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Abstract—In this paper, we propose a new receiver for detect-
ing signals in large-scale Spatially Multiplexed (SP) Multiple-
Input-Multiple-Output (MIMO) systems that may have fewer
receive antennas than transmitted symbols (overloaded case).
Relying on the idea of Finite-Alphabet Sparse (FAS) detection,
we formulate the Maximum Likelihood (ML) criterion as a
Difference-of-Convex (DC) programming problem that can be
simply and efficiently solved using the Concave-Convex Proce-
dure (CCP) technique. Since, the considered problem is non-
convex, we theoretically discuss the behavior of the derived
algorithm. Numerical experiments confirm the superiority of the
proposed detection scheme, when compared with recent detection
methods based on convex optimization, in a variety of large-scale
MIMO transmission scenarios including the overloaded case.

Index Terms—Large-scale MIMO, Concave-convex optimiza-
tion, Finite-alphabet signals, Sparse representation.

I. INTRODUCTION

A detector that enjoys both sufficient accuracy and low-
computational cost is fundamental for achieving the great fea-
tures of large-scale (massive) Multiple-Input-Multiple-Output
(MIMO) systems [1]. These features, namely in terms of
channel capacity and high data rates are required for the
fifth generation of mobile networks (5G) [2]. Because of
the large system dimensions, the Maximum Likelihood (ML)
detector is computationally unrealizable. Moreover, classical
approaches applicable to conventional MIMO systems (with
few antennas) cannot be exploited in large-scale ones; either
for the growth in computational complexity or for the severe
degradation in performance. At one extreme, linear detector
like the Minimum Mean Square Error (MMSE) are attractive
from a computational-complexity point of view, but their Bit
Error Rate (BER) performance is far from being optimal. At
the other extreme, sphere decoder-based algorithms provide
an excellent BER at the cost of a burden computational
complexity [3].

Receivers, for Spatially Multiplexed (SP) large-scale MIMO
systems are usually designed under the assumption that the
number of receive antennas is at least equal to the number
of the transmit symbols. This assumption, however, cannot be
fulfilled in some interesting situations. For example, when a

Non-Orthogonal Multiple Access (NOMA) scheme is adopted
in up-link, the number of antennas Nr in the base station
may be fewer than the number of users’ terminals times their
number of antennas Nt.

Essentially motivated by the above, new detection schemes
that borrow compressive sensing (CS) [4] models based on
convex optimization have been recently proposed [5]–[9].
Interestingly, these detection schemes have shown an attractive
tradeoff between complexity and performance, together with
a remarkable efficiency in handling the overloaded case i.e.,
when Nr < Nt. For instance, the Iterative Weighted Sum
of Absolute Values (IW-SOAV) detector [5] is built upon
the convex Sum of Absolute Values (SOAV) method for the
reconstruction of sparse finite-alphabet vectors from incom-
plete linear measurements [10]. Thereby, at each iteration,
IW-SOAV updates the weights and solves a weighted SOAV
problem. It has been later extended to the so-called Iterative
Weighted Sum of Sparse Regularizers (IW-SCSR) to directly
handle complex-valued signals [6]. It worth mentioning that
the success, of both IW-SOAV and IW-SCSR, depends on
several parameters, which require a careful tuning along with
the detection problem instance. This may partially explain why
the use of these detectors for higher-order QAM signals has
not been yet investigated.

Contrary to IW-SOAV and IW-SCSR, detection schemes
presented in [7]–[9] are non-iterative, in the sense that, they
only require the solution of one convex optimization problem.
Detectors in [7], [8] are based on a convex relaxation of an
exact reformulation of the ML criterion obtained by adopting
the idea of Finite-Alphabet Sparse (FAS) detection introduced
in [11]. Similarly, the authors in [9], have used the simplicity
principle, in CS, to propose another convex criterion for
detecting signals in large scale MIMO systems.

In order to take more advantage of the ML reformulation
presented in [7], [8], we propose in this work, a new large-
scale SP-MIMO receiver based on a non-convex criterion.
More precisely, we formulate the detection problem as a
(smooth) Difference-of-Convex (DC) programming [12] prob-
lem. Then, we resort on the Concave Convex Procedure (CCP)



[13] to propose a simple and efficient algorithm. As we shall
see, this strategy results naturally in an iterative detection
scheme like IW-SOAV and IW-SCSR.

