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Abstract—In this paper, an algorithm based on the multi-
player multi-armed bandit (MAB) framework is proposed to
solve an uncoordinated spectrum access problem. The proposed
technique does not require any communication or coordination
between users. The case of varying channel rewards across
users is considered. In contrast to previous work, the users are
permitted to choose multiple channels for transmission, resulting
in a MAB model with multiple plays. The proposed algorithm has
an expected regret of the order O(log2 T ), which is validated by
simulation results.

Index Terms—uncoordinated spectrum access, multi-armed
bandits with multiple plays, varying reward distribution.

I. INTRODUCTION

With the introduction of the Internet-of-Things (IoT), wire-
less communication networks are faced with an increasingly
growing number of machine-type-devices (MTD) [1]. MTD
applications (e.g., smart meters, e-health, etc.) generally result
in mobile traffic that mostly relies on the uplink transmission
of short packet messages. Compared to the small packet sizes
of useful information, the signaling overhead resulting from
acquiring the channel state information (CSI) at MTDs and
sending scheduling requests to a central unit is large. There-
fore, optimizing the uplink scheduling of MTDs for efficient
spectrum use is of utmost importance.

Uncoordinated spectrum access has received significant in-
terest in recent literature [2]–[8]. In a system relying on
uncoordinated spectrum access, a user chooses a channel and
transmits whenever it has data to send, without formulating a
scheduling request to the receiver or control unit. By doing so,
the handshake required to receive a scheduling slot is avoided,
reducing the transmission latency and signaling overhead. Be-
cause of the distributed nature and the lack of coordination in
the resulting spectrum access, the problem of collisions arises.
A collision occurs when multiple users choose the same channel
for transmission. In this case, the receiver cannot distinguish
between the collided messages, possibly leading to a failed
reception of all colliding transmissions. To avoid collisions, two
techniques can be leveraged. One is to apply novel multiple
access techniques, such as non-orthogonal multiple access
(NOMA) [5]. The other is to exploit learning algorithms so
users can distributively adjust their transmissions, minimizing
collisions. This work focuses on the latter technique, leaving
the study of the combination of both solutions for future work.

The use of reinforcement learning (RL) for uncoordinated
spectrum access has recently garnered some attention. To

maximize the accumulated data rate and the number of suc-
cessful transmissions, [3] and [4] adopt Q-learning, while [5]
considers a NOMA system and applies deep RL. The related
framework of multi-player multi-armed bandits (MAB) [9] has
also been widely used to study uncoordinated spectrum access.
In this framework, users learn how to dynamically adjust their
transmissions on the available channels to optimize system
performance. In [10] and [11], the MAB model is used to study
the opportunistic spectrum access problem in cognitive radio
networks where secondary users compete to access the part of
the spectrum not occupied by primary users. In contrast, in
[6] and [7], the MAB is employed to study the uncoordinated
spectrum access problem without user distinction.

Most of the previous MAB related studies assumed that the
reward distribution for each channel is the same across users
[6], [10], [12]. However, in wireless networks, this assumption
may not hold. Recently, [7], [8], [13] introduced new algorithms
for the case of distinct reward distributions across users. In
[13], forced collisions are used, allowing users to implicitly
communicate the estimated means with each other to reach
the optimal matching. In [7], [8], a game-theoretic approach is
proposed, based on the dynamics introduced in [14]. However,
all previous work employing MAB for uncoordinated spectrum
access has restricted each user to transmit on one channel. A
few studies [15], [16] consider the MAB problem with multiple
arm plays, but are restricted to the single-player case. In
wireless networks, allowing users to choose multiple channels
for transmission enhances the achieved performance.

In this work, we consider the uplink of an uncoordinated
spectrum access wireless system, where users aim to dynami-
cally adjust their transmissions, without communicating with
each other, to avoid collisions and optimize system perfor-
mance. In addition to considering varying channel rewards
between users, we study the case where each user chooses
multiple channels at each timeslot. An algorithm, extending that
of [7], [8] and achieving an expected regret of O(log2 T ), is
proposed. To the best of our knowledge, this is the first work
that studies the problem of multi-player MAB with multiple
plays and varying channel rewards across users.

