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∗Orange Labs, Chatillon, France

† IMT Atlantique, Brest, Nantes and Rennes, France
Email:{ayman.chouayakh, aurelien.bechler}@orange.com

Email: {isabel.amigo, loutfi.nuaymi, patrick.maille}@imt-atlantique.fr

F

Abstract—Licensed Shared Access (LSA) is a complementary solution
allowing Mobile Network Operators (MNOs) to use another incumbent’s
frequency spectrum after obtaining a proper license from the regulator.

Using auctions to allocate those LSA-type licenses is a natural ap-
proach toward an efficient use of spectrum, by controlling the incentives
for MNOs to declare their true valuation for the spectrum and allocating
it to those who value it the most. A specificity of LSA licenses lies in the
interactions among buyers, due to possibly overlapping coverage areas,
this allows for allocating the same spectrum to several MNOs.

In this paper, we review the existing mechanisms taking into account
such radio interference constraints, propose new ones, and compare
their performance. We show how to increase the revenue, while main-
taining truthful-telling, of all-or-nothing auction mechanisms by introduc-
ing a reserve price per bidder. We also investigate extensions of those
mechanisms, namely when the management of interference among
base stations is more subtle than partitioning base stations into groups
of non-interfering base stations. For each mechanism, we show how to
optimize a trade-off between expected fairness, expected revenue and
expected efficiency by carefully working with groups and reserve prices.
Simulations suggests that the extension of those mechanisms may lead
to increase an indicator combining allocation fairness, social welfare and
seller’s revenue by more than 20%.

1 INTRODUCTION

Accommodating exploding mobile data traffic is among the
greatest challenges for fifth generation (5G) networks [1].
Dealing with that traffic indeed requires an optimal utiliza-
tion of spectrum, but currently some holders of a licensed
spectrum (e.g., militaries, satellites, some commercial users)
do not always use all their frequencies–usage varies with
time and geographical location–, hence there is some room
for improvement, which has given rise to the proposal of
the concept of dynamic spectrum access (DSA) [2].

DSA refers to the situation in where a primary user, who
has an exclusive right to use the band, shares his bandwidth
with a secondary user. Secondary users must allow the
primary user to use his spectrum without disrupting it.
For this, these systems typically use cognitive radio [3]:
secondary users–Mobile Networks Operators (MNOs) in
our context–can intelligently detect those communication
channels that are in use and those that are not, and move
to unused channels. However, for MNOs this approach is

risky because neither the access to spectrum nor the quality
of service (protection from interference) are guaranteed.

In November 2011, in order to support the deployments
of 5G systems [4], the Radio Spectrum Policy group (RSPG)
has proposed a new sharing concept called Licensed Shared
Access (LSA) [5]. That concept involves three stakeholders:
the incumbent user, the secondary user which is called LSA
licensee, and the regulator [2]. Contrary to DSA, under the
LSA approach, the secondary user needs to obtain a license
from the regulator before accessing the spectrum of the
incumbent. The license includes the conditions of sharing,
in particular in terms of time, frequency and geographic
region. The LSA concept guarantees to the incumbent and to
the LSA licensee a certain level of QoS specified in the LSA
license. The LSA licensee is typically an MNO, we shall thus
use the terms MNO, (network) operator, or LSA licensee
interchangeably. Likewise, we shall use the terms regulator,
seller and auctioneer interchangeably.

Deploying an LSA system requires the introduction of
two new architectural building blocks [6], as shown in
Fig. 1: the LSA repository and the LSA controller. The

Fig. 1: Overview of the LSA concept (taken from [2])

LSA repository is a database which contains information
about LSA spectrum bands together with their conditions of
sharing. It is controlled by the regulator and the incumbent,
and is required to deliver the information on spectrum
availability based on the incumbent spectrum use and as-
sociated conditions for sharing. The LSA controller resides
in the network operator’s domain and controls the access



2

to the incumbent’s spectrum by following the instructions
received from the LSA repository. Each MNO has to have his
own LSA controller. Several trials of the LSA concept have
taken place in Europe 1 and have shown its applicability.
LSA is now under the final stages of standardization and
field validation [7] as regards the technical aspects, but
the specifics of how to allocate and price spectrum among
several potential secondary users remain open.

The LSA concept involves two major differences with
regard to the allocation of 3G or 4G spectrum to operators
(which already uses auction schemes). First, the allocation
needs to work at a faster time scale, since the availability of
LSA spectrum will be changed by the incumbent via the
LSA repository, possibly several times per hour, and the
regulator has to allocate the LSA spectrum for potential LSA
licensees as soon as the incumbent releases his spectrum in
order to improve the use of the spectrum. Second, spatial
re-usability (MNOs who do not interfere can use the same
spectrum bands simultaneously), should be leveraged. We
will in particular consider a scenario in which multiple base
stations of different operators compete for LSA spectrum at
a defined period of time in a particular geographical area;
no two interfering base station should be allocated the same
spectrum, which is ensured by dividing MNOs into groups
as will be detailed in Section 3.

A key objective for LSA is to allocate the spectrum in the
most efficient way, so as to maximize the resulting value
to the market. Since the LSA ecosystem involves several
actors (incumbent and MNOs) with nonaligned objectives,
one needs to define allocation and pricing schemes that are
robust to manipulation; hence the focus on auctions for that
task. To the best of our knowledge, there are only a few re-
search studies on auction mechanism design focused on the
LSA context. This paper aims at analyzing and comparing
auction schemes introduced in the literature for the specific
LSA context under different scenarios, as well as benefiting
from more general results on auctions ([8], [9]) to propose
alternative mechanisms. To compare mechanisms, we apply
the commonly used efficiency and fairness measures ([9],
[10]), in addition to the fulfillment of properties such as in-
centive compatibility (truthfulness) which intuitively means
that reporting true valuation as a bid maximizes one’s pay-
off, and individual rationality which ensures participants a
non-negative payoff.