The rest of this paper proceeds as follows. In Section II,
we describe our data model. In Section III, we review the
FAS detection approach. We give a detailed derivation of
our detection scheme in Section IV. The examination of the
proposed detector through numerical experiments is presented
in Section V. Finally, we conclude this paper in Section VI.

Useful Notation: As a widely adopted convention, we
use uppercase boldface letters for matrices and lowercase
boldface letters for vectors. The ith standard unit vector of a
Euclidean space Rn is denoted as ei. We denote the d × d
identity matrix by Id and the all-ones vector of length d
by 1d. The symbols (·)T and (·)H stand for the transpose
and the Hermitian of a matrix(resp. vector), respectively. As
usual, <{·} and ={·} are used for the real part and the
imaginary part of a complex number (resp. vector), while | · |
is applied element-wise (for a vector) and denote the absolute
value. We use diag(x) to design diagonal matrices constructed
with the entries of a vector x. By the symbol ⊗, we denote
the Kronecker product. We denote the gradient of a smooth
function and the subgradient of non-differentiable function f at
a point x ∈ Rn as∇f(x) and ∇̃f(x), respectively. We denote,
the vector norms `1 and `2 by ‖ · ‖1 and ‖ · ‖2, respectively,
while the norm-like function `0 is denoted as ‖ · ‖0.

II. DATA MODEL

We interest in large-scale SP-MIMO systems where, Nt
different symbols are simultaneously transmitted using Nt
antennas and received by Nr receive antennas. We allow that
Nr < Nt, and we call the large-scale MIMO system in
this case overloaded or underdetermined. The communication
is done throughput a fading channel which is represented
by a matrix H ∈ CNr×Nt whose entries are independent
and identically distributed (i.i.d) standard complex Gaussian
variables. The observed vector y, at the receiver, reads

y = Hx + η, (1)

where, x ∈ MNt and M is the signaling set. The vector
η ∈ CNr represents the receiver noise and it follows a
complex multivariate Gaussian distribution with 0 mean and
σ2INr

covariance matrix. We further assume that no precoding
scheme is used, and that the Channel State Information (CSI)
is completely available at the receiver.

Since the elements of x are discrete, the optimal ML
detector maps to an integer least square problem given by

minimize ‖y −Hx‖22
subject to x ∈MNt .

(2)

It is well known that (2) is an NP-hard problem and thus,
there is no known polynomial-time algorithm which can solve
it exactly.

III. FINITE-ALPHABET SPARSE DETECTION

Before introducing our detection scheme, we review, in this
section, the FAS detection (transform-based) approach [11].
The core idea of FAS relies on a sparse decomposition of the
dense vector x of the transmitted data. To be concrete, let us
consider a symbol mi ∈M = {m1, . . . ,mL}. Using the fact
that M is finite, one can decompose mi as

mi = mTei.

Here, m = [m1, · · · ,mL]
T and ei ∈ RL is the sparse

representation of mi. It is straightforward to construct a
dictionary that sparsely represent x such that [7], [11]

x =
(
INt
⊗mT

)
s̃ = D̃s̃, (3)

where, s̃ ∈ RLNt is the sparse decomposition of x and D̃ is
the dictionary. Note that, the size of s̃ is L times higher than
that of x and hence, this decomposition is not so attractive for
higher-order alphabets [8]. For that, the so-called half sparse
decomposition has been proposed [8]. This representation is
performed in two steps. First, the QAM symbols are mapped
to BPSK points [14]. Then, the resulting BPSK symbols
are sparsely decomposed using (3). The size of the sparse
representation is now reduced to 2pNt, where, p = log2(L).

If the half-sparse representation is considered, the ML
detector has been proved to be equivalent to [7], [8]

minimize ‖y −Φs‖22
subject to Bs = 1pNt

‖s‖0 = pNt.
(4)

The matrix Φ = HD, where, D is now the dictionary and s is
the half-sparse representation of x. The matrix B = IpNt⊗12.