The rest of this paper is organized as follows. Section II
presents the system model. In sections III, IV and V, the
proposed algorithm is presented along with an analysis of the
system-wide regret. Simulation results are presented in section
VI and conclusions in section VII.978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



II. SYSTEM MODEL

Consider the uplink of a cellular system where K users aim
to communicate either with a base station (BS) or with each
other in an uncoordinated manner. The communication occurs
over a finite time-horizon T , which is an integer number of
timeslots that may not be known in advance to the users. At
each timeslot t, every user k chooses one or multiple channels
to transmit its data bits. If two or more users choose the same
channel for communication, the messages of all involved users
collide and none of the transmissions succeed, i.e., all users
achieve zero rate. We assume that each user k chooses N
channels at each timeslot. Furthermore, we assume that system
bandwidth is partitioned into M channels, such that M ≥ KN .
Hence, a stable assignment of users and channels, in which
no two users collide, exists. It is assumed that users do not a
priori know the rewards they get over each channel. Moreover,
these rewards are distinct for each user. We model this problem
of uncoordinated spectrum access as a stochastic multi-player
multi-armed bandit problem with multiple plays. In this setting,
the set of players is the set of users K = {1, . . . ,K}, and the
set of arms is the set of channels M = {1, . . . ,M}. At each
timeslot, every user is allowed to pull N channels. To this
end, the action of user k at timeslot t is a(t)

k ∈ {0, 1}M×1

such that a(t)
k (m) = 1 if user k pulls channel m at timeslot t.

Moreover,
∑M
m=1 a

(t)
k (m) = N, ∀k ∈ K. The action space of

each user k is Ak and consists of all possible combinations of
N channels, hence |Ak| =

(
M
N

)
. Let a(t) denote the strategy

profile of all users at timeslot t, i.e., a(t) = {a(t)
1 , . . . ,a

(t)
K }.

Also, let A =
∏K
k=1Ak be the action space of all users. Upon

choosing an action a(t)
k , user k receives the following reward:

gtk(a(t)) =

M∑
m=1

a
(t)
k (m)µ(k,m)ηm(a(t)), (1)

where µ(k,m) is the mean reward of user k over channel m
and ηm(a(t)) = 1 if no collision occurred on m when a(t) is
played. When a collision takes place, ηm(a(t)) = 0.

The mean reward of user k over channel m reflects the
channel gain of k over m and is an indicator of the rate user
k achieves over channel m. We assume that µ(k,m) ∈ [0, 1]
leading to gtk(a(t)) ∈ [0, N ].

Users are assumed to make their decisions in a totally
distributed manner. In other words, each user k does not observe
neither the channels chosen by other users nor their received
rewards. Each user k can only observe the reward it gets on its
chosen channels. We assume that, in addition to observing the
total achieved reward on its chosen channels, user k can observe
the reward achieved over each chosen channel. Moreover, users
are assumed to know whether or not a collision has occurred
with probability one.

Our aim is to propose a distributed algorithm that allows
users to settle on channels, without coordination, in such a
way as to maximize the system sum reward. Since M ≥ KN ,
the optimal allocation must not involve any collisions. In fact,
in the case of a collision, each colliding user can choose some

other channel, without collision, and receive a non-zero reward.
Let a∗ be the action profile that yields the highest sum reward:

a∗ = argmax
a∈A

K∑
k=1

M∑
m=1

ak(m)µ(k,m)ηm(a). (2)

The expected regret incurred during the time horizon T is:

R̄ = T
∑
k,m

a∗k(m)µ(k,m)− E

∑
t,k,m

a
(t)
k (m)µ(k,m)ηm(a(t))

 .

(3)

III. PROPOSED ALGORITHM

In all prior work on uncoordinated spectrum access based
on MABs, each user is assumed to choose one channel at each
timeslot. However, relaxing this assumption would result in a
better performance for the users if an adequate algorithm is
formulated. Indeed, when a user can access multiple channels
simultaneously, both the probability of a successful transmis-
sion and the achieved reward or rate increase. The considered
setting is closest to the ones considered in [7] and [8], where
a game-theoretic approach to find the assignment of users to
channels maximizing the user sum rewards is used. In both of
these works, each user chooses one channel at each timeslot.
In this work, we adapt the algorithms of both of these papers
to the case of a user pulling N channels at each timeslot. The
proposed technique is shown in Algorithm 1.