The rest of this paper is organized as follows: after
summarizing the paper’s contributions, in Section 2 we
define what an auction mechanism is and describe some of
its desirable properties, while the system model we consider
is introduced in Section 3. Section 4 contains the main
contributions of this paper: under the assumptions made
in the literature, we review some proposed mechanisms,
adapting one to ensure truthfulness. We also adapt them to
include a per-buyer reserve price set by the auctioneer while
maintaining incentive properties, and numerically compare
those mechanisms with others from the literature in terms
of efficiency, revenue, and fairness. Section 5 investigates
the relaxation of a key assumption in the model: while
the mechanisms partition the base stations into separate
groups and allocate spectrum among groups, we consider

1. https://www.cept.org/ecc/topics/lsa-implementation

allowing overlapping groups (groups still covering all base
stations, but not necessarily in a partition). This relaxation
may improve efficiency of the allocation but complicates
the mechanism analysis (ensuring truthfulness becomes
harder). Indeed, the payment of each base station which
belongs to the winner group is a function of bids of other
losing group(s). When relaxing that assumption, a winner
base station could be also in another losing group(s) there-
fore its bid may impact its final payment. Finally, we provide
some concluding remarks and suggest some perspective for
future work in Section 6.

Contributions of the paper

The first auction mechanism which was proposed in the
LSA context is named LSAA [11]; we have shown that this
mechanism is not incentive compatible, and proposed PAM
[12], a truthful auction mechanism that outperforms LSAA
in terms of revenue and fairness. However, PAM relies on
the assumption that players will accept even an infinites-
imal portion of the LSA bandwidth. All the mechanisms
proposed in the literature specifically for LSA –reviewed
in Section 3.5– except PAM rely on the assumption that
each base station must belong to one and only one group
(for otherwise they are not incentive-compatible). The main
contributions of this paper can be summarized as follows:

• We show how to adapt PAM to a more realistic
setting: the regulator sets a minimum fraction α:
each player must get at least that amount or he gets
nothing.

• We design two new truthful spectrum auction mech-
anisms from the non-truthful LSAA, named TLSAA
and TLSAA2. We prove that the revenue generated
by TLSAA2 equals the second-highest bid and is thus
may be an attractive choice from the auctioneer’s
viewpoint.

• We show how to increase the revenue provided by
the proposed mechanisms, while maintaining truth-
telling, by introducing a reserve price per bidder.

• We give the regulator more flexibility in the group
construction by allowing each base-station to be in
multiple groups, and by showing how to adapt the
payment rules of the previous mechanisms, when
possible, for any group configuration, to maintain
truthfulness bidding without modifying the alloca-
tion rule.

2 AUCTION MECHANISMS AND DESIRABLE PROP-
ERTIES

In this section, we provide the definition of an auction mech-
anism, and of possible properties (goals) that a regulator
may want the mechanism to satisfy. Note that each designer
of an auction mechanism may be interested in a particular
subset of properties.

2.1 Auction mechanisms

We consider N strategic agents (“players”, or “bidders”)
wishing to acquire some–possibly divisible–goods.
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An auction mechanism takes some bids b = (b1, .., bN )
submitted by the players under a predetermined format,
and based on those bids, returns:

• an allocation of the good(s) among the bidders,
• a payment vector p = (p1, .., pN ), where pi is the

(possibly negative) price that player i is charged.

In this paper, we limit ourselves to direct auction mech-
anisms, i.e., mechanisms where the bid format contains all
the information to build the bidder’s utility function. This
is actually without loss of generality, due to the Revelation
Principle [8], and for our model will translate into bidders
declaring the price they are willing to pay per unit of
spectrum.

The objective of each player i is to maximize his own
objective function, which we call his utility and denote by
ui [13]. Since that utility depends on allocations and prices
(computed based on bids), it is reasonable to assume that
players will try to bid strategically to maximize their utility,
hence the need for the mechanism to take that behavior into
account.

2.2 Desirable properties for an auction scheme
In this paper, we will consider the following properties that
a mechanism may satisfy, which are the most used in the
literature [14], [15].

As for any multi-constraint problem, it is not possible to
jointly satisfy all properties, hence the auction designer has
to set a trade-off between them.

2.2.1 Revenue maximization
The revenue of the regulator, Rev, is the sum of payments
of all players:

Rev =
N∑
i=1

pi.

A mechanism maximizing that metric is desirable from
the seller’s point of view; such mechanisms are studied in
particular in [16].

2.2.2 Truthfulness
A mechanism is truthful or incentive compatible if and only
if for each player i, declaring truthfully one’s preferences
maximizes one’s utility given any fixed bids of the other
players.

2.2.3 Individual rationality
This property means that a player has a bidding strategy
that ensures him to get a non-negative utility, hence he is
always better off participating in the auction than staying
out of the mechanism.

2.2.4 Fairness of the allocation
There exist several measures of fairness [17]. In this paper,
we will use Jain’s index which is given by:

J(α) =

(
N∑
i=1

αi)
2

N
N∑
i=1

α2
i

,

with αi the quantity of good allocated to player i. This index
is a continuous function of the allocations, with values in
[ 1
N , 1]: it achieves its maximum 1 if all players obtain the

same amount, and is minimum and equal to 1
N if one and

only one player obtains some good. As another reference, a
situation in which a% of users receive equal allocation and
the remaining (100−a)% receive zero [18] gives a Jain index
of a/100. Motivated by those features we will use this index
to measure the fairness of a mechanism’s allocation.

2.2.5 Efficiency
We define efficiency as as the sum of the valuations served∑N
i=1 αivi [19], where vi is the valuation of player i for the

good. This means that the social value of the good being
sold equals the maximum of the potential buyers’ individual
valuations [20].

2.3 Truthfulness and minimal price
Truthfulness is very important because it reduces the com-
plexity of the game for players, since the strategies to play
are very simple (just declare one’s preferences). In particular,
that property induces some fairness in participation, in
the sense that wealthier players cannot get an edge over
competitors by implementing costly measures to optimize
their bidding strategy. Also, this property is desirable from
the auctioneer point of view: if one objective is efficiency, it
is simpler to base the allocation optimization on real utilities
rather than unfaithful ones.

