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Abstract—With a convenient concatenation of a convex
relaxation-based detector and a simple greedy algorithm, we
propose an improved Post Detection Sparse error Recovery
(PDSR) approach for massive Multiple Input Multiple Output
(m-MIMO) systems that, in particular, transmit QAM signals.
The proposed PDSR approach can perform well in situations,
where the classical one, either acts poorly or completely fails. We
further propose an Alternating Direction Method of Multipliers
(ADMM)-based solver for the convex detector, which is advan-
tageous in maintaining an affordable complexity to the overall
proposed detection scheme. Numerical experiments show the
efficiency of our approach, especially when applied to overloaded
m-MIMO systems.

Index Terms—Massive MIMO (m-MIMO), Signal detection,
Convex optimization, ADMM, Greedy algorithms, Compressive
sensing,

I. INTRODUCTION

One of the challenging signal processing tasks for massive
Multiple Input Multiple Output (m-MIMO) systems is the
detection of the transmitted data. This is because, the opti-
mal Maximum Likelihood (ML) detector is computationally
intractable. Therefore, several suboptimal detectors based on
various approaches has been proposed in the literature. Among
them, linear detectors such as Minimum Mean Square Error
(MMSE), Sphere Decoder (SD)-based detectors, e.g. [1], the
Layered Tabu Search Algorithm (LTSA) in [2], detectors based
on the finite alphabet-sparse recovery approach [3] such as [4],
and the simplicity-based detector [5], to just name few.

Another approach for detecting m-MIMO signals refers to
as Post Detection Sparse error Recovery (PDSR) has been in-
troduced in [6]. It improves the accuracy of a (linear) detector,
as long as this detector induces an error that can be reasonably
modeled as a sparse signal. In a nutshell, the PDSR approach
is made up of two stages. In the first stage, a conventional
linear detector, usually MMSE, is employed to obtain an initial
estimate of the transmitted symbols. Then, in the second stage,
a greedy algorithm, which is a Compressive Sensing (CS) [7]
technique, is performed to correct the symbols that are missed
by the first detector [6]. In that way, this two-stage detection
approach can provide better Bit Error Rate (BER) performance

over the single-stage (linear) one, without a significant increase
of the computational cost [6].

In view of enhancing the performance of the PDSR ap-
proach, several techniques have been proposed [8]–[10]. In
[8], a method named Sparsity-Boosted Iterative Linear (SBIL)
is presented. It uses, in a first step, the Generalized Orthogonal
Matching Pursuit (gOMP) [11] greedy algorithm to only locate
the symbols that are falsely detected by MMSE. In the second
step, the locations of those erroneous symbols are isolated
to construct a reduced-size MIMO system, and the Zero
Forcing (ZF) detector is applied for correction. The process
is iteratively repeated until a stopping criterion is reached.
The work in [9] can be viewed as an extension to SBIL. Its
main idea is to concatenate several MMSE estimates of several
transmitted vectors in the first stage, before applying a sparse
retrieving technique. The objective is to get a good level of
sparsity that can make the application of a greedy algorithm
more efficient. In [10], the same idea of concatenation is
adopted, while the Multipath Matching Pursuit (MMP) [12]
is the chosen greedy algorithm, and SD is used to correct the
erroneously detected symbols.

While the aforementioned techniques outperform the origi-
nal PDSR approach (see for e.g. [9], [10]), their performance
are expected to severally degrade when they are applied to an
overloaded (underdetermined) m-MIMO system. The reason
for such expected behavior is simply the use of a linear
detector (MMSE) in their first stage. This is because, the
induced error of a linear detector cannot be guaranteed to be
sparse in those transmission scenarios. This makes the allover
PDSR approach to perform poorly or even completely fail.

In order to extend the PDSR approach to deal with situations
where the m-MIMO system is overloaded, and/or when it uses
a higher-order signaling, we propose the use of a convex
relaxation-based detector (non-linear) in the first stage. By
doing so, we guarantee that the induced error, to be treated in
the second stage, is reasonably sparse and thereby, it can be
efficiently retrieved by a simple greedy algorithm. In addition,
we suggest to solve the detection problem, in the first stage,
via an Alternating Direction of Multipliers Method (ADMM)



algorithm aiming at providing a comparable computational
cost to the conventional PDSR approach.

