorithm 2 is172

replaced by the analog-forecasting.173

The major difference between AnDA and the classic data assimilation is that AnDA uses the174

technique of analog forecasting to predict the state at the next time step, instead of running the175

numerical model. In many applications, the analog forecast method could be an interesting alter-176

native since it can simulate variable dynamics that are not necessarily represented in a numerical177

model. For instance, if an underlying variable of the system is not modeled by the numerical178

model but is present in the analog database, the analog forecast will be able to describe its rela-179

tionship to other variables and predict its evolution. To insure the good performances of the analog180

forecast method and consequently of AnDA, a large historical dataset of state variables is needed:181

the catalog.182

The quality of the analog forecasting procedure highly depends on the quality and the space of183

the catalog. Firstly, the catalog has to be as rich as possible to cover all the possible situations.184

Larger catalogs usually lead to better performance of AnDA. Secondly, the analogs have to live in185

an informative space. In practice, it can be a subspace to reduce the dimensionality of the problem186

(e.g., the EOF space used in section 4) or an augmented space when the dimension of the system is187

too low to distinguish situations that are not real analogs (e.g., the time delayed state space used in188

section 3). The catalog is then saved in a k-dimensional tree structure so that the relevant analogs189

at each time step can be accessed efficiently (Bentley 1975). The technique of analog forecasting190

at each time step can be briefly summarized by the following three steps.191
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Algorithm 2 Ensemble Kalman Smoother (with Covariance Localization)
t = 1, ...,T and i = 1, ...,Ne.

Input:x f
i,1, Ht ,R,F(·), yt ,Cloc

Output:x̂s
t , Ps

t

The forward ensemble Kalman filter

1: for t = 1,2, ...,T do:

2: x̄ f
t ← 1

Ne

Ne

∑
i=1

x f
i,t

3: P f
t ← 1

Ne−1

Ne

∑
i=1

(x f
i,t− x̄ f

t )(x
f
i,t− x̄ f

t )
>

4: P f
t ← P f

t ◦Cloc (covariance localization)

5: Kt ← P f
t H>t (R+HtP

f
t H>t )−1

6: Draw εi,t ∼N (0,R)

7: xa
i,t ← x f

i,t +Kt(yt−Htx
f
i,t + εi,t)

8: x f
i,t+1,x

p
i,t+1 ← F(xa

i,t), forecast the state at t +1. xp
i,t+1 is the forecast without adding

noises. When EnKS is applied within AnDA, F is replaced by the analog forecast.

The backward ensemble Kalman smoother

9: xs
i,T ← xa

i,T

10: for t=T-1,T-2,...,1 do:

11: x̄a
t ← 1

Ne

Ne

∑
i=1

xa
i,t

12: x̄p
t+1←

1
Ne

Ne

∑
i=1

xp
i,t+1

13: Sa
t = (xa

1,t− x̄a, ...,xa
Ne,t− x̄a)

14: Sp
t+1 = (xp

1,t+1− x̄p, ...,xp
Ne,t+1− x̄p)

15: Pa
t ← Sa

t (Sa
t )
>/(Ne−1)
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16: Pa
t ← Pa

t ◦Cloc (covariance localization)

17: Ft+1← Sp
t+1(S

a
t )

†

18: At ← Pa
t (Ft+1)

>

19: Jt ← At(P
f
t )
−1

20: xs
i,t ← xa

i,t +Jt(xs
i,t+1−x f

i,t+1)

21: x̂s
t ← 1

Ne

Ne

∑
i=1

xs
i,t

22: Ps
t ← 1

Ne−1

Ne

∑
i=1

(xs
i,t− x̄s

t )(x
s
i,t− x̄s

t )
>

• Step 1: for a given state estimate xt , search for k analogs (A1, ...,Ak) that are nearest to xt192

within the catalog, where k is pre-chosen. At the same time, we are also given the successors193

of Ai’s, denoted by S1, ...,Sk. Here Si is the physical state at one time step later than Ai.194

• Step 2: build a local model Mt between A1, ...,Ak and S1, ...,Sk, i.e. Si = Mt(Ai)+ηi,t ,195

where ηi,t is assumed to be some white and independent identically distributed noise, the196

distribution of which can be calculated from Ai’s and Si’s.197

• Step 3: apply the local model Mt to xt : xt+1←Mt(xt)+ηt , where ηt , describing the model198

error of Mt , is drawn randomly and follows the same distribution as ηi,t .199

It has been pointed out in Lguensat et al. (2017) that there are various choices of local models200

in the second step. Lguensat et al. (2019) compared these local models and the numerical results201

show that the locally linear model outperforms the others. In our applications, the local model Mt202

is the locally linear model that regresses Si over the anomalies of analogs A′i = Ai− Ā, where Ā203

refers to the weighted mean of Ai’s. Or equivalently, the local model we choose is the linear model204

that regresses the anomalies of successors S′i = Si− S̄ over A′i. In the numerical implementation,205

this linear regression can be done with respect to the leading components of A′i. In the case that206
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xt represents the full state, this local model can be thought of as an approximation of the tangent207

linear model restricted on the attractor if the current state estimate xt lies on the attractor and the208