Luckily, when bidders’ allocation is one-dimensional,
this property can be guaranteed in a quite general setting:
Myerson indeed showed in a lemma [16] that an alloca-
tion rule αi(b1, ..., bN ) is implementable (there is a truthful
payment rule that can be associated to it) if and only if
it is monotone. An allocation rule is monotone if for each
player i and bids b−i, αi(bi, b−i) is non-decreasing in bi,
where b−i = (b1, .., bi−1, bi+1, .., bN ). In addition, if we add
the constraint that a zero bid implies a zero payment, the
payment rule is unique.

Roughgarden details that payment rule in a case that is
particularly relevant for us [21]: given a piecewise constant
monotone allocation curve as shown in Fig. 2a, each player
i should pay a price as a function of the corresponding
breaking points (points at which i’s allocation changes) in the
range [0, bi]. Specifically, if there are X breaking points (zj)
then the payment is given by:

pi(bi, b−i) =
X∑
j=1

zj · (jump in α(., b−i) at zj) . (1)

This price corresponds to the greyed surface in Fig. 2a (X =
3). In particular, if there is one and only one indivisible item,
i.e., the allocation is either 1 or 0 as shown in Fig. 2b then
there is one and only one breaking point for each player, that
is his minimum bid to win the auction. As an example, in
the second-price auction the breaking point for each player
is the maximum bid of the other players.

In addition, without loosing truthfulness and in order
to protect himself from low revenues, the auctioneer may
introduce a “reserve price per bidder”, imposing in the
allocation rule that bids strictly below that price be allocated
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Fig. 2: Some piecewise constant monotone allocation curves
(solid curves). The grey area represents the price paid when
the bid bi has value b̂i.

no resource [22]. By applying Myerson’s result above (since
the allocation is still monotone), this involves that the per-
unit revenue from each player is at least that reserve price:
any bid strictly below it leading to a null allocation, the
breaking point(s) for each winning player must at least
equal that reserve price.

3 SYSTEM MODEL FOR LSA AUCTIONS

In this section, we instantiate the general auction framework
to the specific context of LSA auctions. More specifically, we
describe our model for players (here, operators and the reg-
ulator) preferences, and explain how the interference among
coverage areas is managed, through the definition of groups
of base stations. We then describe the general working of an
LSA auction scheme and present some auction mechanisms
which were proposed in that context.

3.1 Preferences of operators

We consider N base stations in competition to obtain spec-
trum under the LSA scheme. A given quantity of available
spectrum is auctioned, which we normalize to 1 w.l.o.g.,
and which we assume can be arbitrarily split among base
stations. We assume that each base station i = 1, ..., N
has a quasi-linear utility function, with a constant marginal
valuation vi for spectrum: if it obtains a fraction αi > 0 of
the available bandwidth and pays pi, his utility is:

ui(bi, b−i, vi) = αi(bi, b−i)vi − pi(bi, b−i).

Otherwise his utility is zero. Notice that we have assumed
indistinguishable channel properties [23], [24], i.e., base
stations are only sensitive to the amount of bandwidth–and
not to the specific bands–they can use.

Under those assumptions, the preferences of base station
i are completely characterized by the value vi, hence if each
base station is controlled by a different player (operator),
a direct auction mechanism would simply ask each one
to declare one’s vi. The truthfulness property would then
translate into players not being able to do better than
proposing a bid bi = vi, i.e.,

ui(vi, b−i, vi) ≥ ui(bi, b−i, vi) ∀ b−i.bi,

3.2 The utility of the regulator
In this paper, we assume the regulator is sensitive to the
revenue from the auction, the allocation’s fairness and effi-
ciency. More specifically, we suppose that, given a mecha-
nism, the normalized utility of the regulator UReg is of the
form

UReg = β1
Rev

Revmax + β2J(α) + β3
Eff

Effmax , (2)

where β1 is the the weight that the regulator puts on
revenue, β2 is the weight that he puts on fairness and β3
is the weight that he puts on efficiency. β = (β1, β2, β3),
β1 + β2 + β3 = 1, Revmax and Effmax are respectively the
maximum revenue and maximum efficiency over the set of
candidate mechanisms that we use to normalize the revenue
criterion in (2).

3.3 Grouping operators before the auction
We consider a scenario in which N base stations of different
operators compete over the LSA spectrum. Two base sta-
tions can use the same bandwidth simultaneously if they
do not interfere with each other. This can be captured in a
model by using an interference graph. Fig. 3 shows an exam-
ple of an interference graph: base stations are represented by
vertices, an edge between two vertices means that those base
stations interfere. For example, in Fig. 3 base stations {3,5}
can use the same fraction of bandwidth simultaneously. The
competition between theN base stations is transformed into
a competition between M groups in such a way that two
base stations in the same group k (the set of base stations in
that group is denoted by gk) do not interfere, hence the spec-
trum allocated to a group is used by all the members of the
group. The group creation is performed by the auctioneer
from the interference graph before the actual auction takes
place. An example of group constitution for the interference
graph of Fig. 3 is: g1 = {1, 2, 4, 6} and g2 = {3, 5}. Another
possible configuration is g1 = {1, 2, 4, 6}, g2 = {1, 2, 5, 6}
and g3 = {3, 5, 6}.

While the group formation has a non-negligible impact
on the auction’s outcome, in this paper (as in [11], [12], [25],
[26] that also rely on groups) we assume that the groups are
formed by the auctioneer, and advertised to bidders, before
any bids are submitted. We indeed focus here on how to
allocate the resource among groups, based on the submitted
bids.

Fig. 3: Some base stations with their coverage areas (left), the
corresponding interference graph (center), and two possible
group configurations (right).
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3.4 Steps of the auction
The main steps of all the auction schemes considered in this
paper are the same, and summarized as follows.

1) Group construction: from the interference graph,
the regulator constructs groups under the constraint
“two base stations in the same group do not inter-
fere with each other”;

2) Bid collection: bidders are asked to declare their
valuation;

3) Allocation: each base station is allocated some frac-
tion αi of the available spectrum (specific to the
mechanism used);

4) Payment: each player i is charged a price pi (specific
to the mechanism).

