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Non Data-Aided Estimation of Time-Varying
Multiscale Doppler in Underwater Acoustic
Channels

Francois-Xavier Socheleau
IMT-Atlantique, Lab-STICC, fx.socheleau @imt-atlantique.fr

Abstract—In the context of underwater acoustic commu-
nications, we propose a non data-aided Doppler estimation
method dedicated to single-carrier linearly-modulated signals.
This method relies on the framework of time-warped cyclosta-
tionary random processes. It can estimate time-varying Doppler
scales resulting from acceleration of up to several meters per
second squared. It can also estimate multiple Doppler scales as
observed in multiscale-multilag channels.

I. INTRODUCTION

In the underwater acoustic channel, the motion-induced
Doppler effect either compresses or dilates signals in time.
This results from the wideband characteristic of the channel
combined with the low speed of sound. Such a Doppler scaling
must be estimated and compensated at reception so as to
correctly retrieve the transmitted information.

Doppler scale estimation has been widely addressed in the
literature and various models have been considered. For in-
stance, in [1]-[4], the Doppler scale is common between chan-
nel paths and constant (or slowly varying) over a data packet.
[5]-[7] assume multipath signals with different Doppler scales
but constant (or slowly varying) in time. Finally, [8] considers
multipath signals with a common but fast-varying Doppler
scale. All these methods either require a significant pilot over-
head or are limited in their capability of tracking (multiple)
fast-varying Doppler scales.

In this work, we propose an estimator capable of estimating
time-varying Doppler scales resulting from strong accelera-
tions with reasonable complexity. This estimator is dedicated
to single-carrier linearly-modulated signals and can estimate
multiple Doppler scales such as those observed in multiscale-
multilag channels [9]. In addition, it is non data-aided so
as not to increase overheads and to be applicable to non-
cooperative contexts. As opposed to existing non data-aided
estimators, such as [3] and [8], our approach does not rely
on some correlation induced by a very specific data framing.
The proposed estimator takes advantage of the cyclostationary
features of PSK/QAM signals that become time-warped as a
result of Doppler scaling [10]. More specifically, a quadratic
function of time is used to model the motion-induced Doppler
and a cost function is derived based on the cyclostationary
features. This cost is then optimized to estimate the polynomial
coefficients related to speed and acceleration.

The rest of the paper is organized as follows. The signal
model and the assumptions are formulated in Sec. II. Sec.

III presents the cyclostationary features of linearly-modulated
signals as well as the single Doppler scale estimator. This esti-
mator is extended to multipath signals with different Doppler
scales in Sec. IV. Numerical results are provided in Sec. V,
followed by conclusions in Sec. VI.

II. PROBLEM FORMULATION

We consider a baseband multiscale-multilag channel model
that maps an input signal x(¢) into an output signal r(¢)
according to the following relationship!

r(t) = Z Ae(t)ye(t) +w(t), (1)
=1

where Ay(t) is the complex attenuation of the ¢-th channel tap,
w(t) is the additive noise assumed to be wide-sense stationary
and y,(t) is a delayed, phase shifted and time-warped version
of the transmitted signal, i.e.,

ye(t) = a(t — 70 — u(t))e2mieret o), 2

7¢ denotes the initial time of arrival of the /-th path, f. is
the carrier frequency and ¢,(t) is the time-warping function
resulting from Doppler scaling. z(t) is assumed to be a PSK
or QAM signal expressed as

2(t) = brg (t — kT.), 3)
kEZ

where by, denotes the transmitted symbols, g(-) is the pulse-
shaping filter and 7 is the symbol duration assumed to be
known by the receiver. The symbols b, are assumed to be zero-
mean identically and independently distributed. Each function
¢e(t) is usually modeled as the sum of a dominant term,
compensated by resampling at reception, plus some residual
Doppler shift that can be tracked with a PLL-like approach.
We here focus on the dominant term and model the relative
motion between the transmitter (TX) and the receiver (RX)
with the following polynomial [8, Eq. (9)]

Uy Qy o
t)=—t+ —t 4
¢Z( ) c + 2’ €]

where c is the sound speed, vy is the relative speed between
TX and RX, and ay, is the relative acceleration. Given the
observation r(t), the aim of this work is to estimate ¢,(t) (or,
equivalently, v, and a,) without the knowledge of the symbols
by.

IFor the sake of simplicity, the frequency-dependent losses are voluntarily
omitted in the channel model.