distribution of analogs is dense enough. Furthermore, the distribution of the residuals ηi,t is always209

assumed to be Gaussian in our applications. Hence, ηt ∼ N (0,Qt), where Qt is the weighted210

covariance matrix of the residues Si−Mt(Ai), mentioned in step 3. The details of analog forecast211

with locally linear model is described in Algorithm 3.212

c. Conceptual differences213

In this subsection we discuss, from a conceptual point of view, the differences between AnDA214

and OI based on the formulations of these two algorithms. These differences are then assessed in215

sections 3 and 4 on numerical experiments.216

The OI is a purely spatial-temporal interpolation method. The performance of OI completely217

relies on the choice of the static matrices B and R. Hence, the interpolation does not account for218

the dynamics of the underlying state variable. As a consequence, the estimated posterior variance219

of the OI reanalysis shall only depend on the positions of observations and the physical locations of220

the state variables. On the other hand, AnDA automatically learns the dynamics from the catalog221

at every time step. Hence, the posterior variance of AnDA should be flow-dependent.222

In operational usages of OI, it is usually not realistic to construct the full spatial-temporal cli-223

matological covariance. Hence, B is often assumed to be the tensor product of a spatial covariance224

matrix and a temporal correlation matrix. The temporal correlation matrix is uniquely determined225

by a scalar parameter Lt which defines the temporal correlation scale. Numerically, this artifi-226

cial temporal correlation smooths out the temporal fluctuations of the reanalysis that have periods227

shorter than Lt . Hence, the OI should not be able to reconstruct the signal for modes of periods less228
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Algorithm 3 Analog forecast
Assume all the vectors are row vectors.

Input:x(t), k, A , S ,

Output:x f (t +1), xp(t +1)

1: Find the k analogs from A that are closest to x(t), denoted as A1, ...,Ak. And the distances di

between Ai and x(t).

2: Find from S the successors of each Ai, denoted as Si.

3: Define the weight wi for each Ai based on the distance di.

4: Ā←
k

∑
i=1

wiAi

5: A′i← Ai− Ā, let A = ((A′1)
>, ...,(A′k)

>)>

6: S̄←
k

∑
i=1

wiSi

7: S′i← Si− S̄, let S = ((S′1)
>, ...,(S′k)

>)>

8: Find the singular value decomposition of the matrix A

9: Remove the small diagonal components of S and the corresponding columns to get Sred. Re-

move the corresponding rows of V to get Vred. Therefore, Ared = USredVred is an approxima-

tion of A.

10: W← diag(w1, ...,wk)

11: Cxx← (Ared)>WAred

12: Cxx2← (Ared)>W2Ared

13: Cxy← (Ared)>WS

14: M← (Cxx)
−1Cxy

15: ηi← Si− S̄−A′iM

16: Q←
k

∑
i=1

wi(η
>
i ηi)/(1− tr(Cxx2C−1

xx ))

17: xp(t +1)← (x(t)− Ā)M+ S̄

18: x f (t +1)← xp(t +1)+N (0,Q)

15
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than Lt . In contrast, AnDA does not have this limitation since the state variables are propagated229

under the dynamics learned from the catalog.230

3. Application to the Lorenz-63 system231

In this section, we compare the reanalysis means and variances produced by AnDA with those232

produced by OI, using the classic three-dimensional Lorenz-63 (L63) chaotic system (Lorenz233

1963):234

dxt

dt
= 10(yt− xt) ,

dyt

dt
= xt (28− zt)− yt ,

dzt

dt
= xtyt−

8
3

zt .

(6)

The system is integrated with dt = 0.01 using the 4-th order Runge-Kutta method. The first235

component x(t) is observed for every 10 time steps (i.e. dtobs = 0.1), with an additive white236

Gaussian noise of variance R = 2. After model spin-up, we first run the model for 103 time237

steps to generate the truth, and then we continue to run the model for 104 time steps to generate238

the catalog for AnDA. Our goal is to calculate the reanalysis of x together with its uncertainty239

estimate, based on the simulated observations. In this experiment we pretend that we have no240

knowledge of y and z. Therefore, we can not directly apply the L63 equations for forecasting,241

which is the scenario that AnDA is designed for.242

a. Implementation of AnDA243

Applying AnDA directly on the first L63 component can not lead to a good estimation. Indeed,244

if xt = a, the intersection of the section x = a and the L63 attractor has two branches, which is245

the case for a large proportion of possible values of a. Then whether xt+1 would be greater than246

or smaller than xt depends on which branch the full state variable (xt ,yt ,zt) lies on. Hence, it is247
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roughly equally likely for xt to increase or decrease in the next time step. Therefore, we would not248

be able to have an informative prediction of xt+1 by merely looking at the analogs of xt . A solution249

to this problem is to consider the time-delayed states xt = (xt ,xt−τ ,xt−2τ)
> for the implementation250

of AnDA. Experimentally, we find the optimal τ = 11 value. Figure 1 shows the original attractor251

and the attractor of the time-delayed state variable. By using the time-delayed states as analogs,252

the details of the implementation of AnDA shall change correspondingly, which is explained in253

detail in the Appendix. We use an ensemble of size Ne = 50. At each time step, we apply analog254

forecasting separately to each ensemble member with k = 50, which is the parameter mentioned255

in step 1 of analog forecasting. For the Kalman smoother, we use R = 2, which is the same as the256

observation error variance used to create the observations.257

b. Implementation of OI258

Since we only consider the first component x of the full system, we choose the following prior259

background covariance:260

B(xt1 ,xt2) = B11 exp{−|t1− t2|2/L2
t }, (7)

where B11 is the climatology covariance of x, which can be calculated from a long-time simulation.261

