
HAL Id: hal-02870961
https://imt-atlantique.hal.science/hal-02870961v1

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-aware autonomic adaptation of microservices
placement on edge devices

Bruno Stévant, Jean-Louis Pazat, Alberto Blanc

To cite this version:
Bruno Stévant, Jean-Louis Pazat, Alberto Blanc. QoS-aware autonomic adaptation of microservices
placement on edge devices. CLOSER 2020 : 10th International Conference on Cloud Computing
and Services Science, May 2020, Prague, Czech Republic. pp.1-8, �10.5220/0009319902370244�. �hal-
02870961�

https://imt-atlantique.hal.science/hal-02870961v1
https://hal.archives-ouvertes.fr


QoS-aware autonomic adaptation of microservices placement on edge
devices

Bruno Stévant1, Jean-Louis Pazat2 and Alberto Blanc1

1IMT Atlantique, IRISA
2Univ Rennes, Inria, CNRS, IRISA

{bruno.stevant, alberto.blanc}@imt-atlantique.fr, jl.pazat@irisa.fr

Keywords: Edge computing, Performance modelization, QoS-aware placement, Particle Swarm Optimization, Microser-
vice application design, Adaptation strategies

Abstract: Given the widespread availability of cheap computing and storage devices, as well as the increasing popularity
of high speed network connections (e.g., Fiber To The Home (FTTH)), it is feasible for groups of users to share
their own resources to build a service hosting platform. In such use-case, the response-time of the service is
critical for the quality of experience. We describe a solution to optimize the response-time in the case of an
application based on microservices. This solution leverages the flexibility of microservices to dynamically
adapt the placement of the application workloads on edge devices. We validate this solution on a production
edge infrastructure and discuss possible strategies for the decision rules.

1 INTRODUCTION

Cloud@Home (Cunsolo et al., 2009) or Commu-
nity Clouds (Khan et al., 2014) are examples of sys-
tems of where users contribute with computing and
networking resources to a participatory infrastructure
capable of processing workloads such as services and
Virtual Machine (VM)s. Such systems can provide
an alternative to public clouds for users concerned
with data privacy and service continuity. Consider,
for example, a sport club willing to host community
services such as photo-sharing. Using a public cloud
provider to host these services is a free and appealing
solution, but data is stored by the provider, with po-
tential privacy violations. Furthermore, the provider
could unilaterally decide to modify or stop its service.

Participatory cloud solutions propose to use user-
owned resources on their premises and federate them
in a managed infrastructure comparable to a public
cloud. With such solutions, it is possible for a com-
munity, such the aforementioned sport club, to create
an infrastructure to support its online services with the
help of its members. We consider in this work the use-
case where some users shares the resources of devices
inside their residential network with the community.
The services will be executed in the runtime environ-
ment created by these devices connected throught the
Internet. Data for these services will reside on user
devices, thus alleviating privacy concerns. This in-

frastructure will stay operational as long as commu-
nity members provide resources.

When using such a solution, the application
response-time is a critical parameter for user satisfac-
tion (Egger et al., 2012). Efficient management of
such Quality of Service (QoS) parameters is a diffi-
cult task in this context because there is no possibility
to control the devices and networks. The only way
to influence the application response-time is to place
the application workloads on devices offering the best
performance. Applications based on microservices
can help in this endeavor as one can place each mi-
croservice independently as opposed to monolithic
applications.

In this work, we study a photo-sharing applica-
tion, decomposed in interdependent microservices as
depicted in Figure 1. The WebUI (UI) service pro-
vides a web photo gallery with thumbnails. The Pho-
toHub (PH) service stores the photos. The ThumbHub
(TH) service produces on demand thumbnails of pho-
tos. The MetaHub (MH) service stores photo meta-
data. We have previously shown (Stevant et al., 2018)
how the Particle Swarm Optimization (PSO) heuristic
can place each microservice on user-provided devices
to minimize the response time (weighted sum of re-
sponse times corresponding to different user cases, to
be precise), in a static case, i.e., where the different
parameters (Round Trip Time (RTT), bandwidth, etc.)
do not change over time.