III. CYCLOSTATIONARY-BASED ESTIMATION OF A SINGLE
DOPPLER SCALE

PSK and QAM signals are known to be cyclostationary [11].
More specifically, let R, (¢, u) be the autocorrelation function
defined as

Ry (t,u) = E[2" (t)z(t + u)] . )

If z(t) is second-order cyclostationary, R, (f,u) admits a
Fourier series expansion such that

=D i)

acA

1271'0415 (6)

where RS (u) is the cyclic-autocorrelation function defined as

T

1 72 )
lim 7/2 Ry (t,u)e 27t dt. (7)
T
-2

A denotes the countable set of cycle frequencies « that are
integer multiples of the reciprocal of some period. In the
particular case of PSK/QAM signals, it can be shown that
the autocorrelation function is Ts-periodic when u = 0 so that
[11, Sec. 5.2]

Z R z27rT t (8)
nez
where
T E bk 2 —27 A=
zs(O):% /R lg(t)[Pe™ 2T . ©)

For real-valued pulse shaping functions g of Fourier transform
G, the cyclic-autocorrelation function also satisfies

where ® denotes convolution. For most pulse shaping func-
tions used in practice, the magnitude of (G & G) <P

RI*(0) = (10)

) drops
very quickly with n or is even null for |n| > 1. Therefore, n
is usually restricted to the set {—1,0,1} in Eq. (8).
Although z(t) is cylostationary, Doppler scaling expressed
in (2) destroys the cyclic feature of the received signal, i.e.,
R,,(t,0) is not periodic. Such a process is known as a time-
warped cyclostationary process [10]. However, if the time-
warping functions ¢,(t) are known, the original cyclic feature
can be restored. This is expressed by the following relationship

iZWTSTe % - )
eT/ Ry, (t, 0)6712”T*s(t*¢e(t))dt'

(D
This fact can be used to estimate the Doppler scale. Assume
for now that the channel exhibits a single Doppler scale, i.e.,
ode(t) = ¢(t), VL. From Egs. (1), (8), (10) and (11) it can be
shown that

S

2

¢(t) = argmax
o(t)

T—o0

T
| /3
lim 7/2 R,(t,0)e "7 (t=e() g
T

T2

12)
In practice, we cannot observe R,.(t,0) = E [|r(¢)[?] so that
it is replaced by the simple unbiased time-varying estimate
|7(t)]2. Moreover, since Doppler scaling is due to relative
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Fig. 1. Example of a cost function J, obtained with a QPSK signals
propagated in a shallow water channel using a time-varying simulation with
Bellhop [12]. (v,@) = (1,0.5). Tops = 15, Ts = 0.2 ms, f. = 20 kHz,
Es/No = 10 dB.

motion, a polynomial model such as the one given in (4) can
be used. Over some time interval Typs, ¢(t) can therefore be
estimated as

o~ o~
~

O(t) = “t + 42 with (3,a) = argmax J,(a,v)  (13)
C 2c (v,a)
and
1 Tobs o » a 2
Jr(a,v) = i / Ir(t)[2e 7 =5 Q| (14)
obs 0

Egs. (12) and (13) exploit the fact that Doppler scaling changes
the periodic function R, (¢,0) into a chirp function R,.(¢,0).
An example of the cost function J,. is shown in Fig. 1. Given
the shape of this function, the optimization can be done by
first performing a coarse-grid search and by then applying a
gradient approach.

IV. ESTIMATION OF MULTIPLE DOPPLER SCALES

In the case where the channel is multiscaled, R,.(¢,0) can
be expressed as the sum of several chirp signals whose time-
varying phases must be estimated. More precisely,

L L
SO TED(t)A
(=1 m=1
+E [Jw(t)[?]
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R.(t,0) = ()] E [ye )y, (1)]

[lye®)"] +E [Jw(t)*]
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where (a) follows from the assumption that |7,,, — 74| > T for
most m # ¢ and (b) follows from (11). Approximation (a) is
a way of stating that paths with significantly different Doppler



scales should be resolved within the signal bandwidth. If not,
an interfering term appears in the autocorrelation function and
make it difficult to differentiate the contribution of each time-
warping function. Since the DC component of R,.(¢,0) does
not carry any information on ¢, (t), it can be subtracted in the
previous expression so that

Rr(tv 0) - Rg(O) =

< 1 o
S o) 2 {RE @) F o],
/=1
(15)

For tractability, we assume that \,(t) is wide-sense stationary
on the observation time interval, i.e., E [|A,(¢)[*] = E [|A¢[?],
Vit € [0, Tops). In addition, because of the transmission ge-
ometry, it is very common in practice that several paths share
(nearly) the same time-warping function ¢,. Let £, denote the
set of path indexes with the same function ¢4. Assuming that
the channel contains D < L different Doppler scales, a more
practical formulation of (15) may then be

D
R.(t,0) — RY(0) = 2R {Fdei%“*"’d(”)} .16
d=1

where Tq = Y ,c. E[|A?] F(O)e‘i%”. Let card(:)
denote the cardinality of a set, then we have 25:1 card (L) =
L.