The rest of this paper is structured as follows. We give our
system model in section II. In section III, we formulate the
detection problem as a convex one and present our ADMM
based solution. In section IV, we suggest a simplified SBIL
algorithm to further enhance the performance of the convex-
based detector. Section V is devoted to simulation results, and
finally, we conclude this paper in section VI.

Useful Definitions and Notation: We define the orthog-
onal projection of a vector v onto a convex closed set D as
ΠD(v) = argmin

x∈D

(
1
2‖x− v‖22

)
, and the indicator function as

ID(v) =

{
0 v ∈ D
+∞ v /∈ D . We reserve uppercase boldface

letters for matrices and lowercase boldface letters for vectors.
We denote the d × d identity matrix by Id. The sets of real
and complex numbers are denoted by R and C, respectively.
We use <{·} and ={·} for the real and imaginary part of a
complex-valued vector, respectively. The symbol (·)H stands
for the Hermitian of a matrix (resp. vector). The compari-
son min(a,v), (resp. max(a,v)) where a is scalar, is done
element-wise.  =

√
−1.

II. SYSTEM MODEL

We consider a spatially multiplexed m-MIMO system with
Nt antennas transmitting Nt different symbols, and Nr anten-
nas for reception. The m-MIMO system is called overloaded
or underdetermined when, Nr < Nt. The channel response
is denoted by H ∈ CNr×Nt , and their elements are i.i.d ran-
dom variables distributed according to the standard complex
Gaussian distribution. The received signal y is given by

y = Hx + ν, (1)

where, x ∈ QNt and Q is the modulation set (alphabet).
The random vector ν ∈ CNt follows a multivariate complex
Gaussian distribution with zero mean and σ2INr

covariance
matrix, and it represents the receiver noise.

The ML detection problem reads

minimize 1
2‖y −Hx‖22

subject to x ∈ QNt .
(2)

Throughout this paper, we focus the m-MIMO detection
problem for L-QAM square alphabets, for which the ML
detection problem (2) can be equivalently written as

minimize 1
2‖y −Hx‖22

subject to <{x} ∈ ANt

={x} ∈ ANt .
(3)

The set A = {−a,−a+ 2, . . . , a− 2, a}, where a =
√
L− 1.

III. FIRST STAGE DETECTOR: CONVEX RELAXATION AND
ADMM SOLUTION

From CS perspective, the first stage detector, in PDSR,
plays the role of a sparse transform. It converts the dense
vector x into a sparse one, which is the difference between x
and its estimate [6]. In light of the foregoing, linear detectors

Algorithm 1 Proposed ADMM based algorithm
Input: z0 ∈ CN ,u0 ∈ CN , ρ > 0

1: preprocessig:
2: H̃←

((
HHH

)
+ ρINt

)−1
# save matrix inverse

3: ỹ← HHy # save a matrix-vector multiplication
4: k ← 0
5: while a stopping criterion is not met do
6: xk+1 ← H̃

[
ỹ + ρ

(
zk − uk

)]
7: zk+1 ← min

(
a,max

(
−a,<

{
xk+1 + uk

}))
+min

(
a,max

(
−a,=

{
xk+1 + uk

}))
8: uk+1 = uk + xk+1 − zk+1

9: k ← k + 1
10: end while
11: x̂← ΩQ(xK) # hard slicing
Output: x̂

cannot be, in general, considered as good sparse transforms
and therefore, a more reliable detector is required.

The convex relaxation trick is commonly used when dealing
with hard optimization problems like (3). The idea is to solve
a convex minimization problem that approximates the original
hard one. Usually, this technique results in a good approxi-
mate solution. By exploring this trick, we can formulate the
detection problem, in the first stage, as

minimize 1
2‖y −Hx‖22

subject to ‖< {x} ‖∞ ≤ a
‖= {x} ‖∞ ≤ a.

(4)

Here, we have relaxed the discrete set ANt into its convex
hull (the smallest convex set that contains ANt ), which is the
infinity ball B∞(0, a) of center 0 and radius a, defined as
B∞(0, a) = { x ∈ Rn | ‖x‖∞ ≤ a}. It worth mentioning that,
while it is relatively simple to understand the intuition why
B∞(0, a) is the convex hull of ANt , a rigorous proof, however,
is not that simple.

For the solution of (4), we rely on the ADMM framework.
This choice is motivated by the fact that applying ADMM
to well-structured convex problems leads to simple and low-
complexity algorithms [13]. We derive hereafter, our ADMM-
based solution to (4).