Client UI PH

TH

MH

Figure 1: Call graph for the photo-sharing application

1.1 Problem statement

In the contribution mentioned above, the PSO heuris-
tic calculates placement solutions from known values
of the response-time for each microservice. However
these input values may vary according to the avail-
ability of computing resources and variations of net-
work QoS parameters (Nishio et al., 2013). These
parameters can fluctuate in the context of edge de-
vices connected to residential networks. A solution
found by the proposed heuristic will therefore result
in an near-optimal response-time but only as long
the system’s parameters do not change. We started
by measuring these parameters (downstream and up-
stream bandwidth, RTT) for devices connected to
various residential networks (Fiber, VDSL) and de-
vices connected to administrated networks (campus
lab, Virtual Private Server (VPS) in a datacenter). Fig-
ure 2 shows the variations of these parameters over
86 hours. We found that the QoS parameters, espe-
cially bandwidths, fluctuate significantly in residen-
tial networks because of concurrent usages of these
resources from other connected devices.

We characterized the impact of these variations of
the network QoS on the response-time of the photo-
sharing application by deploying its microservices on
the same devices used for the above measurements
according to the solution presented in (Stevant et al.,
2018). The devices are dedicated to this experiment,
therefore computing resources are always available
for the application. Figure 2 shows the variations of
the response-time of the application and of its mi-
croservices measured at the same time as the mea-
surements presented above. We observe that, during a
first part of this experiment, while the network QoS
parameters are fluctuating, the measured response-
time is almost stable. On the last part of the exper-
iment, changes observed in the QoS parameters of a
single device (VDSL) after 4000min. resulted in a in-
crease of almost 20% of the application.

We conclude from this experiment that variations
of network QoS parameters can have an important im-
pact on the response-time of the application. The de-

terioration we observed in the previous experiment is
sufficient to be perceived by the users. We propose,
as a solution to mitigate this, to dynamically adapt the
placement according to the variations of the network
QoS parameters. A solution for managing such adap-
tation needs to consider two main issues. The first
issue is to detect when an adaptation is needed. The
second issue is to specify a suitable alternative place-
ment of the microservices considering the current val-
ues of network QoS parameters.

1.2 Contribution

In this article, we describe an autonomic process for
adapting the placement of the microservices compos-
ing the application according to variations in the pa-
rameters influencing its response-time. As a solution
to the issues mentioned above, we propose to indi-
vidually monitor the response time of each deployed
microservice. We use these measurements to detect
when an adaptation of the placement is needed based
on pre-defined decision rules. We use again the PSO
heuristic with these measurements to find a new opti-
mized placement of the microservcies.

We validated our approach on an existing partic-
ipatory infrastructure with devices connected to pro-
duction networks on which we deployed the photo-
sharing application. We integrated probes in the de-
vices to monitor the different response-times and de-
tect any performance change. We tested different de-
cision rules for triggering the adaptation.

2 RELATED WORKS

To identify potential solutions to the mentioned
issues, we studied the litterature of three domains
closely related to our specific use-case. Differ-
ent approaches in the field of QoS-aware autonomic
resources management in cloud computing are re-
viewed in (Singh and Chana, 2015). They share
with our use case the same objectives of optimizing
and adapting the runtime environment of an appli-
cation according to variations of the underlying in-
frastructure. Solutions such as (Aryal and Altmann,
2018) and (Khorsand et al., 2018) target different
QoS parameters to be optimized, either user-oriented
(response-time, availability, throughput) or provider-
oriented (consumed energy). We found that these
solutions usually consider monolithic or at best 3-
tier applications, and static network QoS parameters.
These solutions will not fit our use-case, which in-
volves a multi-component application and variations
of network QoS parameters.



Figure 2: Measured QoS parameters for edge devices and response-time for application using these devices.

A possible option is to consider the architectural
model for a microservice based application as a com-
position of services. We therefore studied Service
oriented Architecture (SoA) adaptation solutions re-
viewed in (Mutanu and Kotonya, 2018). These so-
lutions commonly include network QoS parameters
in the criteria for selecting the optimal service lo-
cation (Cardellini et al., 2017)(Aschoff and Zisman,
2011). These solutions use different strategies for
adapting the composition, which try to avoid Service
Level Agreement (SLA) violations, either by predict-
ing such problems or reacting to detected violations.
To the best of our knowledge, no published work in
this area demonstrated how such strategies behave
when services are deployed on edge devices.