The proposed estimation procedure relies on (16) and is
iterative. At each iteration, the dominant Doppler scale can be
estimated using (13). Then, the contribution of the dominant
“Doppler chirp” in (16) can be subtracted after estimating
its amplitude I'. The procedure is repeated until a stopping
criterion is reached. Similarly to the approach described in
Sec. III, we cannot observe R,(t,0) = E[|r(t)|?] so that
it is replaced by |r(t)|? in (16). The full method is detailed
in Algorithm 1. There can be several ways of stopping the
iterative procedure. It can be stopped once a given number
Dp,x of significant Doppler scales is reached. This number
could be (roughly) known a priori based on the knowledge of
the transmission geometry. Another approach could be to stop
the procedure once the combined amplitudes of the paths with
the same Doppler scale is considered to be too small to be of
interest, i.e., when [T("|/[T()| < ¢ in Algo. 1.

V. NUMERICAL RESULTS

This section presents initial results obtained from numerical
simulations with Bellhop [12]. In a first scenario, a multilag
single-scale channel is considered. The performance of the
proposed method is assessed and compared with the state-of-
the-art method detailed in [8]. Our method is then tested when
faced to a multiscale-multilag channel.

A. Single Doppler scale estimation

In this scenario, we consider a shallow water (SW) channel
with a constant sound speed profile. The water, TX and RX
depths are set to 50, 10 and 35 m, respectively. The initial
transmit range is set to 2 km. Root-raised cosine filtered

Algorithm 1 Multiscale Doppler estimation
Input: 7(t), Diax

:n=0

2. (M) (t) = r(t)

3: stop=false

4: while stop=false do

5 (ﬁ(”),a(")) = argmax, q) J| (a,v)

v,a) Y|rn)

6 pM(t) = Ty 4 B2

7: e = Tlh foTObs |r(t)\2€7i%(t7$(n)(t))dt

8: ‘T("+1)(t) 2 _ |7,(n)(t)‘2 — 2R {f(n)ei%(t—(}f(")(t))}
9: stop=compute_stopping_criterion (n, Dinax, f(”))

10: n=n+1

11: end while

Output: {¢™)(1)};5"

QPSK signals are simulated with T, = 15, Ty = 0.2
ms, f. = 20 kHz, a roll-off set to 0.5 and a (baseband)
sampling rate of 20 kHz. The TX moves horizontally with
a radial speed and acceleration randomly drawn from the set
[~V Vm] X [=@m, @], with v,, = 10 m.s~! and a,, = 1
m.s~2. Bellhop is used to model the time-varying multipath
distortions due to relative motion. 100 Bellhop impulse re-
sponses per second are generated along the TX/RX trajectory.
These impulse responses are then linearly interpolated in time
to match the sampling frequency of the transmitted signal.
Our method is compared with [8]. This method, known as the
“Multibranch Autocorrelation” (MBA) is able to estimate the
speed as well as the acceleration for systems using periodic
pilot signals or repetitive data transmission. We consider the
latter configuration which is semi-blind. In this case, the
receiver does not know the value of the data symbols but
exploits the redundancy between consecutive data blocks. As
opposed to our approach, this method reduces the useful data
rate by 2. We use the root mean squared error (RMSE) of the
estimate ¢(t) as our performance metric. It is defined as

B [ (0 - )" ¢
E[fy 0?(t)at]

Fig. 2 shows the estimated RMSE for both methods as
a function of E/Ny, where E; is the signal energy per
information symbol and Ny is the power spectral density of the
additive white Gaussian noise. RMSE is estimated with 300
Monte-Carlo trials per_ E;/Ny. As a reference, the RMSE of
the dummy estimator ¢(¢) = ¢ is also plotted. For comparison,
the performance obtained in an AWGN channel with Doppler
scaling is shown as well. The parameters of method [8] are set
as explained in [13, Sec. IV]: delay step=50 us and frequency
step = 1 Hz. The solution of (13) is found by first applying a
coarse grid search with a step of 1/6 m.s~! for speed and 1/2
m.s~2 for acceleration. A Barzilai Borwein gradient approach
is then applied to get more precise results [14].