Since the time horizon T is not known in advance, Algo-
rithm 1 proceeds in epochs, with each epoch consisting of
an integer number of timeslots. In each epoch, three phases,
namely, exploration, matching and exploitation, take place. The
exploration phase aims at estimating the previously unknown
means of each channel. During this phase, each user uniformly
accesses one channel at each timeslot to get channel estimates.
This phase runs for a constant number of timeslots given by
T0, the value of which is determined in section IV. Upon
termination, all users have an estimation µ̂ of the channel
means. These estimated means are used in the second phase of
the algorithm where users play a non-cooperative game with the
aim of maximizing the achieved sum rewards. In other words,
when user k chooses a channel m, if the received reward is non-
zero, user k assumes that this reward is equal to the estimated
one µ̂(k,m). The dynamics of this matching phase, adopted
from [14], are described in section III-A. The matching phase
runs for c1l1+δ timeslots, l being the epoch number. The third
and final phase is an exploitation phase in which the users
settle on the channels that resulted in the best performance
in the previous matching phase. The exploitation phase runs
for c22l timeslots. Note that the duration of the matching and
exploitation phases grows with the epoch number, whereas
the exploration phase is performed for a constant number of
timeslots in each epoch.

A. Matching Dynamics

Each user k is associated with a state [āk, ūk, Sk]. Following
the terminology of [14] regarding the state of each user,



Algorithm 1

Initialization: Set µ̂(k,m) = 0, V tk (m) = 0, ytk(m) =
0, ∀k ∈ K,m ∈M. Let ε > 0 and c > KN .

1: for l = 1, . . . , LT do
1- Exploration Phase:

2: for t = 1 : T0 do
3: Choose one channel m ∈M uniformly.
4: Receive reward xtk(m).
5: if xtk(m) > 0 (i.e., no collision on channel m) then
6: V tk (m) = V t−1

k (m) + 1, ytk(m) = yt−1
k (m) +

xtk(m). // V tk (m) is a counter of the number of times m
was accessed by k without collision until timeslot t. ytk(m)
is the sum reward achieved by k over m until timeslot t.

7: end if
8: end for
9: Estimate means: µ̂(k,m) = ytk(m)/V tk (m), ∀m ∈M.

10: end for
2- Matching Phase: for the next c1l1+δ timeslots, play
according to the dynamics described in section III-A.

11: If Stk = C, choose the action to play according to (5). If
Stk = D, choose the action according to (6).

12: If the received reward for some chosen channel is 0, the
user becomes discontent as per (8).

13: If ak 6= āk or uk 6= ūk or player k is discontent, the state
transition happens according to (9).

14: Each user k keeps a counter of the number of times each
action ak was played and resulted in it being content:

F lk(ak) =

T0+c2l
1+δ∑

t=T0+1

I
(
a

(t)
k = ak, S

t
k = C

)
, (4)

I being the indicator function.
3- Exploitation phase: for c22l timeslots:

15: Play the action a(l)∗
k satisfying: a(l)∗

k = argmax
ak∈Ak

F lk(ak).

āk ∈ {0, 1}M×1 is the baseline action of user k, satisfying∑M
m=1 āk(m) = N , ūk is the baseline utility of user k satis-

fying |ūk| = N . Sk ∈ {C,D} is the mood of user k reflecting
whether k is content or discontent with the current action and
utility. Denote uk,max = argmax

ak

∑M
m=1 ak(m)µ̂(k,m). That is,

uk,max is the highest reward achievable by user k, resulting
from playing the N channels having the highest means, without
experiencing collision on any of these channels. At each
timeslot t during the matching phase, user k adheres to the
following dynamics to decide on the chosen action:

• A content user plays its baseline action with high proba-
bility:

p
ak
k =

{
εc

(MN)−1
, if ak 6= āk,

1− εc, if ak = āk,
(5)

where ε > 0 is a small perturbation and c is a constant
satisfying c ≥ KN [14].