The parameters of OI, namely r and Lt as indicated by Eqs. (4,7), are tuned to guarantee that OI262

algorithm produces the minimal RMSE: here we set r = 2 and Lt = 0.2.263

c. Comparison of mean estimates264

Let x̂ be the reanalysis estimates of AnDA or OI, and xtrue be the truth such that xtrue and x̂ exist265

for t1, t2, ..., tT . Suppose that x̂ = (x̂ j)1,...,nx and xtrue = (xtrue
j )1,...,nx are of dimension nx (which266

equals 1 in the present L63 case), the RMSE of x̂ is then defined as:267
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RMSE =

√√√√ 1
T

1
nx

T

∑
i=1

nx

∑
j=1
‖x̂ j(ti)− xtrue

j (ti)‖2. (8)

Although the xt we use for analog forecast with time-delayed states has three components, we268

only take the first component xt to compute the RMSE. The time-delayed estimates (i.e. the second269

and the third components of the state reanalysis) are not used to evaluate the performance.270

The RMSE for AnDA is 0.77, and the minimal (after tuning the parameters) RMSE for OI is271

1.177. The top panel of Figure 2 shows the trajectory of the truth, the observation, and the reanaly-272

sis estimates of the L63 first component. The state reanalysis produced by OI apparently has large273

errors when the state is near the origin. In contrast, the trajectory of AnDA manages to reproduce274

the L63 dynamics even when the observation errors are large. In this experiment, we do not meet275

the curse of dimensionality, since we have 104 samples in the catalog while the Hausdorff dimen-276

sion (Schleicher 2007) of the L63 attractor is around 2.06. Therefore, the dynamics represented277

by the analog forecast method approximates the true dynamics very well.278

d. Comparison of estimated standard deviations279

Another interesting way of comparing AnDA and OI is assessing the quality of the estimated280

standard deviation of the state reanalysis versus the true absolute error. Indeed, the absolute error281

directly quantifies how far the estimate is from the truth. However, the truth is usually unknown282

hence the absolute error is often not accessible. When this is the case, estimated standard devi-283

ations are often used as a reference to inform on the actual error of the state estimate. Hence,284

providing an estimated standard deviation that corresponds to the absolute error is a key feature285
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for a reconstruction method. These quantities are defined as follows286

stdev =
√

diag(Ps) ∈ Rnx (9)

abs error = |x̂−xtrue| ∈ Rnx . (10)

It is not surprising to see that the OI algorithm produces a periodic estimate of standard deviation287

(Fig. 2, bottom panel). Indeed, the estimated error is only based on the observation sampling. This288

is a strong limitation of OI. In contrast, the estimated standard deviation of AnDA is much more289

flow-dependent (Fig. 2, middle panel). The absolute error of AnDA increases each time the state290

variable is close to the bifurcation point or the furthest points of the two wings. At those times,291

the AnDA estimated standard deviation manages to inform on the error made as the complexity of292

the L63 dynamics renders the state estimation harder.293

4. Application to the interpolation of along-track SSH294

a. Targeted region and dataset:295

In this section we test the OI and AnDA algorithms in an observing system simulation experi-296

ment (OSSE) aiming at interpolating along-track SSH onto gridded SSH maps. We focus here on297

a 10◦×10◦ region in the eastern Gulf of Mexico (centering at 85◦W,25◦N, see Fig. 3). In terms of298

grid points, the region of interest is 41× 41 large, including nx = 1353 ocean grid points in total299

(the rest being land masses) thus giving the dimension of the state variable x.300

The ocean circulation in this region features the Loop Current (LC), an anti-cyclonic flowing301

meander entering the Gulf through the Yucatan channel (Yucatan current), and exiting along the302

southern tip of the Florida peninsula (Florida current). The Loop Current is known as an unstable303

system and episodically sheds large anti-cyclonic eddy rings of scale 200-400 km with periods304

ranging from about 100 to 450 days (see Fig. 3). The shedding of these Loop Current Eddies is305
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a complicated process as eddies can detach and reattach to the Loop Current, before propagating306

westward across the Gulf. SSH variability in the region is also related to smaller-size cyclonic307

eddies (80-120 km) that are observed moving along the outer edge of the LC (Loop Current frontal308

eddies, LCFEs), both on subannual and submonthly timescales, and to coastally-trapped waves309

that responds to wind variability, and especially to winter cold surges (see Jouanno et al. 2016, for310

a review).311

We perform the OSSE using daily SSH maps from one of the OCCIPUT ensemble simulations312