The performance curves exhibit the three typical regions
observed in non-linear estimation [15], [16]: the no informa-

RMSE =

a7)
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Fig. 2. Performance comparison between the multibranch autocorrelation
(MBA) estimator and the cyclostationary-based (CSB) method.

tion region driven by ambiguity errors at very low E;/Ny, the
threshold region that characterizes the transition from global to
local errors and the asymptotic region at high F /Ny driven by
mainlobe errors. For both channels, our approach (CSB) gives
better performance in the asymptotic region. MBA is more
efficient in the threshold region but this gain costs half the
data rate. MBA shows RMSE flooring caused by grid search
optimization with finite grid step. For our method in the SW
channel, RMSE flooring is also observed in the asymptotic
region. This is due to the very rich multipath environment and
residual Doppler scaling differences between taps.

Both methods can be implemented using FFTs and have
therefore order of O (N log(N)) complexity, where N is the
number of signal samples over the duration 7,,s. However,
the actual complexity depends on constant factors that may be
slightly different between the two methods. For instance, in
this specific example, MBA is twice more complex than CSB
because the grid step used for the cost function optimization
is smaller than the one used in our method. In addition, as
discussed in [8, Sec. III-B], if higher accelerations were to be
considered, MBA would require signal resampling that would
result in a significant complexity burden. This is not the case
for CSB as its complexity increases linearly with a,,. Finally,
as illustrated in Table I, CSB is robust to strong accelerations.

TABLE I
Performance of the CSB method as a function of the maximum acceleration

@rm. AWGN channel with Doppler scaling, vy, = 10 m.s™1, ﬁ—z =10 dB.

am (ms—2) 0.5 1 2 4
RMSE (x10-5) [ 235 234 255 251

B. Multiple Doppler scale estimation

We now consider a deep-water multiscale-multilag channel
with a Munk sound speed profile [12]. All the simulation
parameters are identical to those described in the previous
section, except that the water and RX depths are set to
5000 and 200 m, respectively. The initial TX depth is 25
m, the TX/RX range is set to 200 m and the transmitter

! EEE SRR TR SEEE SEEE SERT SEEE SRR IR TR )
1073
z
-4
"5 10
=
~
10
o(t) =t
6| F*-MBA
107 fle-CSB
-15 -10 -5 0 5 10 15 20
E,/Ny (dB)
Fig. 3. Performance of the cyclostationary-based (CSB) method in a

multiscale-multilag channel.

moves towards the surface. Such a configuration is known to
be difficult for communications systems as the time-varying
channel is mostly made of two paths with similar amplitudes
and opposite-sign Doppler scales. For multiscale channels, the
performance metric is now defined as:

Dinax
d=1

T4 x E { Jilevs (gd(t) - ¢d(t))2 dt]

RMSE,, —
" Doss |1 [ [T ¢3(t)dt]

b

d=1
(18)
where Dy.x = 2 in this specific scenario.

The MBA curve in Fig. 3 shows that using a single Doppler
scale estimator in a multiscale environment can be worse than
not performing any estimation at all (i.e, ¢(t) = ¢). It also
shows that CSB can be highly efficient in multiscale channels.
In our scenario, the asymptotic regime is reached for a value
of Es/Ny as low as 2.5 dB. Detecting and estimating multiple
Doppler scales can be useful to trigger post-processing to
make the communication link more robust. For instance, it
can be used to optimize the choice of the equalizer or PLL
parameters. It can also trigger a change of waveform if the
transmitter is adaptive, or some array-processing to separate
multipath signals with different scales.

VI. CONCLUSION

Based on the framework of time-warped cyclostationary sig-
nals, we have proposed an estimator of time-varying Doppler
scales for linearly-modulated signals. The estimator is built
from the autocorrelation function of the received signal. We
have shown that this function can be expressed as the sum of
several chirp signals whose time-varying phases are Doppler-
dependent. Numerical simulations indicate that the method
provides very good performance in difficult multilag, and
possibly multiscale, environments. We think that the perfor-
mance could be further improved by considering non-zero
lags in Eq. (8). Although dedicated to PSK or QAM signals,
the proposed framework could also be extended to other
waveforms exhibiting cyclostationarity such as OFDM signals
with a cyclic-prefix.
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