In (Brogi et al., 2019) the authors explore the
problem of placing services in the context of Edge
and Fog Computing, and reviewed several solutions
capable of dynamically adapting this placement
(Skarlat et al., 2018)(Zhang et al., 2016)(Yousefpour
et al., 2019). While they consider multi-component
applications deployed on edge devices, we found that
their adaptation mechanism only react to node arrival,
overload or departure, but not to variations of net-
work QoS parameters. Based on these related works,
we conclude that our contribution provides an origi-
nal solution to the problem of QoS-aware placement
adaptation of microservices on edge devices.

3 PROPOSED SOLUTION

We describe in this section a solution to optimize
the response-time of the application deployed on edge
devices, and to adapt the placement of the microser-
vices with the variation of the QoS parameters of the
network interconnecting these devices. We propose
an approach where the adaptation of the placement is
triggered by decisions based on measurements of the
response-time of the application. The different func-
tions involved in such decision are structured as repre-
sented in Figure 3, and follow the blueprint of an auto-
nomic system defined by IBM in (Kephart and Walsh,
2003). It defines the system as an iterative process
with interactions between the infrastructure where the
application is deployed, and a decision-making algo-
rithm structured in differents functions.

The Monitor function collects response-time mea-
surements from participating nodes. Devices act-
ing as clients of the application measure the global
response time of the application. Devices host-
ing the microservices of the application measure the
response-time for function calls between microser-
vices. These different measurements are stored in-
side Response-Time (RT) Matrices for further analy-
sis. The Analyze function calculates key indicators
from the different measured response-times. The De-
cision Rules, defined by the system administrator, use



Monitor
(RT Matrices)

Analyse
Decision

Rules

Plan
(PSO)

Execute
Adapt

placement

Keep placement

New
deployment

RT
measurements

Figure 3: Flowchart for an autonomic adaptation process

these indicators to decide on the necessity of an adap-
tation and, in such case, generates an alert. The Plan
function, triggered by this alert, specifies the adequate
actions to be taken to optimize the response-time of
the application. This function uses the PSO heuris-
tic to calculate a new placement of the microservices
from the values stored in the Response-Time (RT)
Matrices. Finally the Execute function deploys the
planned placement of the microservices and reconfig-
ure the application.

3.1 Reponse-time monitoring

The goal of this system is to optimize the response-
time of the application from the point of view of
the clients. The system monitors the application re-
sponse time by collecting measurements on the client
nodes. These nodes generate calls to the applica-
tion representing different user actions and measure
the time needed by the application to process each
of these calls. By collecting and aggregating the
response-times of the different user actions measured
by all of the clients nodes, the system can compute
a (weighted) average value representing the global
response-time of the application for the considered
clients.

The Monitor function collects the response-time
of each deployed microservice. Thanks to these mea-
surements it is possible to decompose the application
response time as the sum of the response times of
each one of the microservices involved in satisfying
a user request. The measurements of the response-
time for one microservice is stored in the response-
time (RT) matrice corresponding to this service. Each
response-time measurement is specific to a microser-
vice deployed on a particular node and requested from
another node. For the microservice s, Rs(i, j) gives
the value for the response-time of service located on
i when requested by client j. Once the Monitor func-
tion has collected sufficient measurements to compute
the global response-time of the application, the value
is forwarded to the Analyze function that will apply
rules to decide if an adaptation of the placement is
needed.

3.2 Decision rules

The Analyze function decides when adaptation is
needed based on the measured response-times and on
the rules defined by the system administrator. In this
article, we consider two different adaptation strate-
gies.

A first strategy (reactive), triggers the adaptation
when the monitored values are outside acceptable
boundaries . With such a strategy, it is possible for the
system to react to a deterioration of the response-time
of the application as observed in Figure 2. This reac-
tive strategy should define an appropriate threshold as
the least-acceptable response-time for the application.
This value can be a fixed number or computed from
previous measurements of the response-time.