• A discontent user chooses its action uniformly at random:

p
ak
k =

1(
M
N

) , ∀ ak ∈ Ak. (6)

After deciding on the action and observing the reward, the
state transition of each user k occurs according to:
• If ak = āk and uk = ūk, then a content player remains

content with probability one:

[āk, ūk, C]→ [āk, ūk, C]. (7)

• If uk,n = 0 for some n ∈ [N ], then player k becomes
discontent with probability one:

[āk, ūk, C/D]→ [ak,uk, D]. (8)

• If ak 6= āk or uk 6= ūk or player k is discontent, then the
state transitions occur according to:

[āk, ūk, C/D]→


[ak,uk, C] w.p. ε

uk,max−
N∑
n=1

uk,n
,

[ak,uk, D] w.p. 1− ε
uk,max−

N∑
n=1

uk,n
.
(9)B. Regret Analysis

The time horizon T can be lower bounded by [8]:

T ≥
LT−1∑
l=1

(T0 + c1l
1+δ + c22l) ≥ c2(2LT − 2), (10)

where LT is the total number of epochs occurring within the
time horizon T . Hence, LT is upper bounded by:

LT ≤ log (T/c2 + 2) . (11)

1) Regret in the Exploration Phase: In the exploration phase,
each user samples channels uniformly to get estimates of their
means. Even though the purpose of this work is to assign
to each user N channels at each timeslot, the number of
channels sampled by each user at a timeslot is one in the
exploration phase. It is chosen this way to decrease the number
of collisions, which increases the number of samples with a
non-zero reward of each channel, leading to better estimates.

The expected regret in the exploration phase R1 in all epochs
can be upper bounded by:

R1 ≤
LT∑
l=1

KNT0 ≤ KNT0 log (T/c2 + 2) . (12)

2) Regret in the Matching Phase: The expected regret in the
matching phase R2 can be upper bounded by:

R2 ≤
LT∑
l=1

KNc1l
1+δ ≤ KNc1L2+δ

T ≤ KNc1 log2+δ (T/c2 + 2) .

(13)
3) Regret in the Exploitation Phase: In the exploitation

phase of epoch l, each user k plays the most played action
resulting in content behavior in the matching phase of epoch l.
The exploitation phase fails in two cases:

1) The exploration phase of epoch l fails, meaning that
the mean estimates µ̂ differ significantly from the actual
means µ. This happens with a probability ≤ 4M2e−l as
shown in Lemma 2.



2) The most played action of the matching epoch differs
from the optimal action. This happens with a probability
≤ A1e

−l1+δ as shown in Lemma 4.
The expected regret in the exploitation phase can be upper
bounded by:

R3 ≤
LT∑
l=1

KNc22l(4M2e−l +A1e
−l1+δ )

≤ 2KNc2(4M2 +A1)

e− 2
= A3.

(14)

4) Regret of the Proposed Technique:

Theorem 1. The expected regret of the proposed technique can
be upper bounded as:

R ≤ R1 +R2 +R3 = O
(

log2+δ(T )
)
. (15)

IV. EXPLORATION PHASE

The exploration phase is performed so users can learn
estimates of the mean channel rewards. Since the estimation
may not be always perfect, the optimal assignment with the
estimated means µ̂ might differ from the optimal assignment
calculated from the correct means µ. However, if the estima-
tion inaccuracy is kept small as in [7] and [8], the optimal
assignment does not change due to the estimation inaccuracy.

Lemma 1. Let J1 and J2 be the sum reward achieved by the
optimal and the second best assignments, and let ∆ = J1−J2

2KN .
If the difference between the estimated and the correct channel
reward means satisfies:

|µ(k,m)− µ̂(k,m)| < ∆, ∀k ∈ K,m ∈M, (16)

then the optimal assignment does not change due to the
estimation inaccuracy. In other words:

argmax
a∈A

K∑
k=1

M∑
m=1

ak(m)µ(k,m)ηm(a) =

argmax
a∈A

K∑
k=1

M∑
m=1

ak(m)µ̂(k,m)ηm(a).

