R. C. De-lamare, Massive MIMO systems: Signal processing challenges and future trends, URSI Radio Science Bulletin, vol.2013, issue.347, pp.8-20, 2013.

E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, Massive MIMO for next generation wireless systems, IEEE Communications Magazine, vol.52, issue.2, pp.186-195, 2014.

B. Hassibi and H. Vikalo, On the sphere-decoding algorithm I. expected complexity, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.2806-2818, 2005.

D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00369486

R. Hayakawa and K. Hayashi, Convex optimization-based signal detection for massive overloaded mimo systems, IEEE Transactions on Wireless Communications, vol.16, issue.11, pp.7080-7091, 2017.

, Reconstruction of complex discrete-valued vector via convex optimization with sparse regularizers, IEEE Access, vol.6, pp.66-499, 2018.

Y. Fadlallah, A. Aïssa-el-bey, K. Amis, D. Pastor, and R. Pyndiah, New iterative detector of MIMO transmission using sparse decomposition, IEEE Transactions on Vehicular Technology, vol.64, issue.8, pp.3458-3464, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01197389

Z. Hajji, K. Amis, A. Aïssa-el-bey, and F. Abdelkefi, Low-complexity half-sparse decomposition-based detection for massive MIMO transmission, 2015 5th International Conference on Communications and Networking (COMNET), pp.1-6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308364

Z. Hajji, A. Aïssa-el-bey, and K. Amis, Simplicity-based recovery of finite-alphabet signals for large-scale MIMO systems, Digital Signal Processing, vol.80, pp.70-82, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811519

M. Nagahara, Discrete signal reconstruction by sum of absolute values, IEEE Signal Processing Letters, vol.22, issue.10, pp.1575-1579, 2015.

A. Aïssa-el-bey, D. Pastor, S. M. Sbaï, and Y. Fadlallah, Sparsitybased recovery of finite alphabet solutions to underdetermined linear systems, IEEE Transactions on Information Theory, vol.61, issue.4, pp.2008-2018, 2015.

L. T. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, vol.133, issue.1, pp.23-46, 2005.

A. L. Yuille and A. Rangarajan, The concave-convex procedure, Neural Computation, vol.15, issue.4, pp.915-936, 2003.

J. Choi, Iterative receivers with bit-level cancellation and detection for MIMO-BICM systems, IEEE Transactions on Signal Processing, vol.53, issue.12, pp.4568-4577, 2005.

Y. Meslem, A. Aïssa-el-bey, and M. Djeddou, A simple ADMM solution to sparse-modeling-based detectors for massive MIMO systems, 1st Conference on Electrical Engineering, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02087659

E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted 1 minimization, Journal of Fourier Analysis and Applications, vol.14, issue.5, pp.877-905, 2008.

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014.