(Penduff et al. 2014; Bessières et al. 2017). This is a regional North-Atlantic ocean/sea-ice 50-313

member ensemble simulation performed at eddy-permitting horizontal resolution (1/4◦). After a314

common 20-year spinup, the 50 members are restarted from slightly perturbed initial conditions315

and forced over 20 years (1993-2012) with identical surface forcing. In the following, the SSH316

of the last year of the first ensemble member is taken as the ground truth. We then use the lo-317

cation of the real along-track AVISO observations available for 2004 (that include 4 satellites:318

TOPEX/Poseidon, GFO, Jason-1, ENVISAT), to generate our pseudo-observations by locally and319

linearly interpolating the truth along the observed tracks. No observation error is artificially added320

to the simulated observations (i.e. Rtrue = 0).321

The historical catalog from which AnDA learns the forecast model is thus made of the daily322

maps of SSH from the 19 remaining years of the 49 remaining ensemble members (meaning323

19×49×365 = 339815 daily SSH maps in total). As an element of comparison, the historical324

catalog in Lguensat et al. (2019) for a similar problem is 34 years of 3-day data (4017 SSH maps).325
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b. Implementation of AnDA326

First we reduce the dimension of the state variable. We take the coefficients of the first 100327

leading EOFs as the reduced state xred ∈ R100. In practice, we calculate the spatial climatology328

covariance Bclim ∈ R1353×1353 based on the OCCIPUT simulation:329

Bclim =
1

365000

20

∑
iY=1

50

∑
iN=1

365

∑
t=1

(xiN ,iY (t)− x̄)(xiN ,iY (t)− x̄)>,

where xiN ,iY (t) refers to the SSH on the t-th day of year iY of the iN-th ensemble member. The330

EOFs (denoted by ei) are the eigenvectors of Bclim:331

Bclimei = λiei,

for i = 1,2, ...,1353. Then for a given state variable x ∈ R1353, the reduced state is defined by332

xred = (< x,e1 >,< x,e2 >,...,< x,e100 >)> ∈ R100.

The first 100 EOFs explains more than 99% of the variance of SSH. This explained variance is333

stable over the whole time series of 20 years.334

AnDA is implemented with respect to xred . Our catalog consists of the xred that were calculated335

using 49 members (member 2 to member 50), from Year 1 to Year 19. Therefore, the catalog336

and the truth come from different members and years. By dimension reduction, the corresponding337

observation operator Hred is different from the original H:338

Hredxred =
100

∑
i=1

xred
i Hei.

And the corresponding observation error variance Rred
obs is no longer zero since the small compo-339

nents (i.e. < x,e101 >,...,< x,e1353 >) are missing in the reduced state variable. In this reduced340

space, covariance localization is implemented as T −1(T (P) ◦Cloc) in line 4 of Algorithm 2,341

where T transforms the covariances of xred to the covariances of the original physical state x.342
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We choose Ne = 1000 (ensemble size for data assimilation), k = 1000 (the parameter mentioned343

in Algorithm 3) and R = 4cm2. A different choice of analogs was made in Lguensat et al. (2019)344

where the analogs and successors were chosen to represent only the small-scale modes of the com-345

plete simulated SSH. The large-scale modes of SSH were first reconstructed using the OI method.346

Then the small-scale modes were reconstructed using AnDA. Although this space reduction strat-347

egy was shown to be promising, its success requires a catalog of high resolution SSH data which348

is not often available.349

c. Implementation of OI350

We considered the following background covariance matrix:351

B(xi,t1,x j,t2) = Bi j exp{−d2
t /L2

t }, (11)

where i, j = 1,2, ...,dim(x), di j refers to the physical distance between xi and x j, dt = |t1−t2|, Bi j =352

Cov(xi,x j) refers to the spatial climatology covariance, and Lt is the scalar parameter defining the353

temporal scales of the covariance matrices.354

The parameters Bi j are directly calculated from the SSH dataset and the parameter Lt is tuned355

so that the OI algorithm produces the minimal RMSE. Often in real applications, when the true356

spatial climatology covariances are not accessible, they are also parametrized and the background357

covariance matrix is approximated by B(xi(t1),x j(t2)) =
√

BiiB j j exp{−d2
i j/L2

x−d2
t /L2

t }, with Lx358

a scalar parameter defining the spatial scales of the covariance matrices. However, for the sake359

of a fair comparison between OI and AnDA and since the simulated dataset in our experiments is360

large enough, we are able to estimate the spatial climatology covariances Bi j and fully compute361

Eq. (11). This formulation indeed yields the best results in the experiments of the present section362

(comparison not shown).363
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Note that, for the OI in the DUACS, the choice of the parameters Lx and Lt is usually made as a364

best global trade-off to achieve global resolution of the mesoscale features (e.g. Dibarboure et al.365

2011; Pujol et al. 2012), and could, in principle, be better optimized in a specific regional context366

(hence the tuned OI in this study).367

In this study, we also consider an OI optimized with conventional objective analysis (Le Traon368

et al. 1998) and here named OICOA. The OICOA experiment is used as a point of comparison in369

order to show that (i) an OI is difficult to tune (conventional objective analysis fails to do so) and370