(17)

Proof. Denote the optimal assignment by a(1) and the sum
rewards achieved when a(1) is played by J1. Furthermore,
denote the second best assignment and the sum reward achieved
under it by a(2) and J2 respectively. Note that an optimal
assignment does not have any collisions since M ≥ KN .
Hence, J1 =

∑K
k=1

∑M
m=1 a

(1)
k (m)µ(k,m). Let the estimated

mean of user k over channel m be written as:

µ̂(k,m) = µ(k,m) + z(k,m), (18)

where z(k,m) is the estimation inaccuracy satisfying
|z(k,m)| ≤ ∆. The sum reward achieved when a(1) is played
with the estimated channel means satisfies:
K∑
k=1

M∑
m=1

a
(1)
k (m)µ̂(k,m) =

K∑
k=1

M∑
m=1

a
(1)
k (m)(µ(k,m) + z(k,m))

>

K∑
k=1

M∑
m=1

a
(1)
k (m)µ(k,m)−∆KN. (19)

Any other assignment a 6= a(1) 6= a(2) must perform at most
as well as a(2):

K∑
k=1

M∑
m=1

ak(m)µ̂(k,m)ηm(a) =

K∑
k=1

M∑
m=1

ak(m)(µ(k,m)+

z(k,m))ηm(a) <

K∑
k=1

M∑
m=1

a
(2)
k (m)µ(k,m)ηm(a(2)) + ∆KN.

(20)
To avoid changing the optimal assignment because of the
estimation inaccuracy, the following must hold ∀a 6= a(1):

K∑
k=1

M∑
m=1

a
(1)
k (m)µ̂(k,m) >

K∑
k=1

M∑
m=1

ak(m)µ̂(k,m)ηm(a). (21)

This happens when:

J1 −∆KN > J2 + ∆KN. (22)

For (22) to hold, ∆ must satisfy:

∆ <
J1 − J2

2KN
. (23)

�

Next, we upper bound the probability of error, i.e., the
probability of having reward estimates that do not satisfy (16)
in the exploration epoch l. We also provide a lower bound on
the length of the exploration epoch T0.

Lemma 2. If T0 = d 2Me
∆2 e, all players have an estimation of

the channel means satisfying (16), with probability ≥ 1− γe,l.
Moreover, the probability of error in the lth exploration epoch,
γe,l, is upper bounded by:

γe,l ≤ 4M2e−l. (24)

Proof. As in [6] and [12], we first find Q, the required number
of observations of each channel by each user to guarantee (16).
In order to do so, we first need to bound the probability of each
user not having a correct estimation of the channel means. Let
γ = γe,l/2. Define the following events:

• A: all players have an estimate satisfying (16),
• B: all players have ≥ Q observations of each channel,
• Ak: player k has an estimate satisfying (16),
• Bk: player k observed each channel ≥ Q times.

We need the following to hold:

Pr(Āk|Bk) ≤ γ/K. (25)

In fact, we have:

Pr(Āk|Bk) ≤ Pr (∃ m, s.t. |µ(k,m)− µ̂(k,m)| > ∆ | Bk)
(a)
≤

M∑
m=1

Pr (|µ(k,m)− µ̂(k,m)| > ∆ | Bk) =

M∑
m=1

∞∑
q=Q

Pr (|µ(k,m)− µ̂(k,m)| > ∆ | k has q observations

of each arm)Pr (q views|q ≥ Q)
(b)
≤

M∑
m=1

∞∑
q=Q

2e(−2q∆2)×



Pr (q views| q ≥ Q) =

M∑
m=1

2e(−2Q∆2) = 2Me(−2Q∆2), (26)

where (a) results from applying the union bound and (b) from
using Hoeffding’s inequality [17].

To ensure this probability is lower than γ
K , Q must satisfy:

Q ≥ 1

2∆2
log(

2KM

γ
). (27)

Then, the following holds:

Pr (A|B) = 1−Pr(Ā|B) ≥ 1−
K∑
k=1

Pr (Āk|Bk) ≥ 1−K γ

K
= 1−γ.