3.5 State of the art
In the following, we present some auction mechanisms
that have been proposed for LSA. In each case the allo-
cation to each group is based on its “groupbid”, which
is a mechanism-specific quantity. All the notations used
throughout the paper are given in Table 1. Note that for
all the mechanisms in this subsection –except for PAM– the
bandwidth is allocated to one and only one group: for each
player i, αi is either 1 (if i is a winning player) or 0.

R minimum per bidder price set by the auctioneer
M number of groups
N number of base stations
vi true valuation of base station i per bandwidth

unit
bi bid of base station i per bandwidth unit
b−i bids of all base stations except i
gk group k (a set of base station indices)
αi fraction of spectrum allocated to base station i
Bk sum of bids of gk ,

Bk =
∑
i∈gk

bi

BTot sum of the total bids of all groups,

BTot =
M∑
k=1

Bk

B−ig sum of bids of groups which i belongs to except

i’s bid, B−ig = (
M∑
k=1

Bk1i∈gk )− nibi

B−iTot sum of the total bids of all groups except i’s bid,

B−iTot = (
M∑
k=1

Bk)− nibi

TABLE 1: Notations.

3.5.1 TAMES
TAMES [25] computes the groupbid of each group k as
(|gk|−1) mini∈gk bi, where |gk| is the cardinal of group k. All
players of the highest-groupbid group are winners, except
the one with the lowest bid of that group. Each winning
player pays the same price, that is the lowest bid in their
group.

3.5.2 TRUST
TRUST [26] works quite similarly to TAMES. It computes
the groupbid as: |gk|mini∈gk bi. All players of the group
with the highest groupbid are winners. Winners pay eq-
uitably the second-highest groupbid (each winner pays a
proportion 1/|gk| of it).

3.5.3 LSAA
In LSAA [11], bids in each group are sorted in a non-
ascending order. The groupbid of a group gk is computed
as: maxi∈gk rank(bi)bi, where rank(bi) is the rank of player
i’s bid in the group. The authors define an index j such that:

j = max

{
rank(bl), l ∈ arg max

i∈gk
(rank(bi)bi)

}
. (3)

If gk is the winning group, then only players with rank
below or equal to j are winners. Winners pay the second
highest groupbid equally.

For TAMES and TRUST, the allocation is based on the
bidder with the lowest bid. This can extremely harm the
efficiency and the revenue. For LSAA, we have shown in
[12] that this mechanism is not always truthful, we therefore
adapt it in two different fashions in the next subsection.

3.5.4 VCG
In [22], we adapted the Vickrey–Clarke–Groves (VCG) ([27]–
[29]) mechanism to the LSA context i.e., given an efficient
allocation, we derive the payment for each player of each
group, eliciting truthful bidding. The principle of VCG is
to allocate resources to maximize the “declared” efficiency
(since computed based on submitted bids) and charge each
bidder the loss of declared welfare his presence causes to
the others. A way to implement VCG would be to compute
the groupbid of a group gk as

∑
i∈gk

bi; the winning group

is then the group with the highest groupbid. If a player
belongs to a losing group he pays 0 because whether he is
present or not the winning group is the same. If a player
belongs to the winning group gwin with group bid Bwin

then we can distinguish two cases: if his presence does not
change the outcome, i.e., B−iwin ≥ Bsecond (with Bsecond the
second-highest groupbid) then he pays 0 otherwise he pays
Bsecond −B−iwin. To summarize:

pV CGi = [Bsecond −B−iwin]+. (4)

That mechanism is known to be efficient, individually ratio-
nal, and truthful [9].

3.5.5 Proportional Allocation Mechanism (PAM)
In [12] we proposed PAM, which allocates to each group
k a fraction αk of the bandwidth in proportion to the
bids submitted by players belonging to that group i.e.,

αk =

∑
i∈gk

bi

BTot
. Each player i pays an amount computed to

ensure truthfulness, given by:

pPAM
i =

bi +B−ig

bi +B−iTot

R+

(
B−iTot −B

−i
g

)
(

ln
(bi +B−iTot

R+B−iTot

)
+
R+B−iTot

bi +B−iTot

− 1

)
,

(5)

where R is a reserve price per bidder set by the auctioneer,
that ensures that the per-unit price paid by each bidder is at
least R.
In [22], we have extended all the aforementioned mecha-
nisms by introducing a reserve price R per bidder while
maintaining truthfulness; the general method is detailed in
Proposition 4.
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4 PROPOSED MECHANISMS

This section introduces several alternative mechanisms that
we suggest could be applied to auction LSA spectrum. We
start by introducing PAMα which is an extension of PAM
after introducing a minimum amount α i.e., if a player i
gets a fraction αi 6= 0 then αi must be higher than α. Then
we present two new auction mechanism named TLSAA and
TLSAA2 which are two extensions of LSAA [11]. Finally we
show how to increase the revenue for any monotone and
all-or-nothing allocation rule. Note that in this section, we
make a key assumption, initially introduced by the schemes
proposed in the literature. This assumption is the following:

Assumption A. The grouping is made such that each base
station belongs to one and only one group.

In Section 5, we investigate the consequences of relaxing this
assumptions.

4.1 PAMα: guaranteeing winners get at least a mini-
mum amount of spectrum
In the following, we show how to make the mechanism
more suitable to be applied in real life, where very small
portions of spectrum might not be useful for operators. The
regulator fixes a minimum amount α: each player must get
at least that amount or he gets nothing. We call this exten-
sion PAMα. For the allocation, we keep excluding groups
with low group-bids (we start by the one with the lowest
group-bid) until obtaining a feasible allocation. Suppose
there are three groups, the first group is composed of two
players with bids 12 and 5 respectively. The second group is
composed of one player with bid 14 and the third group is
composed of one player with bid 15. Suppose that α = 0.4.
We start by computing the fraction allocated to group two
which is lower than 0.4 ( 14

46 < 0.4). Thus, group two will be
excluded and the final allocation is 17

32 for group one and 15
32

for group three.
In the following, we investigate PAMα’s efficiency.