A second strategy (proactive) continuously tries to
improve the response-time of the application even if
there is no observed deterioration. Indeed, as the net-
work QoS parameters are fluctuating, there is a possi-
bility that an alternative placement of the microser-
vices may result in a lower response-time than the
current deployment of the application. This proactive
strategy will trigger the evaluation of alternative so-
lutions when a sufficient amount of monitoring infor-
mation has been collected since the last deployment.

3.3 QoS-aware placement algorithm

The algorithm used in the Plan function is based on
the PSO meta-heuristic presented in (Stevant et al.,
2018). A first input parameter for this algorithm is the
call-graph of the microservices composing the appli-
cation, as shown in Figure 1 for the case of the photo-
sharing application. This workflow is required to cal-
culate the response-time of the different user requests
from the response-time of each microservice. A sec-
ond parameter of the algorithm is the list of the de-
vices serving as clients of the application. The place-
ment heuristic will find a solution that globally op-
timize the response-time of the application from the
point of view of these clients.

The PSO algorithm searches for a placement
among the different possible locations for each mi-
croservice of the application. Each placement solu-



tion is evaluated by calculating the expected response-
time of the application from values of the RT matri-
ces. The considered placement with the call graph
of the application gives the different nodes pairs in-
volved in the network communications implied by
the user-actions, hence the values of microservice
response-times to be aggregated to estimate the result-
ing response time. The PSO algorithm is able to find
a near-to-optimal solution lowering the response-time
in a relatively short time (a couple of seconds).

4 IMPLEMENTATIONS AND
RESULTS

To validate our approach in real conditions, we
deployed a test infrastructure of nodes connected to
residential networks where we can instanciate the mi-
croservices of our application. We managed the de-
ployement of the application through the adaptation
algorithm described in the previous section and ob-
served during different experiments how the different
strategies reacted to the variation of the QoS parame-
ters of these residential networks.

4.1 Testbed

We deployed a testbed using five PC-Engine APU2
small-factor computers and a VPS hosted in a data-
center. Table 1 describes the physical configuration
of the devices. A server orchestrates the deployment
of the application on designated devices. It remotely
manages the activation of the different microservices
of the application by instancing containerized images
through automation scripts. We used the same scripts
in our tests to automate the users requests to the ap-
plication, from the devices designated as clients.

The physical devices are connected to the Inter-
net through different edge networks. Table 2 de-
scribes their nominal values of network QoS parame-
ters. The deployed devices are dedicated to our tests,
therefore computing resources are always available
for the hoted microservices. However the network be-
tween each devices is shared first with the users traffic
on their residential network, then globally with other
traffic on the Internet. We already have shown the
impact of the sharing of this networking resources on
QoS parameters in Figure 2.

Device CPU Bogomips RAM
APU2 1x Emb.AMD 1GHz 2000 4 GB
VPS 1x Corei7 3GHz 6400 1 GB

Table 1: Devices physical configuration

4.2 Monitoring solution

In addition to the software required for microser-
vices deployment and operation, we integrated in
the devices a monitoring tool measuring the different
response-times of the services. Each request to a mi-
croservice is routed through a transparent proxy that
measures the response time for each request and then
forwards the result to a monitoring server. This server
centralizes all measurements and exposes them to the
adaptation algorithm as the Response-Time (RT) ma-
trices described in the previous section.

Before updating the RT matrices, the monitor-
ing server needs to correlate the different measured
response-time for each request. This computation is
required so that each value of the matrix Rs(i, j) de-
pends only on the QoS parameters between devices
i and j. As the proxy is located at the origin of the
request, the measured response-time includes the de-
lay for the request to reach the server, for the service
to process the request and finally for the response to
come back from the server to the client. The tran-
sit delay on the network for the request and the reply
is dependent of the QoS parameters specific to this
device pair. However, in the case of a microservice
calling another, the processing time includes the tran-
sit delay for a request to a different microservice be-
tween another device pair. In such case, the measured
response-time should be substracted of the delay im-
plied by this subsequent call before updating the ma-
trix.

To solve this issue, we managed decompose the
response-time for a specific request to the application
into individual response-times for each involed mi-
croservice by first identifying the request with a corel-
lation ID. The client of the application injects this
identifier as an extra parameter to its request. Each
microservice involved in the processing of this re-
quest copies the corresponding correlation ID in ev-
ery following requests. The measurement proxies in
the path forward the correlation ID to the monitoring
server along with the measured response-times. The
monitoring server is then able to correlate the differ-
ent response-times for each request, using the corre-
lation ID and the call graph of the application.

