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ABSTRACT

Designing appropriate variational regularization schemes is a crucial part of solving inverse problems,
making them better-posed and guaranteeing that the solution of the associated optimization problem
satisfies desirable properties. Recently, learning-based strategies have appeared to be very efficient
for solving inverse problems, by learning direct inversion schemes or plug-and-play regularizers
from available pairs of true states and observations. In this paper, we go a step further and design
an end-to-end framework allowing to learn actual variational frameworks for inverse problems in
such a supervised setting. The variational cost and the gradient-based solver are both stated as
neural networks using automatic differentiation for the latter. We can jointly learn both components
to minimize the data reconstruction error on the true states. This leads to a data-driven discovery
of variational models. We consider an application to inverse problems with incomplete datasets
(image inpainting and multivariate time series interpolation). We experimentally illustrate that this
framework can lead to a significant gain in terms of reconstruction performance, including w.r.t. the
direct minimization of the variational formulation derived from the known generative model.

1 Introduction

Solving an inverse problem consists in computing an acceptable solution of a model that can explain measured
observations. Inverse problems involve so-called forward or generative models describing the generation process of
the observed data. Inverting a defined forward model is frequently an ill-posed problem. This leads to identifiability
issues, which means that naive inversion schemes based on direct least squares inversion do not yield a neither good
nor unique solution. The variational framework is a popular approach to solve inverse problems by defining an energy
or cost whose minimization leads to an acceptable solution. This cost can be broken down into two terms: a data
fidelity term related to a specific observation model and a regularization term characterizing the space of acceptable
solutions. From a Bayesian point of view, one finds a trade-off between the data fidelity term and the regularization
term specified independently from a particular observation configuration. The solution sought is then the Maximum a
Posteriori (MAP) estimate of the state, given the observation data. In such approaches, the prior or regularization term
is specified regardless of the observation configuration.
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Figure 1: Solvers’ energy pathways depending on the regularization term: when considering a predefined PCA-
based regularization, the minimizer of the corresponding variational cost (magenta, dashed) may not converge to
the expected hidden state especially for partially-observed data as illustrated here for an inpainting example. Using
an end-to-end formulation, we may learn a gradient-based solver (magenta, solid) to improve the reconstruction
performance. It may be further improved when simultaneously learning the variational cost and the associated solver,
here using a CNN-parameterized cost (cyan). In such cases, we expect a gradient descent (dashed) and the trained
solver (solid) to converge to similar solutions, the latter in very few steps (here, 15).

For a given inverse problem, it is then necessary to specify accurately the observation model, to define an appropriate
regularization term and to implement a suitable optimization method. These three steps are the key elements in solving
an inverse problem using variational approaches. An important issue is that there is no guarantees in general that
the solution of the resulting optimization problem is actually the true state from which the observed data have been
generated (see Fig.1). This mismatch can have several causes: discrepancy between the forward model and the actual
data generation process, unsuitable regularization term or optimization algorithm stuck in a local minimum.

In this article, we address the design and resolution of inverse problems as a meta-learning problem [18]. With an
emphasis on partial-observed data, our main contributions are as follows: (i) a versatile end-to-end framework for
solving inverse problems by jointly learning the variational cost and the corresponding solver; (ii) experiments showing
that learned iterative solvers can greatly speed up and improve the inversion performance compared to a gradient descent
for predefined generative models; (iii) experiments showing that the joint learning of the variational representation and
the associated solver may further improve the reconstruction performance, including when the true generative model is
known. We also provide the accompanying Pytorch code for our results to be reproducible2.

2 Background

The resolution of inverse problems is classically stated as the minimization of a variational cost [5]

x̂ = arg min
x∈X

UO(x, y) + UR(x) (1)

where x is the unknown state, y an observation, UO the data fidelity term which relates the unknown state to the
observation and UR a regularization term. The latter aims at turning the ill-posed inversion of the observation into a
solvable problem.

As case-study, we focus on problems where the observation only conveys a partial information about the true state:
especially x and y live in some space X and observation term writes as UO(x, y) = ‖x− y‖2Ω, where Ω is the domain
where observation y is truely sampled3. Ω may for instance refer to a spatial domain in image interpolation and
inpainting problems [10], to components of variable x in matrix completion [7] and data assimilation problems [6, 7].
Regarding the regularization term, a variety of approaches have been proposed, including gradient norms among which
the total variation UR(x) = ‖∇x‖ [5, 2], dictionary-based terms [12, 23] or Markov Random Fields [27, 16]. Most of

2The code of the preprint is available at https://github.com/CIA-Oceanix/DinAE_4DVarNN_torch
3‖x‖2

Ω refer to the squared norm of x over domain Ω, e.g. ‖x‖2
Ω =

∫
Ω
x(p)2dp for scalar images.