(ii) an incorrectly tuned OI can lead to significant errors. The covariance function BCOA is chosen371

to be:372

BCOA(xi,t1,x j,t2) =
√

BiiB j jCCOA
i j exp{−d2

t /L2
t }, (12)

where373

CCOA
i j = (1+ αdi j

Lx
+

(αdi j)
2

6L2
x
− (αdi j)

3

6L3
x

)exp{−αdi j
Lx
}, (13)

with α = 3.34. In Le Traon et al. (1998), the parameters are chosen to be Lx = 150 km, Lt = 20374

days. We tune R so that the method produces the minimal RMSE based on the given Lx and Lt .375

A sensitivity test (not shown here) demonstrated that the difference between OI computed from376

Eq. (11) and OICOA is mainly due to the difference in the parameter Lt . The correlation functions377

are also different but do not make a significant difference in our numerical results.378

d. RMSE results379

The RMSE values for SSH, vorticity and velocity reconstructed with the 3 methods (AnDA, OI380

and OICOA) are summarized in Table 1. Here, the velocity refers to the two-dimensional vector of381

the geostrophic velocities which is defined as (u,v) = (−∂ ssh
∂y , ∂ ssh

∂x )g/ f and the vorticity is defined382

as q = (∂v
∂x −

∂u
∂y )g/ f , where g = 9.81m/s2 is the gravity acceleration and f is the Coriolis force.383
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Table 1 shows that AnDA does as good as the best-tuned OI (i.e. tuned and optimized specifically384

for the region of interest) for these 3 variables, resulting in very similar RMSE values for the two385

methods in the full region of interest. In the case of SSH, the RMSE value for AnDA is smaller386

than the one for OI (1.40 cm vs 1.68 cm, resp.). However, this difference fades off when the RMSE387

is computed over the central region only, i.e. excluding coastal areas. In the following, we will388

show that this is due to the fact that AnDA can reconstruct the high-frequency SSH fluctuations389

of the coastal areas much better than OI. These SSH high-frequency fluctuations are likely related390

to the coastally-trapped waves responding to winter wind storm surges as mentioned in Jouanno391

et al. (2016).392

It is also clear from Table 1 that OICOA is systematically less accurate than AnDA and OI in393

terms of RMSE. The time series of the reconstructed SSH at two example grid points, displayed394

in Fig. 4, provide an illustration to why this is the case. With parameter Lt set to 20 days for395

the temporal correlation scale of OICOA, the reconstructed SSH misses the high-fluctuations of the396

signal. These high-frequency fluctuations are particularly strong near the Florida coast (bottom397

panel), while in the Loop Current (top panel), the large amplitude fluctuations appear to be of398

monthly and sub-annual timescales as they are associated with the fluctuations of the LC meander399

and LCE shedding. On the other hand, the tuning of the best-tuned OI with Lt = 6 days results400

in a better behavior of the reconstructed SSH in the high-frequencies. We quantify this further in401

the following with a dedicated temporal spectral analysis. At this point, we wish to emphasize402

the fact that AnDA is as accurate as the best-tuned OI, without the need to explicitly tune the403

parameters Lx and Lt . In AnDA, the information is implicitly provided by the historical catalog.404

It should be reminded, however, that these results are produced in the context of an OSSE with405

pseudo-observations derived from the simulated truth, and so the historical catalog from which406
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AnDA learns is fully consistent with those observations. We reserve for future investigations the407

case where the catalog and the truth come from different sources.408

An additional sensitivity test has been performed in order to assess the impact of the catalog size409

on the reconstruction performances. Three other catalog sizes have been implemented: using 1410

member (19×365 daily SSH maps), 20 members (20×19×365 daily SSH maps) and 30 members411

(30×19×365 daily SSH maps) of the 19 year OCCIPUT ensemble and compared to the current412

catalog using 49 members (49×19×365 daily SSH maps). The resulting SSH reconstruction413

RMSE are respectively: 1.82, 1.46, 1.45 and 1.40 cm. As expected, the performance of AnDA are414

improved by a larger catalog. However, the dependence is not linear and the difference between415

using 20 members, 30 members and 49 members is relatively small. In fact, both the 20 member416

catalog and the 30 member catalog also lead to smaller RMSE than OI.417

e. Temporal spectral results418

The top panel of Figure 5 shows the temporal power spectral densities (PSD) averaged over the419

entire domain for the reconstructed SSH with the three methods and for the true SSH. The PSD420

of the three reconstructed signals are very close to the PSD of the truth at timescales longer than421

about 30 days, confirming that all three methods produce equivalent energy reconstructions of the422

monthly-to-sub-annual fluctuations. But at higher frequencies, we find that only the PSD for the423

AnDA-reconstructed SSH stays close to the truth. A drop-off in the PSD is clearly seen for the424

OI- and OICOA-reconstructed SSH at approximately 6 and 20 days respectively which is consistent425

with the values set for Lt in each case.426

We also check the noise-to-signal ratio between the reconstructed signals and the truth (Fig. 5-427

bottom panel). For this purpose, and following Dufau et al. (2016) and Ballarotta et al. (2019), we428
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compute the spectral noise-to-signal ratio as:429