Problem (4) can be thought of as a sparse recovery problem
for which, a rich set of approaches has been developed in
the last two decades. For instance, the convex relaxation
approach based on substituting the non-convex `0 function
for its convex envelop (`1 norm) is popular. This approach
has been already used in [7] and [8] to formulate the large-
scale MIMO detection problem as a convex problem, which
can be exactly and efficiently solved by any available convex
optimization solver, such as the interior point [7], [8] or the
Alternating Direction Method of Multipliers (ADMM) method
[15]. Despite the good performance of these (convex) detec-
tors, and the effectiveness of the convex relaxation approach in
solving sparse recovery problems, a better method, however,
is to rely on non-convex techniques. This can be motivated,
for example, by the Reweighted `1 (RL1) approach, which is
known to outperform the convex `1 method [16].

IV. PROPOSED DETECTOR BASED ON CONCAVE-CONVEX
OPTIMIZATION

The RL1 method is based on approximating the norm-like
`0 with a certain smooth concave function [16], that promotes
more sparsity than the `1 norm. The resulting problem (af-
ter approximation) can be solved with general optimization
methods such as Majorization-Minimization (MM) algorithms
[16]. With this in mind, we derive, hereafter, our detector for
large-scale (possibly overloaded) MIMO systems.



A. Reformulation and approximation

Problem (4) can be rewritten, in a more convenient form,
as follows

minimize ‖y −Φs‖22 + τ‖s‖0
subject to Bs = 1pNt .

(5)

Note that, for some carefully chosen penalty parameter τ > 0,
problem (4) and (5) are equivalent.

One of the smooth concave functions that can well approx-
imate the `0 function is given by

h(s) =
2

π

2pNt∑
i=1

arctan

(
|si|
ε

)
, (6)

where, ε > 0 is a small number controlling the approximation
accuracy and 2

π serves as a normalization factor. Now, by
substituting ‖s‖0 for h(s), problem (5) can be converted to
the following minimization

minimize ‖y −Φs‖22 + τ h(s)
subject to Bs = 1pNt

.
(7)

Clearly, problem (7) fits into the class of DC programming
problems [12]. For solving such problems, the Concave-
Convex Procedure (CCP) [13] is a well suitable MM method.

B. Proposed Algorithm

CCP is an iterative procedure that solves a DC problem by
solving a series of convex problems. At iteration, say k + 1,
one solves a convex problem obtained through the linearization
of the concave part on the neighborhood of the solution at
iteration k [13].

The function h(s) can be majorized around a point u, thanks
to its concavity, as follows

h(s) ≤ h(u) +∇h(|u|)T (s− u). (8)

By using the majorization (8), it is not hard to see that, at the
(k + 1)th iteration, we solve the following convex problem

minimize ‖y −Φs‖22 + τ gk+1 (s)
subject to Bs = 1pNt .

(9)

Here, gk+1 (s) = ∇h(|sk|)T s. It is obtained by discarding the
terms of the left-hand side in (8) that do not depend on the
optimization variable s. A simple calculation shows that

gk+1 (s) = ‖Wks‖1, (10)

where, Wk = diag
([
wk1 , . . . , w

k
2pNt

])
is called the weights

matrix and wki = ε2

ε2+(ski )
2 ,∀i = 1, 2, . . . , 2pNt.

The proposed detector is detailed in Algorithm 1. It can be
regarded as a series of convex detectors weighted by Wk. It
is similar to IW-SOAV and IW-SCSR but with much simpler
and more natural way to update the weights.

It worth noting that, since Algorithm 1 is built upon CCP,
it is only a heuristic for (7). Thus, its convergence to a global
minimum, if it does, is not guaranteed. For that, we give
the proposition below in order to ensure that our algorithm
is a descent, or more precisely, a non-increasing algorithm.