Network Device Up/Down BW RTT
FTTH1,2,3 APU2 100/100 Mbits 30ms

VDSL APU2 20/80 Mbits 40ms
Lab APU2 10/10 Mbits 10ms
DC VPS 100/100 Mbits 20ms
Table 2: Network QoS parameters of the testbed



4.3 Methodology for evaluation

We realized several experiments using the setup
described above to evaluate how much different
adaptation strategies can perform in optimizing the
response-time of the application with actual variations
of the QoS parameters in a production network. We
have chosen as comparison criterion between strate-
gies, the ratio of adaptations of the placement result-
ing in an improvement of the response-time of the ap-
plication.

We implemented the different adaptation strate-
gies inside the Analyse function of the architecture.
This function is realized inside a single process, con-
figured to apply a single strategy. This process ana-
lyzes the monitored response-time and decide if a new
placement for the microservices is needed. This pro-
cess interacts with the monitoring server to analyze
the values of the RT matrices and with the server man-
aging the microservices instances to trigger a new de-
ployment of the application. This new process com-
pletes the adaptation loop described in section 3.

Each experiment consists first in deploying the
photo-sharing application on the test infrastructure.
Due to the limited number of available devices, we
chose to deploy only a single instance of each of mi-
croservices. For this initial deployment, we chose a
random location for each instance. We also constrain
all deployments to deploy at most one microservice
on each device. By forbidding service collocation, we
want to maximize the impact of remote communica-
tions on the response-time of the application. The RT
matrices are initialized before each test with the actual
response-times, obtained from a sufficient number of
prior tests.

All the devices involved in the test infrastructure
serve as clients of the application. We automated the
generation of the client requests from the devices in
a round-robin scheme: a single device generates se-
quential requests corresponding to all possible user-
actions to the application before another device gen-
erates its own requests. The application processes
only one client request at a time, without any interfer-
ence from other concurrent requests. The measured
response-time for each user-action of the application
is measured by the client and forwarded to the mon-
itoring server. The monitoring server calculates the
global response-time of the application once every
clients have forwarded their measurements. By con-
tinuously generating user requests from the clients,
we can observe the variations of the response-time
and the impact of changes in network QoS. This
value, as well as values in the RT matrices are ana-
lyzed by the adaptation strategies.

4.4 Evaluation of a proactive adaptation
strategy

We first implemented a proactive adaptation strategy
based on periodic adaptations of the placement of the
microservices. This strategy originated from the as-
sumption that variations on the response-time may
follow a regular pattern as the volunteers use their net-
works in a predictable manner. We chose to trigger a
new adaptation of the placement of the service every
three hours. This time interval roughly corresponds
in our tests to the time needed for ten consecutive
tests from each client. The requests generated by the
clients update the RT matrices with new values for the
response-time of the microservices. When triggered,
the PSO heuristic will be able to find possible alterna-
tive placements based on up-to-date values.

We evaluated this proactive strategy on our test in-
frastructure through experiments running for a min-
imum of 50 hours. The observed variations of the
response-time of the application of one of the most
representative experiments involving the proactive
strategy are presented in Figure 4 (a). Adaptations
of the placement are represented in this graph using
vertical plain lines. We can observe that each adapta-
tion of the placement does not always result in an im-
proved response time of the application. We counted
that, over all the adaptations triggered by the proac-
tive strategy in our different experiments, only half of
them managed to improve the response-time.

We explain these unsatisfactory results by con-
sidering a possible inconsistency between some
response-times in the RT matrices and the actual
response-times measured with the new placement. In-
deed, even if the RT matrices have been updated by
prior measurements, some values might not be rele-
vant when a new placement is to be chosen, due to
variations of the network QoS parameters. There is
therefore a probability that the PSO heuristic, based
on these biased values, could choose a placement re-
sulting in a higher response-time than the previous
placement.