R =
1−PSDError

PSDTruth
,

where PSDError is the PSD of the difference between the reconstructed SSH and the truth, and430

PSDTruth is the PSD of the true signal. This metric provides a measure of the coherence between431

the two signals that takes into account differences in both amplitude and phase (Ballarotta et al.432

2019). Figure 5-bottom panel shows that the spectral noise-to-signal ratio for AnDA remains far433

above 0.5 down to time scales of ∼5 days, which confirms that a good coherence exists between434

the AnDA-reconstructed and the true SSH. The coherence is not as good for the two reconstructed435

SSH signals of OI and OICOA. For the best-tuned OI, R drops below 0.5 at time scales of ∼15436

days, even if the PSD drops off only around 6 days. In other words, the OI method manages to437

reconstruct enough energy at high-frequencies (although not below 6 days) yet fails to produce a438

coherent signal at those scales. As for OICOA, both PSD and R drop off at time-scales of about 25439

days.440

We thus find confirmation in Fig. 5 that AnDA is able to reconstruct an SSH signal with good441

coherence to the truth at higher frequencies than OI, and so even when AnDA is compared with the442

OI specifically tuned for the region of interest. This is consistent with what we had already pointed443

out from the example grid-point timeseries in Fig. 4. As already discussed, in the domain we444

examine here, sub-monthly fluctuations are the strongest in coastal regions because of the response445

to wind bursts (Jouanno et al. 2016). Operational systems such as DUACS, based on OI, are not446

able to capture well those fast fluctuations, but can partially get around this limitation by using447

additional products such as the AVISO-DAC (Dynamic Atmosphere Correction) to propose an a448

posteriori correction for the missed and aliased part of the signal corresponding to the dynamical449

high-frequency ocean response to wind and pressure forcing (e.g. Ponte and Ray 2002). Note450
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that this correction, however, is only based on this specific source of high-frequency fluctuations,451

while our study shows that a method such as AnDA is able to capture high-frequency signals452

originating from all kind of sources (to the extent that the fluctuations are well represented in the453

historical catalog). We find indeed that the spectral results shown in Fig. 5 remain robust also454

when restricting the area of the spectral analysis to the central ocean-only region (not shown here),455

meaning that AnDA is able to capture high-frequency fluctuations of any kind, and not only the456

coastally-trapped waves.457

f. Estimated standard deviation results458

Another interesting result of this study is that, consistently with the L63 application in section459

3, AnDA produces a more informative estimated standard deviation. Indeed, it has similar spatial460

patterns as the absolute error (i.e. the difference with the true signal), and does not only depend on461

the tracks of the observations to interpolate. This is illustrated in Fig. 6 where estimated standard462

deviation and absolute error are averaged over a one month period on two example dates (March463

8th, 2004 and September 8th, 2004) for AnDA, OI, and OICOA. For visual purposes, we show the464

monthly averaged distribution of the absolute error as it presents a clearer flow-dependent feature465

than the daily distribution.466

Figure 6 shows that the absolute error of AnDA on March 9 and September 9 is smaller than467

that of OI and OICOA, especially along the Florida coast and in the loop current. It means that468

on that dates, the AnDA-reconstructed SSH is closer to the truth, which is consistent with time469

series given in Fig. 4. For instance, on September 9, the absolute errors concentrate near the anti-470

cyclonic flowing meander. And it is clear that in this region, the absolute error of AnDA is smaller471

than that of OI and OICOA.472
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Figure 6 also illustrates the fact that the estimated standard deviation for OI depends on the473

satellite observation sampling (here, along-tracks) and on the background error covariance matrix474

B. This is consistent with the results given in Fig. 2 (bottom panel) in the case of the L63 system.475

The estimated standard deviation for OI is thus non informative. In contrast, the estimated stan-476

dard deviation of AnDA does not only depend on the observation sampling but also on the flow.477

Therefore, its pattern is more correlated to the absolute error (see top and bottom left panels of478

each snapshot in Fig. 6).479

5. Conclusion480

This paper reviews the algorithms of analog data assimilation (AnDA) and optimal interpolation481

(OI), and presents the numerical results of interpolation with the Lorenz-63 (L63) system and with482

simulated sea-surface height (SSH) data. Our comparison of AnDA and OI mainly focuses on483

the root-mean-square error (RMSE) of the state estimate, the estimated standard deviation and the484

temporal spectra of the reconstructed states. In order to achieve a fair comparison, we carefully485

tune the parameters of OI so that the RMSE is the most reduced. As a reference we also present486

the numerical results of OI for a classical but suboptimal set of parameters (labeled OICOA) in the487

experiments with SSH data. This setting corresponds to the seminal work described in Le Traon488

et al. (1998).489

In the tests with the L63 model, a case where we do not meet the curse of dimensionality, we490

show that AnDA produces more realistic interpolated trajectories, especially when the true state is491

near the center of the system attractor (see Fig. 2 top panel). Meanwhile, the standard deviation492

estimated by AnDA is highly correlated with the absolute error, which is unknown in practice, and493

is hence much more informative. On the other hand, the standard deviation estimated by OI is494
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uncorrelated with the absolute error (see Fig. 2 middle and bottom panels) and only depends on495

the background and observation terms.496

In the tests with simulated SSH data, AnDA and OI produce comparable RMSE for the daily497