Proposition 1. As α gets closer to 0.5, PAMα’s efficiency gets
closer to VCG’s efficiency. Moreover, when α ≥ 0.5, PAMα’s
efficiency is equal to VCG’s efficiency.

Proof. We denote by Mr the number of remaining groups
i.e., groups with allocation higher than α. We can distin-
guish three cases:

• α < 0.5, the maximum number of remaining groups

is
⌊

1

α

⌋
, and that as we increase α, we exclude groups

with low group-bids. Therefore, groups with high
group-bids will obtain more spectrum which leads
to increase efficiency.

• α = 0.5 in this situation Mr is either:

– 1, when the two highest group-bids have dif-
ferent value. In this situation the group with
the highest group-bid obtains all the available
bandwidth and we obtain the same efficiency
as VCG.

– 2, when the two highest group-bids are equal.
In this situation, each group obtains a fraction
equal to 0.5 (each bidder pays bi

2 ) and in this

situation we obtain the same efficiency as VCG
but we increase the fairness of the allocation.

• α > 0.5, all the available bandwidth must be al-
located to one and only one group. The remaining
group is the group with the highest group-bid (if
there are many, we choose one randomly). Therefore
we obtain the same efficiency as VCG.

We present in Appendix A the payment rule for this
extension.

4.2 TLSAA and TLSAA2 (extensions to LSAA)
As pointed out previously, the initial design of LSAA was
not truthful. We propose here two variants that are truthful,
and that can also be extended by adding a reserve price,
when seeking to optimize auctioneer’s revenue.

4.2.1 TLSAA
We preserve LSAA’s method of groupbid computation and
allocation, but propose a new payment rule which ensures
a truthful bidding: since the allocation rule is monotone, we
can implement the truthful payment rule given in (1). This
gives

pi = min{bi s.t. αi(bi) = 1}. (6)

We illustrate that rule with an example: suppose we have
two groups with bids respectively {20, 10, 9, 6, 3} and
{20, 8, 7}. The first group wins the auction since it has the
highest groupbid (with value 27). Let us compute the pay-
ment of the first player (the one with bid 20): by proposing
a bid lower than 5.25 player 1 would be a losing player
because the groupbid of his group would then be below
the second groupbid 21, and by proposing a bid higher
than 5.25 group 1 wins the auction. So Player 1 should
pay 5.25. Note that for the second and the third player the
same reasoning can be made and each one should pay 5.25,
however the fourth player should pay 0 because his group
is a winning group whether he is present or not (there is no
breakpoint for him).

In LSAA, the revenue is given by the second highest
groupbid. A question which may arise regards the revenue
of this modified version of LSAA. We show below that truth-
fulness comes at a cost, since revenue may decrease with
respect to the initial version (assuming truthful bidding).

Proposition 2. The revenue of TLSAA cannot be higher than the
second-highest groupbid.

Proof. We denote by gw the winning group. Let us define j′

such that:

j′ = max {rank(bi), i ∈ gw and rank(bi)bi ≥ Bsecond} . (7)

Consider a player i in the winning group:

• if rank(bi) is strictly above j′ then that player pays
0, because his group always wins whatever his bid
(there is no breaking point for him);

• if rank(bi) is below j′ then we can distinguish two
cases:
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1) if his group remains the winning group with-
out i’s bid, that player pays 0.

2) if his group is a loosing group if i is not there
(winning group only with his presence), his
breaking point is exactly Bsecond

j′ .

Hence the maximum revenue is Bsecond

j′ · j′ = Bsecond.

One may then wonder whether we can find an allocation
rule that ensures the same revenue as TLSAA. To reach that
goal, we propose TLSAA2, in which the group bid is defined
as in LSAA, but we modify the allocation rule and still apply
the payment rule ensuring truthful bidding, given in (1).

4.2.2 TLSAA2

The groupbid is calculated as in LSAA. The allocation rule is
defined as follows: a winning player should not only belong
to the winning group but also bid at least as high as player
j′ (see (7)). In turn, the payment rule is defined as follows:
each winning player pays

pi =
Bsecond

j′
. (8)

Through the following proposition we prove that TL-
SAA2 is a truthful mechanism with revenue achieved by
the seller equal to Bsecond.

Proposition 3. TLSAA2 is truthful with revenue equal to
Bsecond.

Proof. For the revenue, it is clear that it is equal to
Bsecond

j′ j′ = Bsecond. This payment rule ensures a truthful
bidding because the allocation rule is monotone (the alloca-
tion rule of TLSAA2 is just the allocation rule of TLSAA with
constraint given by (7)), and the payment rule corresponds
to Equation (1).

Table 2 summarizes state-of-the-art mechanisms as well
as mechanisms proposed in this article for truthful band-
width allocation auctions in the LSA context.

4.3 How to increase revenue?
In order to increase VCG’s revenue, authors in [30] have
introduced a reserve price per bidder. In a previous work in
[22], we have extended that approach for other mechanisms.
In the following proposition, we generalize [22] for any
mechanism with a monotone and all-or-nothing allocation
rule.

Proposition 4. Consider a mechanism denoted by Mec with a
monotone and all-or-nothing allocation rule (αi is either 0 or 1
for each player i). We denote by p′ the corresponding truthful
payment rule. For any non-negative value R, the mechanism
Mec′ defined as follows is truthful:

• the allocation rule α′ is simply the rule α, ignoring all
bids strictly below R;

• the payment rule consists in charging player i a price

p′i(bi) :=

{
max{R, pRi (bi)}, if α′i = 1

0, if α′i = 0,
(9)

with pRi (bi) the price given by the original mechanism
rule where bids strictly below R are ignored.