4.5 Evaluation of a reactive adaptation
strategy

We designed a new adaptation strategy to overcome
the problem found in the proactive strategy. This
strategy enables the system to trigger a new deploy-
ment of the microservices in the case of a deteriora-
tion of the response-time of the application. At each
iteration, the system evaluates the global response
time of the application and the strategy compares this
value with a threshold, corresponding to the worst



Figure 4: Variations of the application response-time with different adaptation strategies

acceptable response-time. We defined this threshold
from prior experiments as the average of the 10 last
global response-times multipled by 110%. If the cur-
rent global response-time for the application exceeds
this threshold, the strategy will trigger the selection
of a new placement of the microservices. We have
chosen to keep in this strategy the principle of a peri-
odic adaptation as a mean to continuously update the
values inside the RT matrices.

This strategy will be able to mitigate at least two
situations of response-time deviation. The first situ-
ation occurs when variations of the network QoS pa-
rameters have a significant impact on the response-
time. In such case, the values inside the RT matrices
should indicate which microservices are responsible
for the deviation of the response-time of the applica-
tion. Based on these values, the PSO heuristic will
disqualify these particular locations when selecting a
new placement. Another situation is the case when
a periodic adaptation results in a deterioration of the
reponse-time. The updated values in the RT matrices
should prevent PSO heuristic to choose a poor solu-
tion for this new adaptation.

We evaluated this reactive strategy on our test in-
frastructure using the same methodology as the pre-
vious strategy evaluation. Figure 4 (b) shows the
variations of the response-time of the application for
one of the most representative experiment. Periodic
adaptations of the placement are represented in this
graph using vertical plain lines. Adaptations triggered
by the reactive strategy are represented using vertical
dashed lines. We observed that most of adaptations
due to the reactive strategy occurred right after a pe-
riodic adaptation which resulted to a poor placement

solution. We also observed reactive adaptations due
to a deviation of the response-time corresponding to
variation of network QoS parameters.

In some cases, we noticed that the strategy trig-
gers repeated adaptations. During these iterations,
the placement proposed after a reactive adaptation
request did not result in an improvement of the
response-time. The strategy will therefore trigger
a new adaptation until an improvement can be ob-
served. To prevent an infinite-loop, we limited the
number of consecutive adaptations the strategy can
trigger. As a positive side effect, these tests of alter-
native placements enable the system to update others
values inside the RT matrices.

We performed several experiments to get a repre-
sentative view of the behavior of both strategies with
different network QoS variations. Table 3 presents
the key indicators extracted from these experiments.
This table shows that the reactive strategy presents a
higher ratio of adaptations resulting in an improve-
ment of the response-time than the proactive strategy.
It can be noted that the strategy can still make poor
choices. Indeed, even if the RT matrices are updated
more frequently, they still can present some inconsis-
tencies with current response-times.

Strategies Proactive Reactive
Elapsed Time (hours) 248 180

Adaptations 81 83
RT improvement > 10% 30 45
RT deterioration > 10% 27 16

Stable RT 24 21
Table 3: Key indicators for evaluated strategies



5 CONCLUSION AND FUTURE
WORKS

In this article we have considered the case of a
microservice-based application deployed on devices
distributed on the edge of the network. We observed
that variations of parameters on these edge devices,
such as network QoS, may impact the response-time
of the application. We proposed a solution to dy-
namically adapt the placement of the microservices
to these variations. The adaptation process we de-
scribed in this article is based on the knowledge of
the response-time of each microservice. These values
are directly measured by the devices participating to
the application and stored in RT matrices. The PSO
heuristic uses these values to propose adapted place-
ment solutions.

We evaluated on a production infrastructure two
strategies to decide when the system should adapt
the placement of the microservices. A first proac-
tive strategy tries to periodicaly adapt this placement.
We observed that half of the adaptations resulted in
a deterioration of the response-time. We explained
that, when such adaptation occurred, the RT matri-
ces were inconsistent with the actual response-times.
We proposed to supplement this strategy with a reac-
tive behavior which allows the system to trigger a new
adaptation in case of deviations of the response-time.
We concluded from our experiments that this strategy
gave satisfactory results.