Problem (4), can be put in a split form, as follows

minimize 1
2‖y −Hx‖22 + IB∞ (<{x}) + IB∞ (={x})

subject to x = z,
(5)

where, z ∈ CNt is a dummy variable. Note that for lightening
the notation, we refer to B∞(0, a) hence-after, as simply B∞.
The scaled-form of the augmented Lagrangian associated with
(5) is given by

Lρ(x, z,u) =
1

2
‖y −Hx‖22 + IB∞ (<{x}) + IB∞ (={x})

+
ρ

2
‖x− z + u‖22, (6)

where, ρ > 0 is a parameter. ADMM proceeds in three steps.
An alternate minimization of the augmented Lagrangian (6)



Algorithm 2 Simplified SBIL
Input: x̂,H,y−1e = y,y0

e = y −Hx, S,Kmax
1: k ← 0
2: while

(
‖yke‖ < ‖yk−1e ‖ and k < Kmax

)
do

3: ẽk ← GA(yk−1e ,H, S) # Apply a greedy algorithm
4: xk ← x̂ + ΩE(ẽ

k) # Hard slicing with respect to E
5: yke = yk−1e −Hxk

6: k ← k + 1
7: end while

Output: ˆ̂x = xK

with respect to the primal variables; first x, then z, and finally
an update of the dual variable u.

a) x-update: At iteration (k+ 1), xk+1 is the minimizer
of Lρ

(
x, zk,uk

)
. Thus, to obtain xk+1, we solve

minimize 1
2‖y −Hx‖22 + ρ

2‖x− zk + uk‖22. (7)

The solution of (7) can be easily obtained using Wintiger
calculus [14] for differentiable functions on CNt , and hence,

xk+1 =
(
HHH + ρINt

)−1 (
HHy + ρ

[
zk − uk

])
. (8)

b) z-update: This step reduces to solve

minimize IB∞ (<{z}) + IB∞ (={z})
+ρ

2‖x
k+1 + uk − z‖22.

(9)

Observe that, problem (9) is separable in <{z} and ={z}.
Thereby, we only need to determine the projection of a real
vector onto B∞. This is given by the lemma below.
Lemma 1. The projection ΠB∞(v) of a vector v ∈ Rn onto
the set B∞ is given by

ΠB∞(v) = min (a,max (−a,v)) .

Proof. Here is one simple way to prove Lemma 1. The first
thing to notice is that projection problem can be equivalently
written as n separable optimization problems as follows

minimize (vi − wi)2
subject to |wi| ≤ a, ∀i = 1, . . . , n

We distinguish two cases. The first one is when |vi| ≤ a.
In this case, vi is already in the set [−a, a] and hence, its
projection is equal to itself, i.e., vi. The remaining case is
when |vi| > a. Here, the projection of vi is a when vi > a and
−a when vi < −a. This is so done to maximally diminishing
the objective function. By compactly writing those solutions,
we obtain the above formula. �

The proposed ADMM-based algorithm for solving (4) is
detailed in Algorithm 1. It worth mentioning that its com-
putational complexity is dominated by the matrix inversion,
which is required only once. The rest of operations require
at most O

(
N2
t

)
. Therefore, the estimated complexity of

Algorithm 1 is of the order O
(
N3
t

)
, which comparable to the

computational cost of linear detectors. Especially, if we know
that the average number of iterations required for Algorithm 1
to converge is about 40 in all the conducted simulations (see,
Section V).

IV. SECOND STAGE: SPARSE ERROR RECOVERY

In PDSR approach, the second stage is concerned with the
recovery of a sparse signal, which is the error e ∈ ENt induced
by the first stage detector. Mathematically,

e = x− x̂, (10)

where, x̂ is the output of the first stage detector. The set E is
called the error alphabet. By simple algebraic manipulations,
we get the reception model for e as

ye = He + ν, (11)

where, ye = y−Hx̂. Using (11), the goal now, is to recover
e in order to improve the performance of the convex-based
detector (Algorithm 1). Assuming that the first stage detector
is reliable-enough, e can be fairly considered sparse. Thus, for
an efficient recovery of e, one can resort on CS techniques in
order to solve the following sparse-recovery problem

minimize ‖ye −He‖22
subject to ‖e‖0 ≤ S,

(12)

where S is un upper-bound on the sparsity level of e.
Problems like (12) are, now, well-understood, and they are

efficiently solvable via various approaches. For a recent review
on these approaches, the interested reader may refer to [15].