SSH estimates (Table 1). However, only the interpolation using AnDA captures well the high-498

frequency fluctuations, including those generated in the coastal regions in response to winter wind499

bursts (Fig. 4). We show that the reconstructed temporal spectra of AnDA is also more consistent to500

that of the truth, in terms of energy and coherence, both at large and small time scales. In contrast,501

the OI-reconstructed temporal spectra suffers a significant loss of energy and is incoherent with502

the truth at small time scales (see Fig. 5). Moreover, the standard deviation estimated by AnDA503

is once again more informative. Indeed, compared to OI results, the AnDA estimated standard504

deviation is flow-dependent, evolving in space and time, and has a significant correlation with the505

absolute error (see Fig. 6).506

To summarize, AnDA and OI are interpolation methods with slightly different formulations.507

In the case of OI, parameters controlling spatial-temporal variability and levels of noise are pre-508

scribed by the user. The optimization process of these parameters is time demanding, especially509

for large systems. Instead, AnDA is using analogs and these parameters are adaptively learned510

from a catalog of data, which needs to be as rich as possible. In one sense, the construction of the511

catalog in AnDA is time demanding but once it is created, this procedure is very convenient as it512

does not need additional tuning. In terms of interpolation results, AnDA and OI differ from their513

mean and standard deviation estimates. Regarding the mean estimate, AnDA, based on a catalog514

of numerical simulations, creates realistic trajectories which capture fast and slow fluctuations at515

the same time. Instead, OI is linearly interpolating the observations with static parameters, which516

makes OI incapable of capturing time scales that are smaller than the temporal correlation param-517

eter. Regarding the standard deviation, OI can only estimate a standard deviation that is dependent518
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on the background and observation error covariances. AnDA is producing much more realistic519

standard deviation estimates, correlated with the absolute error of interpolation. This means that520

AnDA is able to detect when and where the interpolation is relevant or not. This point is crucial521

for the quantification of the uncertainty in the interpolation.522

Our study demonstrates the potentiality of using AnDA as an alternative method to OI for the523

interpolation of along-track satellite observations. As the first step of demonstration, we have in-524

vestigated for this study pure ”twin” experiments, where the pseudo-observations and the AnDA525

historical catalog came from the same source (i.e. were fully consistent), and where a comparison526

to the known true SSH is possible. These twin experiments lead to encouraging results for AnDA,527

and call for future work to further test AnDA in the context of realistic operational applications.528

Future work will need to address several questions. First, are the good performances of AnDA con-529

firmed when the historical catalog and the along-track observations do not come from the same530

source ? In other words, a realistic experimental study should be performed with real observations531

or at least artificial observations extracted from an entirely distinct numerical simulation. Second,532

is the AnDA method applicable to other regions and/or to global scale ? The current implementa-533

tion is sufficient (technically) and can be straightforwardly applied to any other region of similar534

size as the Gulf of Mexico with no additional implementation difficulties. In this case, the cre-535

ation of a new catalog will require new model data which can be costly unless, like in the present536

study with OCCIPUT data, the catalog is based on data that are available globally. The good537

performance of AnDA at regional scale (as shown here for the Gulf of Mexico) should then be538

confirmed in other regions under the condition that a computationally reasonable number of EOF539

is enough to capture the dynamics of that region. In other words, for this specific implementation540

of AnDA to work well, the energy distribution of the signal’s EOF decomposition must present a541

small tail. For the same reason, the EOF-based AnDA implementation is most likely not suited (as542
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is) for global scale applications. Being able to maintain a relatively small and detailed catalog is543

crucial to ensure a successful analog research. The EOF decomposition (with a computationally544

reasonable number of EOFs) would fail to capture the detailed SSH signal in a larger region and545

even more so at global scale. This restriction does pose an important challenge to a global scale546

implementation of AnDA. However, a solid lead to extend the AnDA implementation to global547

scale has recently been developed. This implementation is a mixture of EOF-based AnDA imple-548

mentation, as used in the present paper, and patched-based AnDA implementation, as described in549

Lguensat et al. (2019). This new implementation is currently under scrutiny and is already show-550

ing promising results. Finally, what is the computational cost of AnDA in comparison to OI ? For551

the moment, the computational cost of AnDA is much larger than OI but, as already mentioned, a552

strong argument for AnDA is that the method does not require as much tuning as OI. Moreover,553

in a realistic setting, the tuning of OI is not only complicated and time-consuming but the tuning554

optimality can not be guaranteed. Although, these considerations are obviously hard to quantify,555

a study should be conducted in where the computational efficiency of both OI and AnDA codes556

have been optimized. Also, in order to appropriately quantify the tuning efforts, the study should557

be taking into account the entire mapping production chain. A logical next step for AnDA would558

hence be to implement a comparative study in a realistic altimetric mapping production context in559

close collaboration with operational institutions.560
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571

APPENDIX572

573

Time-delayed analog forecast574

A key aspect of analog forecasting is how to choose the analogs. On one hand, the analogs575

need to be informative, meaning that Motivated by the mathematical theory established by Takens576