2
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these terms may be rewritten as UR(x) = ρ (x− Φ(x)) where ρ is typically the L1 or L2 norm and Φ a projection-like
operator. Overall, we consider a variational functional UΦ for partially-observed data given by

UΦ (x, y,Ω) = λ1 ‖x− y‖2Ω + λ2 ‖x− Φ(x)‖2 (2)

where λ1,2 are preset or learnable scalar weights. Given some parameterization for operator Φ, the minimization of
functional UΦ usually involves iterative gradient-based algorithms, for instance iterative updates given by x(k+1) =
x(k) − α∇xUΦ(x(k), y,Ω) where∇xUΦ is the gradient operator of function UΦ w.r.t. state x, typically derived using
Euler-Lagrange equations [5]. For inverse problems with time-related processes, one may consider the adjoint method,
at the core of variational data assimilation schemes in geoscience [6]. Interestingly, using automatic differentiation
tools as embedded in deep learning frameworks, the computation of this gradient operator is straightforward given that
operator Φ can be stated as a composition of elementary operators such as tensorial and convolution operators and
non-linear componentwise activation functions.

As detailed hereafter, this property provides us the basis for designing fully-learnable end-to-end formulations, which
combine an explicit variational representation (2) and an iterative gradient-based solver (4) to address the reconstruction
of the unknown state x from observation y.

3 End-to-end learning framework

This section presents the proposed end-to-end framework for the joint learning of variational representations and
associated solvers for inverse problems with partial observations. We first introduce in Section 3.1 the considered
parameterizations for operator Φ in (2), the proposed end-to-end architecture in Section 3.2 and the learning strategy in
Section 3.3.

3.1 Neural network representations for operator Φ

The design of neural network (NN) architectures for operator Φ is a key component of the proposed framework. We
may distinguish physics-informed and purely data-driven representations. Regarding the latter, dictionary-based or
auto-encoder representations [12] lead to operator Φ parameterized as Φ(x) = φ(ψ(x)) with ψ a mapping from the
original space to a lower-dimensional space and φ the inverse mapping.

Here, the assumption that the solution lies in a lower-dimensional space may be fairly restrictive and typically result in
smoothing out fine-scale features in signals and images. We may rather exploit a NN architecture whose inputs and
outputs have the same dimension as state x, including any architecture Ψ proposed for directly solving the targeted
inverse problem as x = Ψ(y) as in plug-an-play approaches [25, 22, 32]. As an example, for the sake of simplicity, we
consider across all case-studies a two-scale CNN architecture (subsequently denoted 2S-CNN):

Φ(x) = Up (Φ1 (Dw(x))) + Φ2(x) (3)

where Up and Dw are upsampling (ConvTranspose layer) and downsampling (AveragePooling layer) operators. Φ1,2

are CNNs combining convolutional layers and ReLu activations.

Regarding physics-informed representations, numerous recent studies have stressed the design of neural networks
based on ordinary and partial differential equations (ODE/PDE) [28, 8]. Especially, neural ODE representations come
to parameterize operator Φ as Φ(x)(t + ∆) = φ(x(t))with ∆ the integration time step and φ the one-step-ahead
integration of the considered ODE.

3.2 End-to-end architecture

The proposed end-to-end architecture consists in embedding an iterative gradient-based solver based on the considered
variational representation (2). As inputs, we consider an observation y, the associated observation domain Ω and some
initialization x(0). Following meta-learning schemes [3], the gradient-based solver involves a residual architecture using
a LSTM. More precisely, the kth iterative update within the iterative solver is given by g(k+1) = LSTM

[
α · ∇xUΦ

(
x(k), y,Ω

)
, h(k), c(k)

]
x(k+1) = x(k) −H

(
g(k+1)

) (4)

where g(k+1) is the output of an LSTM cell using as input gradient ∇xUΦ(x(k), y,Ω) for state estimate at iteration
k, h(k), c(k) the internal states of the LSTM, α a normalization scalar andH a linear or convolutional mapping. Let
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us denote by Γ this iterative update operator and ΨΦ,Γ(x(0), y,Ω) the output of the solver given initialization x(0),
observation y and observed domain Ω.

Overall, the end-to-end architecture ΨΦ,Γ involves a predefined number of iterative updates typically from 5 to 20 in
the reported experiments. We may consider other iterative solvers, including fixed-point procedures and other recurrent
cells in place of the LSTM cells [13]. Experimentally, the latter was more efficient. The total number of parameters
of the proposed end-to-end architecture comprises the parameters of operator Φ, weights λ1,2 and the parameters of
gradient-based update operator Γ.