Algorithm 1 Proposed concave-convex detector
Input: y,Φ, τ > 0, 0 < ε < 1

1: Initialization:
W0 := IpNt

2: while a halting creterion is not met do
3: sk+1 ∈ argmin

{
s ∈ R2pNt |

∥∥y −Φs‖22
+ τ ‖Wks‖1, Bs = 1pNt}

4: Wk+1 := diag

([
ε2

(sk+1
1 )

2
+ε2

, . . . , ε2

(sk+1
2pNt

)
2
+ε2

])
5: end while
6: x̂ := ΩM (Dŝ) # back to x domain and hard slicing

Output: x̂

This means that it can get better approximated solution as it
proceeds.

Proposition 1. Let the function F (s) denotes the objective
function in (7), i.e., F (s) = ‖y − Φs‖22 + τ h(s), and let
{sk}∞i=1 be the sequence generated by Algorithm 1. Then, we
have

F
(
sk
)
− F

(
sk+1

)
≥ 0.

Proof. For the ease of notation throughout the sketch of this
proof, let f(s) = ‖y −Φs‖2.

We begin with a basic fact about the convexity of −h(s)
(resp. the concavity of h(s)) which allows us to write

τ h(sk)− τ h(sk+1) ≥ −τ ∇h
(
|s|k
)T (

sk+1 − sk
)

(11)

By adding f
(
sk
)
− f

(
sk+1

)
to both sides of the inequality

(11) and by the definition of gk+1(s) (eq. (10) above), we can
lower-bound F

(
sk
)
− F

(
sk+1

)
in the following way

F
(
sk
)
− F

(
sk+1

)
≥ f

(
sk
)
− f

(
sk+1

)
+ τ gk+1

(
sk
)
− τ gk+1

(
sk+1

)
.

(12)

Being the solution of the convex problem (9) at the (k + 1)th

iteration, sk+1 satisfies the first-order optimality conditions
which read{

∇f
(
sk+1

)
+ τ ∇̃gk+1

(
sk+1

)
+ BTµ = 0

Bsk+1 = 1Nt
,

(13)

where, µ ∈ RpNt is the Lagrange multiplier associated with
the equality constraint. Left multiplying the first line in (13)
by
(
sk+1 − sk

)T
and using the fact that the scalar product is

commutative for real-valued vectors, we obtain

0 = −∇f
(
sk+1

)T (
sk − sk+1

)
−τ ∇̃gk+1

(
sk+1

)T (
sk − sk+1

)
− µTB

(
sk − sk+1

)
.

(14)

By the feasibility of sk, i.e., Bsk = 1pNt
, since it is the

optimal solution of (9) at iteration k, (14) reduces to

0 = −∇f
(
sk+1

)T (
sk − sk+1

)
−∇̃gk+1

(
sk+1

)T (
sk − sk+1

)
.

(15)



Now, by adding equation (15) side by side to inequality (12),
we get

F
(
sk
)
− F

(
sk+1

)
≥

f
(
sk
)
− f

(
sk+1

)
−∇f

(
sk+1

)T (
sk − sk+1

)
+ τ gk+1

(
sk
)
− τ gk+1

(
sk+1

)
− τ ∇̃gk+1

(
sk+1

)T (
sk − sk+1

)
.

(16)

Since f(s) is convex and smooth, it is always true that

f
(
sk
)
− f

(
sk+1

)
−∇f

(
sk+1

)T (
sk − sk+1

)
≥ 0, (17)

and by the definition of the subgradient, we have

τgk+1

(
sk
)
− τgk+1

(
sk+1

)
− τ∇̃gk+1

(
sk+1

)T (
sk − τsk+1

)
≥ 0.

(18)

Using (17) and (18), inequality (16) can be also lower-bounded
as F

(
sk
)
− F

(
sk+1

)
≥ 0. �

According to Proposition 1, the proposed algorithm is
monotonically non-increasing. On the other hand, the objective
function in (7) is always non-negative and hence, bounded
from below. Thus, we can conclude that Algorithm 1 con-
verges. However, this is not saying that it converges neither
to a global nor to a local minimum. Nevertheless, the above
proposition is important, since it guarantees that the proposed
detector will perform, at the worst case, exactly as the convex
detectors [7], [8], which are equivalent to the first iteration of
Algorithm 1.