(28)
Hence, if Q satisfies (27), all users have an estimate for every
channel satisfying (16) with a probability higher than 1− γ.

Next, we need to find a time horizon Th for the exploration
phases large enough such that all players have ≥ Q observa-
tions of each arm with probability higher than 1−γ. Note that
the length of each exploration phase T0 does not necessarily
satisfy T0 ≥ Th. In other words, all players can get ≥ Q
observations of each arm with probability higher than 1 − γ
after multiple exploration phases.

Let Ak,m(t) = 1 if player k observed channel m at timeslot
t, and 0 otherwise. We have:

Pr (k has ≤ 1

2
ThE[Ak,m(t)] observations) =

Pr (
Th∑
t=1

Ak,m(t) ≤ 1

2
ThE[Ak,m(t)] observations)

(a)
≤

e

(
− 1

4
ThE[Ak,m(t)]

2

)
,

(29)

where (a) results from applying the Chernoff bound.
By using a union bound on (29), we get:

Pr (∃k,m s.t. k has ≤ 1

2
ThE[Ak,m(t)] observations)

≤ KMe

(
− 1

4
ThE[Ak,m(t)]

2

)
.

(30)

To bound the above probability by γ, Th must satisfy:

Th ≥
8

E[Ak,m(t)]
log

(
KM

γ

)
. (31)

Moreover, the number of observations of each arm∑Th
t=1Ak,m(t) must be at least Q. Hence, we need:
Th∑
t=1

Ak,m(t) >
1

2
ThE[Ak,m(t)] ≥ Q >

1

2∆2
log

(
2KM

γ

)
, (32)

which is warranted if:

Th ≥

max

8 log
(
KM
γ

)
E[Ak,m(t)]

,
log
(

2KM
γ

)
∆2E[Ak,m(t)]


 . (33)

Note that E[Ak,m(t)] = 1
M

(
1− 1

M

)K−1 ≥
(
Me(

K−1
M−1 )

)−1

which follows since (1− 1
x )x−1 ≥ 1

e . If K is unknown, since
M > K, the following holds: E[Ak,m(t)] ≥ 1

Me . Hence, (33)

can be formulated as:

Th ≥

max

8Me log

(
M2

γ

)
,
Me log

(
2M2

γ

)
∆2


 . (34)

Having Th, the probability of all users having an estimate of
every channel mean satisfying (16) is given by:

Pr(A) = 1− Pr(Ā) = 1−
(
Pr(Ā|B)Pr(B) + Pr(Ā|B̄)Pr(B̄)

)
≥ 1−

(
Pr(Ā|B)) + Pr(B̄)

)
≥ 1− (γ + γ) = 1− γe,l.

(35)

Moreover, ∆ ≤ J1−J2
2KN ≤

KN−0
2KN ≤ 1

2 . Hence, (34) is satisfied
if:

Th =
2Me

∆2
log

(
4M2

γe,l

)
. (36)

To upper bound the error probability in the lth exploration
epoch, we first note that:

T0 × l = Th =
2Me

∆2
log

(
4M2

γe,l

)
. (37)

To have γe,l ≤ 4M2e−l, the length of each exploration epoch
must satisfy:

T0 ≥
2Me

∆2
. (38)

�

V. MATCHING PHASE

The purpose of the matching phase is to reach a final
assignment in which every user accesses N channels without
collision, such that the sum reward achieved by all users is
maximized. The dynamics introduced in section III-A induce
a Markov chain over the state space Z =

∏K
k=1{Ak ×

[0, 1]N×1 × {C,D}}. Let P ε denote the transition matrix of
the regular perturbed Markov chain Z . [14] guarantees that,
when playing according to these dynamics, the optimal state,
which maximizes the sum rewards, is most frequently played.
To prove this, the authors of [14] rely on the theory of resistance
trees for regular perturbed Markov chains [18]. The dynamics
used in this paper differ from those in [14] in two aspects:

1) If user k experiences a collision on some channel m, i.e.,
its received reward on m is 0, user k is discontent with
probability one. In [14], the game is assumed to be inter-
dependent. Interdependency means that it is not possible
to partition users into two groups that do not interact with
each other. However, this property does not hold in the
considered setting as shown in [8]. Therefore, as in [8],
to characterize the stable states of the unperturbed chain
when ε = 0, a player with 0 reward on some channels is
discontent with probability one.