Mech. Groupbid Allocation Payment

TAMES (|gk| − 1)mini∈gk bi

group with
the highest
groupbid
except the

one with the
lowest bid

each
winning

player pays
the lowest
bid of his

group

TRUST |gk|mini∈gk bi

group with
the highest
groupbid

winners pay
the second

highest
groupbid
equally

VCG
∑
i∈gk

bi

group with
the highest
groupbid

see Eq. (4)

PAM
∑
i∈gk

bi

each group
obtains a

fraction in
proportion

to its
groupbid

see Eq. (5)

PAMα
∑
i∈gk

bi

each group
obtains
either a

fraction (at
least equal

to α) in
proportion

to its
groupbid or

nothing

see
Appendix A

TLSAA maxi∈gk rank(bi)bi

group with
the highes
groupbid

see Eq. (6)

TLSAA2 maxi∈gk rank(bi)bi

players (of
the group
with the
highest

groupbid)
and with

rank below
j′ see (7)

see Eq. (8)

TABLE 2: Summary of truthful auction mechanisms that can
be applied to allocate LSA spectrum.

Additionally, that modification ensures that the per-unit price paid
by players is at least R.

Proof. The allocation rule α′ is still monotone, therefore
there must exist a payment rule p′ which renders the mech-
anism truthful.

Let us fix a player i with valuation vi. If vi < R, bidding
truthfully ensures a utility equal to 0 otherwise he obtains
either a negative utility or a utility equal to 0.
We distinguish two cases for a winning player with vi > R:

• pRi (vi) ≥ R: this situation corresponds to the origi-
nal mechanism facing only bidders with valuations
above R, hence proposing a bid bi = vi maximizes
his utility.

• 0 ≤ pRi (vi) < R: bidding truthfully generates a
utility vi−R, any other bid bi leads to a lower utility
since the bidder would either get no resource (hence
utility 0), or still be a winner and pay at least R.

For a losing player, the outcome corresponds to the original
mechanism Mec (now facing only bidders with valuations
above R). Since Mec is truthful, and Mec’ only has larger
payments than Mec, bidding truthfully–and losing–remains
a best strategy.
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Hence, we can introduce to TLSAA and TLSAA2 a
reserve price per bidder and the payment rule for each
mechanism is given by (9).

4.4 Performance evaluation

This subsection compares the performance of the different
aforementioned truthful mechanisms (i.e. TAMES, TRUST,
TLSAA, TLSAA2, VCG, PAMα). The performance evalua-
tion is based on simulations. We are particularly interested
in average efficiency and fairness metrics, as well as in the
average revenue of the auctioneer.

4.4.1 Simulation settings

We recall that this section considers the scenario where each
base station belongs to one and only one group. We have
thus fixed two groups from the interference graph of Fig. 3:
g1 = {1, 2, 4, 6} and g2 = {3, 5}. The marginal valuations of
base stations are drawn from the uniform distribution over
the interval [0, 100].

For each extended mechanism and for each reserve price
R, we have computed the average (with respect to each
metric) over 10.000 draws.

4.4.2 Results

Simulation results (Fig. 4) show that PAM outperforms the
other schemes in terms of fairness. In terms of revenue,
Fig. 5 shows that TRUST could offer the highest revenue
by playing on the reserve price. In terms of efficiency, VCG
is efficient by construction.

In terms of fairness, we can observe that the curve is
non-increasing, this can be intuitively explained as follows:
as we increase the reserve price, we increase the number
of excluded players (with valuation lower than R). On
the other hand, the bandwidth will be allocated for the
remaining players (or for a set of the remaining players)
hence we increase the gap (of allocation) between players
which means Jain’s index decreases.

We also observe a non-monotonicity on the average
revenue and efficiency which can be explained as follows:
by increasing the reserve price the revenue from a player
i keeps increasing until reaching R = vi. Intuitively for
efficiency, as we increase the reserve price, bidders with low
valuations will be excluded and then players with higher
valuations will be allocated more resource, then we increase
the efficiency; however if we set a too high reserve price
then many players will be excluded, reducing efficiency.

In addition for PAMα, it offers higher efficiency and
lower fairness compared to PAM, this is natural since some
groups will be excluded (which leads to decrease fairness)
and the original fraction allocated to those groups (by PAM)
will be used by other groups with higher valuations (leads
to increase efficiency).

Simulations results show that, as aforementioned, there
is no one single mechanism which outperforms the others
at all metrics. Which mechanism to chose should be thus
based on the different weights given by the auctioneer to
each criteria. We further investigate on it and report several
simulation results on Subsection 5.2.
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Fig. 4: Average fairness as a function of the reserve price R
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5 EXTENSIONS OF THE PREVIOUS MECHANISMS:
A BASE STATION CAN BELONG TO MORE THAN ONE
GROUP

In this section, we consider relaxing the assumption made
previously by treating the case where the base station (BS)
grouping allows a base station to belong to several groups,
which should improve the efficiency of the allocation but
complicates the mechanism analysis (ensuring truthfulness
becomes harder).

Indeed, the assumption of allowing each BS to be a
member of only one group may appear to be restrictive
because by removing this assumption, i.e. allowing a base
station to belong to more than one group, we increase
efficiency: suppose that there is a base station which is not
causing interference to any other base station, clearly this
base station should belong to all groups. In the following,
we investigate the truthfulness of the previous mechanisms
when removing this restriction, by addressing the following
question: given the allocation rule and the hypothesis that
a player (BS) can belong to more than one group, is there a
payment rule such that those mechanisms are still truthful?
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We shall add a star to the original mechanism to denote the
new version. Note that the difference between Mechanism
and Mechanism* (if it exists) resides only in the payment
rule.

5.1 Candidate mechanisms are not all adaptable

In this subsection, we show that we can adapt all previous
mechanisms except TAMES and TLSAA2.
Before that, let us introduce the following proposition.

Proposition 5. Given a monotone allocation rule, if a player
belongs to all groups then he pays 0.

Proof. Direct application of Myerson’s lemma (there is no
breaking point for this player because he is always a win-
ning player).

We now analyse the extension of each one of the studied
mechanisms to the case where assumption A is relaxed.

• TAMES:
Under TAMES, all players of the group with the
highest groupbid are winners except the player with
the lowest bid. With the assumption that a player
can belong to more than one group, the allocation
rule is non-monotone. Indeed, consider a player with
valuation equal to 15, belonging to two groups with
bids respectively {15, 20, 25} and {8,9,15, 20}. Bid-
ding truthfully leads to a utility equal to 0 because he
is a loosing player. However, any bid lower than 12
leads to a higher utility because in that situation this
player is a winning player. Since the allocation rule
is not monotone anymore, we cannot find a truthful
payment rule.