The computational cost of the proposed algorithm depends
on how the convex problem (9) is solved. However, whatever
the adopted method, Algorithm 1 will always have the same
order of complexity as the convex detector in [8]. This is
because, in practice, Algorithm 1 needs only few number of
iterations to provide good performance. So, if an interior point
method is employed as in [8], the complexity of our algorithm
will roughly be O

(
p2N2

t (Nt +Nr)
3
2

)
.

V. COMPUTER EXPERIMENTS

In this section, we present some simulation results illus-
trating the BER performance of the proposed receiver. For
the sake of comparison, we consider the following detec-
tors. MMSE, the convex detector of [8], IW-SOAV [5] and
IW-SCSR [6]. In the figures, these detection schemes are
designed by ”MMSE”, ”Quad-min”, ”IW-SOAV” and ”IW-
SCSR”, respectively, while our detector is denoted by ”pro-
posed”. The parameters of IW-SOAV and those of IW-SCSR
are set exactly as stated in [5] and [6]. For example, the
regularization parameter α, for IW-SOAV, is set according to
the SNR per receive antenna as α = 0.01 when the SNR
is in range [0, 10] dB and 0.1 when it is in [12.5, 20] dB,
and the maximum number of iterations for the Rachford-
Douglas algorithm is 50. For IW-SCSR, the considered sparse
regularizer is h2(x) = ‖< (x) ‖1 + ‖= (x) ‖1 [6], and the
ADMM algorithm iterates for at most 100 iterations. The
parameter β [6, eq. (37)] is set to 15. We run both IW-SOAV
and IW-SCSR for 5 rounds, since this gives the best of their

Fig. 1. BER performance of 128× 128 MIMO system with QPSK

Fig. 2. BER performance of 128× 96 MIMO system with QPSK

performance [5], [6]. The convex relaxation-based detector
is solved with the help of the cvx package [17], which we
also use for solving the series of convex problems required in
our detection scheme. For all experiments, Algorithm 1 is run
exactly for 3 iterations.

Fig. 1 and 2 show the BER of a determined (128×128)
and an overloaded (128×96) large-scale MIMO systems, re-
spectively, transmitting QPSK signals. The parameters of our
detector, for this modulation set, are τ = 17 and ε = 0.1. As
it can be seen, the proposed detector is superior than all other
detection schemes. At BER = 10−4, it gains almost 3 dB
in the determined case and 4 dB in the overloaded scenario,
with respect to the convex detector. This confirm the descent
nature of Algorithm 1 (Proposition 1). Observe that, IW-SOAV
and IW-SCSR have very close performance. This is expected,



Fig. 3. BER performance of 96× 96 MIMO system with 16−QAM

Fig. 4. BER performance of 96× 90 MIMO system with 16−QAM

because they are equivalent for complex-valued symbols like
QPSK [6]. The unexpected behavior of IW-SOAV in some
SNR points, for the 128 × 128 configuration, may be due to
its parameters, which seem to require a tuning every-time the
transmission settings change.

Fig. 3 and 4 show the BER for 16-QAM modulation of
a 96 × 96 and a 96 × 90 MIMO system, respectively. IW-
SOAV is excluded from the comparison, since, beyond QPSK
alphabet, its parameters are not available. The parameters of
the proposed detector for 16−QAM are τ = 170 and ε = 0.01.
Again, the proposed detector shows the best BER performance
either for the determined (Fig. 3) or the overloaded case (Fig.
4), with a gain, for example, of about 4 dB at a BER of 10−4,
when compared to the convex detector. Note that, IW-SCSR
performs poorly for this signaling scheme.

VI. CONCLUSION

We have proposed a concave-convex criterion for detecting
SP signals in large-scale MIMO systems. We have also de-
veloped a simple and efficient algorithm based on CCP. The
proposed detection scheme is guaranteed to perform, at least,
as a convex relaxation-based detector. As a future work, we
want to investigate the impact of the parameters τ and ε on the
performance of our detector. Moreover, it will be important
to provide a stronger statement on the convergence of the
proposed algorithm. The use of simpler and more tailored
methods such as ADMM, for the solution of the convex
problems arising in our detection scheme, will certainly help
in further decreasing the computational cost.
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