Greedy algorithms are popular in solving sparse recovery
problems. They are characterized by their simplicity together
with their ability, under some conditions, to provide solutions
at the same order of accuracy as those obtained with other
approaches namely, convex-approximation [16]. Further, on
the side of computational complexity, they are attractive.

Based on the greedy approach, we propose an algorithm,
which we call simplified SBIL (Algorithm 2), to recover e. We
use a greedy algorithm such as gOMP [11] or the Compressive
Sampling Matching Pursuit (CoSaMP) [17], in an iterative
manner, as the SBIL method [8] does. We omit, however, the
ZF step and directly perform a hard slicing in order to simplify
and speed up the process. The stopping criteria are the same
as in SBIL, and we heuristically set S = dNt

10 e.

V. NUMERICAL EXPERIMENTS

In this section, the BER performance of the proposed
PDSR approach is demonstrated via numerical simulation. The
experiments are done for two QAM alphabets; a lower-order
4−QAM and a higher-order 16−QAM, and different system
dimensions (Nt ×Nr), where the focus is on the overloaded
case. The Rayleigh flat fading channel is considered. For
comparison purpose, we include MMSE (”MMSE”), the SBIL
method as it is introduced in [8] (”SBIL”) and the Itera-
tive Weighted Sum Of Absolute Values [18] (”IW-SOAV”),
which is a convex-optimization-based detection scheme for
overloaded m-MIMO systems, as references. The parameters
of IW-SOAV for both regularization and for the Rachford-
Douglas algorithm are set as stated in [18]. Also, we show
the BER curves of the proposed detector in the first stage
(”proposed (first stage only)”) to get an insight on the gain
when Algorithm 1 is concatenated with the simplified SBIL.



Fig. 1. BER performance of 128× 112 MIMO system with 4−QAM

Fig. 2. BER performance of 128× 96 MIMO system with 4−QAM

Figs. 1 and 2 show the BER curves of two overloaded m-
MIMO systems 128 × 112 and 128 × 96, respectively, both
transmit 4−QAM symbols. As expected, the conventional
PDSR (SBIL) performs poorly. Further, it is even far from
the performance of Algorithm 1 alone. As for the proposed
PDSR, it performs as well as the IW-SOAV method when
the gOMP is used. We should, however, mention that the
curves for IW-SOAV are obtained for 5 iterations. At each, a
convex optimization problem of the same order of complexity
as Algorithm 1, is solved, while the simplified SBIL runs at
most for 2 iterations. The gap of performance when, CoSaMP
is used, confirms the superiority of gOMP than other greedy
algorithms, as it can achieve better recovery probability for
signals of low-sparsity level [11]. Note that, the gain of
performance when the allover PDSR approach is employed
rather than the convex detector alone, is more than 4 dB in the
more overloaded case (128×96). This is due to the convenient
choice of the proposed convex detector as a sparse transform.

In, Fig. 3 and Fig. 4, we show the BER performance of
two m-MIMO systems using 16-QAM alphabet. The first is
a determined 96 × 96 system and the second is an overload
96×90 one. IW-SOAV is no more included in the comparison,

Fig. 3. BER performance of 96× 96 MIMO system with 16−QAM

Fig. 4. BER performance of 96× 90 MIMO system with 16−QAM

since its parameters for this signaling scheme are not available.
Once more, the proposed approach performs well in both
cases. It improves about 4 dB on Algorithm 1, while the
classical PDSR completely fails. Again, this failure is because
of the use of a linear detector as a sparse transform. Note
that the gap between gOMP and CoSaMP reduces and they
performs the same in the overloaded case. This may be
explained by the fact that the sparsity-level of the error, that
the convex detector provides, for those transmission scenarios,
is in the range where CoSaMP and gOMP have the same
performance [11].

VI. CONCLUSION

We have proposed an improved PDSR approach for de-
tecting QAM signals in m-MIMO systems. The proposed
approach relies on a convex detector, that, on one hand, can
efficiently transform dense QAM signals into sparse error
vectors, even in overloaded transmission scenarios. And on the
other hand, can be solved with a low-complexity algorithm,
thanks to ADMM. The conducted simulations demonstrate that
the proposed approach can be competitive to existing detection
methods for m-MIMO signals, namely in the overloaded case.
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