• TRUST*
Under TRUST* all players of the group with the high-
est group bid are winners. Clearly, the allocation rule
is monotone. Thus we can find a truthful payment
rule. The breakpoint for player i is given by the
minimum bid that allows i to win the auction: for
each group k which i belongs to, we compute the
minimum bid, if it exists, which allows him to win
the auction.

• VCG*:
We propose to adapt VCG in this context. The win-
ning group is the group with the highest groupbid.
We denote by B−imax the highest groupbid of groups
to which i does not belong. If the player belongs to
the winning group gwin with groupbid Bwin then we
can distinguish two cases: if i’s presence does not
change the outcome i.e., B−iwin ≥ B−imax then he pays
0 otherwise he pays B−imax −B−iwin. To summarize:

pV CG∗i = [B−imax −B−iwin]+. (10)

• PAM*:
We denote by ni the number of groups which i
belongs to. The initial version of PAM in [12] was ac-

tually designed under this assumption. The payment
rule is given by:

pi =
nibi +B−ig

nibi +B−iTot

R+
B−iTot −B−ig

ni(
ln
nibi +B−iTot

niR+B−iTot

+
niR+B−iTot

nibi +B−iTot

− 1

)
.

(11)

• TLSAA*:
Under TLSAA* all players of the group with the
highest groupbid are winners. Clearly, the allocation
rule is monotone. Thus we can find a truthful pay-
ment rule. The breakpoint for player i is given by
the minimum bid that allows i to win the auction:
for each group k which i belongs to, we compute the
minimum bid, if it exists, which allows him to win
the auction.

• TLSAA2:
We cannot find a truthful payment rule since the
allocation rule is non-monotone, which can be seen
on the following example, with two groups with bids
respectively {15, 5, 3, 2.5} and {7, 5, 4}. Clearly the
player with the bid in bold (5) is a losing player
(the first group wins the auction and only the first
player is a winning player and he pays 12). However,
if player i proposed bi = 2.5 instead of 5 then he
would be a winning player because in this situation
all players of the first group would be winners and
each one pays 2.

Table 3 summarizes the different truthful mechanisms
for LSA with and without Assumption A.

Scenario Candidate truthful mecha-
nisms

Each base station belongs to one
and only one group

TAMES, TRUST, TLSAA,
TLSAA2, VCG, PAM

Each base station, can belong to
more than one group

TRUST*, TLSAA*, VCG*,
PAM*

TABLE 3: Candidate truthful mechanisms.

In the following we numerically evaluate the impact
of Assumption A. we compare Mec and Mec*, without
considering TAMES and TLSAA2 since as we have shown
they can not be extended preserving truthfulness.

5.2 Numerical evaluation
In this section we study the impact of assumption A on
each mechanism. Then for each mechanism we select the
reserve price and the configuration which maximizes the
utility of the regulator for a fixed value of β1, β2 and β3.
β vector and its components were defined in Section 3. We
have done the following simulations: we have fixed two
possible group configurations from the interference graph
of Fig. 3: In the first configuration C1, we have two groups
g1 = {1, 2, 4, 6} and g2 = {3, 5}. For the second configura-
tion C2 we have three groups g1 = {1, 2, 4, 6}, g2 = {1, 2, 5}
and g3 = {3, 5, 6}. The marginal valuations of base stations
are drawn from the uniform distribution over the interval
[0,100]. For each mechanism and for each reserve price R,
we have computed the average (with respect to each metric)
over 10000 draws.
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5.2.1 Impact of assumption A on the previous mechanisms
Results are shown on Figs. 7 to 10. As we can see from these
figures, for the all-or-nothing mechanisms, efficiency and
fairness are higher when a player can belong to more than
one group: the cardinal of the winning group will be higher
in average with this assumption, yielding larger fairness and
efficiency. Hence first conclusion is: if the regulator wants
to adapt an all-or-nothing mechanism and his objectives
are to maximize efficiency and fairness, he should choose
Mec* instead of Mec, i.e., construct groups by allowing base
stations to belong to several groups.

When the allocation is not all-or-nothing (PAM and
PAM*), it seems to be natural that efficiency and fairness
have opposite trends. First, if we increase efficiency then we
decrease fairness in average. Indeed, increasing efficiency
means that, in average, players with the highest valuations
obtain more allocation (and hence players with lower valu-
ations obtain less), i.e., the allocation gap between players
increases hence a smaller Jain index (fairness).

In terms of revenue, as we can see from those figures
for some reserve prices the revenue generated by Mec is
higher than the revenue generated by Mec*, and we have
the opposite for other reserve prices. Thus we are not able to
conclude whether Mec* is better than Mec* (or the opposite)
in terms of revenue.
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100

TRUST TRUST*

0 50 100

0

0.2

0.4

0.6

0 50 100

0

100

200

Fig. 7: Average revenue (left), fairness (center) and efficiency
as a function of the reserve price.

0 50 100
0

50

100

VCG VCG*

0 50 100

0

0.2

0.4

0.6

0 50 100

0

100

200

Fig. 8: Average revenue (left), fairness (center) and efficiency
(right) as a function of the reserve price.

5.2.2 Impact of assumption A on the utility of the regulator
Table 4 shows, for a fixed value of β, how the regulator can
maximize his utility by choosing a specific mechanism and
by applying an appropriate configuration and reserve price.
Also we provide the gain of the operator when assumption
A is relaxed i.e., how much his utility is increased compared
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PAM PAM*
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200

Fig. 9: Average revenue (left), fairness (center) and efficiency
(right) as a function of the reserve price.
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Fig. 10: Average revenue (left), fairness (center) and efficiency
(right) as a function of the reserve price.