2) For the transition probabilities between content and dis-

content in (9), instead of using ε
N−

N∑
n=1

uk,n
, we use

ε
uk,max−

N∑
n=1

uk,n
, since the maximum utility achievable by

each user k is uk,max.

Lemma 3. Let D0 denote the set of states where all users are
discontent. Moreover, let C0 denote all singleton states where



all users are content and their baseline actions and utilities are
aligned. As proved in [14], the only recurrence states of Z are
D0 and all singletons in C0.

Similarly to [14], the resistance of moving from D0 to any

state z ∈ C0 is r(D0 → z) =
K∑
k=1

(
uk,max −

N∑
n=1

uk,n

)
. The

transition z ∈ C0 → D has a resistance of r(z → D0) = c
and the resistance of moving from any state z ∈ C0 to
z′ ∈ C0 is c ≤ r(z → z′) ≤ 2c. The stochastic potential
of any state z ∈ C0 is of the form: ζ(z) = c[|C0| − 1] +
K∑
k=1

(
uk,max −

N∑
n=1

uk,n

)
. From Theorem 1 of [14], the stable

state is the one minimizing the stochastic potential, hence the
one maximizing the achieved sum reward. This stable state
is guaranteed to be played the majority of times for a small
enough perturbation ε [8], [14]. In the exploitation phase,
since the state that was most played and that resulted most
in the players being content is played, the stable state is hence
expected to be played with high probability.

Let π denote the stationary distribution of the Markov
chain Z and let z∗ = [ā∗, ū∗, CK ] denote the optimal state.
According to [8], π(z∗) > 1/2 for a small enough perturbation
ε. The following lemma characterizes the probability of error
in the matching phase of the lth epoch, δm,l.

Lemma 4. Let a(l) denote the action that was most played in
some epoch l. The probability of error in the matching phase
in epoch l, δm,l, is upper bounded by:

δm,l = Pr(a∗ 6= a(l)) ≤ A0 ‖φ‖π e
(

−θ2π(z∗)c2l
1+δ

72Tm(1/8)

)
. (39)

In (39), a∗ is the optimal action defined in (2), A0 is a constant,
φπ is the probability distribution of the initial state played in
epoch l and Tm(1/8) is the mixing time of the Markov chain
Z with an accuracy of 1/8 [19].

Proof. In the matching phase, each user k keeps a counter
of the number of times each action was played and resulted
in k being content. At the end of the matching phase, user
k chooses the action that was most played and resulted in
k being content and continuously plays it in the exploitation
phase. If the optimal strategy profile a∗ was played more
than c1l

1+δ/2 times during matching phase l, then each user
has played the optimal action more than half of the timeslots
during the matching phase. Hence, the optimal action is played
during the exploitation phase. Therefore, we can upper bound
the probability of error in the matching phase by finding
the probability of the optimal action being played less than
half of the timeslots in the matching phase of epoch l. Let
f(z) = I(z = z∗), where I is the indicator function. Then,

δm,l = Pr(a∗ 6= a(l)) ≤ Pr(
c1l

1+δ∑
τ=1

f(z(τ)) ≤ c1l
1+δ

2
). (40)

Let θ = 1 − 1
2π(z∗) , where 0 ≤ θ ≤ 1 since π(z∗) ≥ 1/2.

Then,

δm,l ≤ Pr

c1l
1+δ∑

τ=1

f(z(τ)) ≤ (1− θ)π(z∗)c1l
1+δ

 . (41)

Using the concentration bound of Theorem 3 in [19], the above
probability can be bounded by:

δm,l ≤ A0 ‖φ‖π e
(

−θ2π(z∗)c1l
1+δ

72Tm(1/8)

)
, (42)

where A0 is a constant, φπ is the distribution of the initial
state of the matching phase at the lth epoch, and Tm(1/8) is
the mixing time of the Markov chain with an accuracy of 1/8.
δm,l can be further upper bounded as:

δm,l ≤ A0 ‖φ‖π e
(

−θ2π(z∗)c1l
1+δ

72Tm(1/8)

)
≤ A1e

(−l1+δ). (43)

�
VI. SIMULATION RESULTS

Extensive simulations of the proposed algorithm were con-
ducted to validate its performance. The following simulation
parameters were chosen: c1 = 3000, c2 = 5000, ε = 10−4, c =
KN, δ = 0.