We observed that the reactive strategy resulted in
consecutives iterations where several placements are
tested. These iterations led to a perceptible unstabil-
ity of the response-time of the application. To keep
a stable experience for the users, we propose, as an
improvement of the solution, to test these alternative
placements in parallel with the current deployment of
the application. Thanks to the flexibility of microser-
vices, a subset of the clients can transparently use an
alternative deployment of the application. Measure-
ments from the devices participating in this deploy-
ment will help the heuristic to find a suitable place-
ment solution.

REFERENCES

Aryal, R. G. and Altmann, J. (2018). Dynamic applica-
tion deployment in federations of clouds and edge re-
sources using a multiobjective optimization AI algo-
rithm. In Third International Conference on Fog and
Mobile Edge Computing (FMEC).

Aschoff, R. and Zisman, A. (2011). QoS-Driven Proac-
tive Adaptation of Service Composition. In Service-
Oriented Computing, Springer.

Brogi, A., Forti, S., Guerrero, C., and Lera, I. (2019). How
to Place Your Apps in the Fog – State of the Art and
Open Challenges. Software: Practice and Experience.

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S.,
Lo Presti, F., and Mirandola, R. (2017). MOSES:
A Platform for Experimenting with QoS-Driven Self-
Adaptation Policies for Service Oriented Systems. In
Soft. Eng. for Self-Adaptive Systems. Springer.

Cunsolo, V. D., Distefano, S., Puliafito, A., and Scarpa,
M. (2009). Volunteer Computing and Desktop Cloud:
The Cloud@Home Paradigm. In IEEE International
Symposium on Network Computing and Applications.

Egger, S., Reichl, P., Hoßfeld, T., and Schatz, R. (2012).
Time is bandwidth ? Narrowing the gap between sub-
jective time perception and Quality of Experience. In
IEEE International Conference on Communications.

Kephart, J. and Walsh, W. (2003). An architectural blueprint
for autonomic computing. Technical report, IBM.

Khan, A. M., Selimi, M., and Freitag, F. (2014). Towards
Distributed Architecture for Collaborative Cloud Ser-
vices in Community Networks. In 6th International
Conference on Intelligent Networking and Collabora-
tive Systems (INCoS’14). Salerno, Italy: IEEE.

Khorsand, R., Ghobaei-Arani, M., and Ramezanpour, M.
(2018). FAHP approach for autonomic resource pro-
visioning of multitier applications in cloud computing
environments. Software: Practice and Experience.

Mutanu, L. and Kotonya, G. (2018). What, Where, When,
How and Right of Runtime Adaptation in Service-
Oriented Systems. In Service-Oriented Computing –
ICSOC 2017 Workshops, Lecture Notes in Computer
Science, pages 30–42. Springer.

Nishio, T., Shinkuma, R., Takahashi, T., and Mandayam,
N. B. (2013). Service-oriented Heterogeneous Re-
source Sharing for Optimizing Service Latency in Mo-
bile Cloud. In First International Workshop on Mobile
Cloud Computing & Networking.

Singh, S. and Chana, I. (2015). QoS-Aware Autonomic Re-
source Management in Cloud Computing: A System-
atic Review. ACM Comput. Surv., 48.

Skarlat, O., Karagiannis, V., Rausch, T., Bachmann, K., and
Schulte, S. (2018). A Framework for Optimization,
Service Placement, and Runtime Operation in the Fog.
In 2018 IEEE/ACM 11th International Conference on
Utility and Cloud Computing (UCC), pages 164–173.

Stevant, B., Pazat, J.-L., and Blanc, A. (2018). Optimizing
the Performance of a Microservice-Based Application
Deployed on User-Provided Devices. In 2018 17th
International Symposium on Parallel and Distributed
Computing (ISPDC), pages 133–140.

Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X.,
Cankaya, H. C., Zhang, Q., Xie, W., and Jue, J. P.
(2019). FOGPLAN: A Lightweight QoS-Aware Dy-
namic Fog Service Provisioning Framework. IEEE
Internet of Things Journal, 6(3):5080–5096.

Zhang, W., Hu, Y., Zhang, Y., and Raychaudhuri, D. (2016).
SEGUE: Quality of Service Aware Edge Cloud Ser-
vice Migration. In 2016 IEEE International Confer-
ence on Cloud Computing Technology and Science
(CloudCom), pages 344–351.