(β1, β2, β3) Mechanism Configuration R UReg Gain
( 1
3
, 1
3
, 1
3
) VCG* C2 27 0.765 8%

(0.5, 0.5, 0) PAM* C2 46 0.7384 4%
(0.5, 0, 0.5) TRUST* C2 41 0.92 9.5%
(0, 0.5, 0.5) PAM* C2 0 0.8638 3%
(1, 0, 0) PAM* C2 56 1 2%
(0, 1, 0) PAM C1 0 0.94 ×
(0, 0, 1) VCG* C2 0 1 23%
(0.2, 0.2, 0.6) TLSAA* C2 16 0.845 14%

TABLE 4: Optimal mechanisms, reserve prices and configu-
ration for some specific values of β1, β2 and β3.

to the scenario in which there is only C1. In most cases the
extension increases the utility of the regulator except when
his objective is to maximize the fairness of the allocation
only: as mentioned before, PAM is the most fair mechanism
and it works better when each base station belongs to one
and only one group.

6 CONCLUSION

In this paper, we have designed new truthful auction mech-
anisms aimed at allocating spectrum in the context of LSA.
We have also studied the impact of an hypothesis found in
all the literature, i.e. ”each base station must belong to one
and only one group” on truthfulness and we have extended
previous studied mechanisms to the scenario in which this
hypothesis is relaxed by finding the corresponding payment
rule (if it exists) eliciting truthful bidding. The studied
mechanisms have different properties so the regulator can
choose one with respect to his preferences.

We have focused on sealed auctions i.e., all bidders
simultaneously submit sealed bids. In future works, we will
rather focus on ascendant open auctions; since they preserve
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the privacy of the winning bidder because the winner does
not reveal his valuation and they give bidders the opportu-
nity to adjust their valuations over the convergence phase.
We will also study the case in which the regulator has more
than one block to allocate, which complicates the auction
analysis.
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APPENDIX A
PAM’S PAYMENT WHEN INTRODUCING A MINIMUM
AMOUNT α OF SPECTRUM PER WINNER

We propose to develop the analytical expression of the
payment rule when introducing a minimum fraction α.
Roughgarden shows how to compute the payment when
the allocation is a monotone function [21]: it is equal to
the area bounded by the allocation curve and y = αi. As
an example, without that minimum amount, the traditional
payment rule of PAM is represented by the colored area in
Fig. 11.

Fig. 11: Payment of PAM: the black surface is the first

term of the payment (
bi+B

−i
g

bi+B
−i
Tot

R), the rest of payment, de-

noted by Si(B
−i
Tot, R,B

−i
g , bi), is represented by the grey

surface and equals Si(B−iTot, R,B
−i
g , bi) = (B−iTot − B−ig ) ×(

ln
( bi+B−i

Tot

R+B−i
Tot

)
+

R+B−i
Tot

bi+B
−i
Tot

− 1
)

.

Let us fix a player i, we denote by b∗i the minimum bid that
allows him to obtain α, if b∗i is lower than R then we set
it to R (and he gets more than α). We sort group bid of
other group in a non-decreasing order. Player i can exclude
some groups by increasing his bid. We suppose that player
i can exclude mi groups, i.e. there are (M − 1)−mi groups
excluded without the participation of player i. Without loss
of generality, we suppose that player i can exclude the first
mi groups (which are sorted in a non- decreasing order).
We denote by {c1, ..., cmi}, the breaking points, i.e. if player
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i proposes a bid higher that cj then group j (and groups
below) will be excluded. Also, B−iTot is rather B−iTot(bi). We
denote by

(
B−iTot

)0
the sum of all group bid except the bid of

player i, when player i does not exclude any group (of the
mi groups that he can exclude). We denote by

(
B−iTot

)j
the

sum of all bids after excluding group j (and groups below),(
B−iTot

)j
=
(
B−iTot

)0 − j∑
i=1

Bi. Let us compute those breaking

points: in order to exclude the first group the following
conditions must hold:

1) B1(
B−i

Tot

)0
+bi

< α

2) bi ≥ b∗i .

Thus, c1 = max{b∗i , B1

α −
(
B−iTot

)0}. In general cj =

max{b∗i ,
Bj

α −
(
B−iTot

)j−1}. We denote by l the number of
group excluded when bi = b∗i . The payment rule is given
by:

pi(bi) =


PPAM
i (bi,

(
B−iTot

)l
, b∗i ), if b∗i ≤ bi ≤ cl+1

pi(ck) + Ski (bi) + Jki (bi) if ck < bi ≤ ck+1,

k ∈ Jl + 1 ; m− 1K
pi(cmi) + Jmi

i , if bi > cmi

Where:

• PPAM
i (bi,

(
B−iTot

)l
, b∗i ) is equal to Equation (5) by

replacing R by b∗i and B−iTot by
(
B−iTot

)l
• Ski (bi) = Si

((
B−iTot

)k
, ck, B

−i
g , bi

)
• Jki (bi) = ck

(
bi+B

−i
g

bi+
(
B−i

Tot

)k − ck+B
−i
g

ck+
(
B−i

Tot

)k−1

)
• Jmi

i = cmi

(
1− cmi

+B−i
g

cmi
+
(
B−i

Tot

)mi−1

)
As an example if cl+1 < bi ≤ cl+2 then pi(bi) is equal to the
sum of the following terms:

• pi(cl+1) =

cl+1 +B−ig

cl+1 +B−iTot

b∗i +

(
B−iTot −B

−i
g

)
(

ln
(cl+1 +B−iTot

b∗i +B−iTot

)
+

b∗i +B−iTot

cl+1 +B−iTot

− 1

)
,

represented by the white area (S1) in Figure 12.
• J l+1

i (bi) =

cl+1

(
bi +B−ig

bi +
(
B−iTot

)l+1
−

cl+1 +B−ig

cl+1 +
(
B−iTot

)l),
represented by the black area in Figure 12.

• Sl+1
i (bi) =((

B−iTot

)l+1 −B−ig
)
×
(

ln
( bi +

(
B−iTot

)l+1

cl+1 +B−iTot

)l+1

+
cl+1 +

(
B−iTot

)l+1

bi +
(
B−iTot

)l+1
− 1

)
,

represented by the grey area in Figure 12.

Fig. 12: Payment of player i when cl+1 < bi ≤ cl+2.