0 1e7 2e7 3e7 4e7
0

2

4

6

8

10

12

14
x 10

5

Time Index

A
c
c
u
m

u
la

te
d
 R

e
g
re

t

 

 

Proposed Solution

2000 log
2
(t)

4000 log
2
(t)

(a)

0 1e6 2e6 3e6
0

2

4

6

8

10

12

14

16
x 10

5

Time Index

A
c
c
u

m
u

la
te

d
 R

e
g

re
t

 

 

Proposed Solution

3000 log
2
(t)

7000 log
2
(t)

(b)
Fig. 1: Accumulated regret as time progresses for (a) K =
2,M = 6, N = 3, (b) K = 4,M = 8, N = 2.

Fig. 1 shows the average accumulated regret as a function of
time, averaged over 50 realizations of the algorithm for different
system settings. The results show that the average accumulated
regret increases with time as O(log(t)2). More specifically, the
regret for a system consisting of K = 2 users, M = 6 channels,
and where each user pulls N = 3 channels in each timeslot,
is bounded between 2000 log(t)2 and 4000 log(t)2, as shown
in Fig. 1a. The regret of a system consisting of K = 4 users,
M = 8 channels and with N = 2 channels pulled at each
timeslot, is bounded between 3000 log(t)2 and 7000 log(t)2 as
shown in Fig. 1b. The higher regret observed for the case of
K = 4 users is due to the system taking a longer time to
converge as shown next.

In Fig. 2, the mean achieved reward normalized by the reward
of the optimal allocation is shown for different system settings.
The performance of the proposed method is compared against
that of the upper confidence bound (UCB) algorithm [9]. The
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Fig. 2: Mean of the achieved reward normalized by the reward
of the optimal allocation J1 for (a) K = 2,M = 6, N = 3, (b)
K = 4,M = 8, N = 2.

simulated UCB algorithm consists of each player choosing N
arms according to the UCB technique without consideration
for the other players in the system. The performance of the
random selection technique, where each user chooses an action
uniformly at random (i.e., with a probability given by (6)),
is also shown for comparison. Fig. 2 shows the superior
performance of the proposed method. Moreover, Fig. 2 shows
that the algorithm convergence is much faster for a system
consisting of a smaller number of users.

TABLE I

Method

Average Hitting Time Percentage of Optimal
of Optimal Allocation Allocation Hits

(K = 2,M = 6, N = 3), (K = 2,M = 6, N = 3),
(K = 4,M = 8, N = 2) (K = 4,M = 8, N = 2)

Proposed
(1.8× 104), (2.3× 104) (97), (96)Solution

UCB (9× 105), (107) (17.9), (0.1)

Random
(1.8× 104), (2.4× 106) (0.25), (2× 10−4)Selection

Finally, Table I compares the average hitting time of the
optimal allocation and the percentage of hitting the optimal
allocation for different system settings. The hitting time of
the optimal allocation is defined as the first time this optimal
allocation is played. Table I also shows the superiority of the
proposed method over the UCB algorithm and the random
selection technique. In fact, the proposed algorithm has a
smaller average hitting time for both simulated system settings.
Moreover, the percentage of optimal allocation hits of the
proposed method greatly exceeds the percentage of the UCB
and the random technique.

VII. CONCLUSION

In this paper, the uncoordinated spectrum access problem,
where each user is allowed to choose N channels at each
timeslot, was modeled as a multi-user MAB with multiple
plays and varying user rewards. A game-theoretic approach
was used to develop an algorithm with a sub-linear regret of
O(log2 T ). Simulation results validated the sub-linear regret
of the proposed method and showed its superior performance,

when compared with two other algorithms. The case of non-
zero rewards on collision is an interesting extension of this
work, and will be studied in a future work.
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