(1981) stating that, under certain conditions, the attractor of the original system can be embedded577

into the space of lagged partial state variables, we also consider using time-delayed states as the578

extended state variable. For the numerical experiment with Lorenz-63 system, our state estimate579

at time t is the 3-dimensional vector xlag(t) = (xt ,xt−τ ,xt−2τ)
>, where xt is the first component of580

the Lorenz-63 full state at time t and τ is a prescribed time gap. The value of τ is discussed in581

section 3.a. For each t, although x(t) is represented in xlag(t),xlag(t + τ),and xlag(t + 2τ), we do582

not update xlag(t),xlag(t + τ),xlag(t +2τ) at the same time. In other words, at the forecasting step583

at time t−1 or at the data assimilation step at time t, only xlag(t) would be updated.584

However, we do not apply time-delayed states in the experiment with SSH data since experi-585

mentally we do not find improvement of the quality of reanalysis.586
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Variable Domain AnDA OI OICOA

SSH (in cm)
Full domain 1.40 1.68 2.18

No coast (*) 1.33 1.39 1.65

FY Coasts 1.76 2.95 3.73

Velocity (in cm.s−1)
Full domain 5.68 5.57 7.44

No coast (*) 6.35 6.28 7.78

FY Coasts 3.33 5.05 6.99

Vorticity ((100s)−1)
Full domain 0.220 0.212 0.293

No coast (*) 0.226 0.242 0.292

FY Coasts 0.101 0.167 0.249

TABLE 1. Summary of the RMSE values obtained with the 3 methods for year 2004 (06-01-2004 to 31-

12-2004): AnDA, OI and OIOICOA, for SSH (in cm), geostrophic velocity (in cm.s−1 and vorticity ((100s)−1),

computed over the full domain, in the central region only (*), i.e. excluding the coastal areas (longitude 83.75◦W-

90◦W; latitude 23.78◦N-27.13◦N), and in the Florida and Yucatan coastal area
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Fig. 6. Monthly averages of estimated standard deviation and absolute error centered on March712

8th, 2004 and September 8th, 2004. The Ps produced by OI (upper middle panel for each713

month) and OICOA (upper right panel for each month) only depends on the tracks of satellite714

altimetry and the background covariance B. Therefore, the estimated standard deviation715

does not seem relevant to approximate the absolute error (lower middle and lower right716

panels for each month). On the other hand, the estimated standard deviation produced by717

AnDA is flow dependent (upper left panel for each month) and closer to the absolute error. . . 45718
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FIG. 1. The attractors of the orginal state variable and the time-delayed state variable of L63.
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FIG. 2. (Top) The trajectory of the truth, the observations, the AnDA and OI estimates. The RMSE of AnDA

estimates and OI estimates are 0.77 and 1.177, respectively. (Middle) Estimated reanalysis standard deviation

and absolute error of reanalysis estimate for AnDA. The estimated standard deviation is strongly correlated to

the absolute error. (Bottom) estimated reanalysis standard deviation and absolute error of reanalysis estimate

for OI. In this example, the estimated standard deviation is periodic since it only depends on the observation

frequency and the magnitude of R.

719

720

721

722

723

724

42

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-20-0001.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/doi/10.1175/JTEC
H

-D
-20-0001.1/4990930/jtechd200001.pdf by guest on 24 August 2020



FIG. 3. Snapshots of the ”true” SSH in the region of interest on different days of year 2004, featuring the

formation and shedding of a ”Loop Current Eddy”. The SSH here comes from the OCCIPUT ensemble simula-

tion (see text). The two symbols on the maps mark the location of the Loop-Current and the Florida-Coast grid

points, respectively at 85◦W,25◦N and at 82◦W,26.03◦N.
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FIG. 4. Timeseries of the reconstructed daily SSH for year 2004 at the two gridpoints marked on the maps in

Fig. 3: in the Loop Current (85◦W,25◦N) and near the Florida coast (82◦W,26.03◦N). The reconstructed SSH is

shown for AnDA, OI and OICOA and compared with the true SSH.
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FIG. 5. (Top) Temporal power spectral density (PSD) of the reconstructed SSH (AnDA, OI, OICOA) and true

SSH. (Bottom) Temporal signal-to-noise ratio (R) measuring the temporal coherence of each of the reconstructed

SSH (AnDA, OI, OICOA) with the true SSH. Both PSD and R are averaged over the entire domain. Both panels

share the same x-axis in log scale for temporal frequency (cycles per day: cpd). The tick labels on the top axis

give the corresponding periods in days.
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FIG. 6. Monthly averages of estimated standard deviation and absolute error centered on March 8th, 2004 and

September 8th, 2004. The Ps produced by OI (upper middle panel for each month) and OICOA (upper right panel

for each month) only depends on the tracks of satellite altimetry and the background covariance B. Therefore,

the estimated standard deviation does not seem relevant to approximate the absolute error (lower middle and

lower right panels for each month). On the other hand, the estimated standard deviation produced by AnDA is

flow dependent (upper left panel for each month) and closer to the absolute error.
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