3.3 Joint learning scheme

Given pairs of observation data (yn,Ωn) and hidden states xn, we state the joint learning of operator Φ and solver
operator Γ as the minimization of a reconstruction cost:

arg min
Φ,Γ

∑
n

L (xn, x̃n) s.t. x̃n = ΨΦ,Γ(x(0)
n , yn,Ωn) (5)

where L(x, x̃) = ν1‖x− x̃‖2 + ν2‖x− Φ(x)‖2 + ν3‖x̃− Φ(x̃)‖2,∀x, ∀y ∈ X combines the reconstruction error of
the true state with the projection errors of both the reconstructed state and the true state through weights ν1,2,3. Given
the end-to-end architecture ΨΦ,Γ, we can directly apply stochastic optimizers such as Adam to solve this minimization.
Obviously, we may also consider a sequential learning scheme, where operator Φ is first set a priori or learned according
to reconstruction loss

∑
n ‖xn − Φ(xn)‖2, and the above minimization is carried out w.r.t. Γ only, Φ being fixed.

All reported experiments have been run using Pytorch and the Adam optimizer for the learning stage. Regarding
the gradient-based solver, we gradually increase the number of gradient-based iterations during the learning process,
typically from 5 to 20. Weights ν1,2,3 are set to 1., 0.05 and 0.05. When jointly learning operators Φ and Γ, we use a
halved learning rate for the parameters of operator Φ.

4 Results

We run numerical experiments to illustrate and evaluate the proposed framework. We consider two different case-studies:
image inpainting with MNIST data and the reconstruction of downsampled signals governed by ODEs. The latter
provides us with means to investigate learnable variational formulations and solvers when the true model which governs
the hidden states is known.

Model Φ
Joint

learning Solver R-Score I-score P-score

DICT No OMP 0.25 0.90 0.21
No Lasso 0.20 0.71 0.21

No FSGD 0.39 1.09 0.12
PCA No LSTM-S 0.15 0.54 0.12

Yes FP(1) 0.4 1.51 0.12
AE No LSTM-S 0.195 0.71 0.12

Yes LSTM-S 0.210 0.76 0.95
2S-CNN Yes FP(1) 0.16 0.56 0.03

Yes LSTM-S 0.09 0.33 0.02

Table 1: MNIST experiment: The training and test datasets comprise MNIST images corrupted by a Gaussian additive
noise and three randomly-sampled 9x9 holes. We consider three parameterizations for operator Φ in the variational
formulation defined by (2), a 50-dimensional PCA decomposition (PCA), a 20-dimensional dense auto-encoder (AE)
and a bilinear 2S-CNN representation. We also compare a fixed-step gradient descent for variational energy (2), referred
to as FSGD, a one-step fixed-point iteration (FP(1)) and a LSTM-based solver (LSTM-S) based on the automatic
differentiation of energy (2). We may jointly train operator Φ and the LSTM solver or solely train the latter given a
predefined operator Φ. We also include two sparse coding schemes (DICT) adapted from [23]. As evaluation scores, we
compute the reconstruction error for the entire image domain (R-score), the reconstruction error for missing data areas
only (I-score), the projection error x− Φ(x) for gap-free and noise-free images (P-score). We let the reader refer to the
main text for additional information.
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4.1 MNIST data

MNIST data provide a relatively simple image dataset to evaluate the proposed framework with different types of
regularization terms in (2). Especially, the MNIST dataset seems well-suited to dictionary and auto-encoder priors
[12, 23]. We simulate observed images with 3 randomly sampled 9×9 missing data areas and an additive Gaussian noise
of variance 0.1 ∗ σ2, with σ2 the pixel-wise variance of the training data. We consider three types of parameterizations
for operator Φ:

• a linear PCA decomposition: a 50-dimensional PCA operator which amounts to ≈ 90% of the variance of
the data. Fitted to the training dataset, it involves 80,000 parameters.

• a dense auto-encoder (AE): a dense AE operator with a 20-dimensional latent representation. The encoder
and decoder both involve 3 dense layers with ReLu activations. This AE also amounts to ≈ 90% of the
variance of the data. It comprises ≈500,000 parameters.
• 2S-CNN model: a CNN architecture given by (3) with a bilinear parameterization to account for local non-

linearities [14]. It comprises ≈55,000 parameters. Importantly, it combines both global and local features
through the considered two-scale representation.

We let the reader refer to the code provided as supplementary material for more details. Given these parameterizations,
we investigate different learning strategies and/or optimisation schemes:

• A fixed-step gradient descent: assuming operator Φ has been pre-trained, we implement a simple fixed-step
gradient descent for variational cost (2). We empirically tune the gradient step and the weighing factors λ1,2

according to a log-10 scale grid search. We report the best reconstruction performance along the implemented
gradient descent pathway. We refer to this optimization scheme as FSGD;

• A fixed-point procedure: a classic approach to solve for inverse problems using deep learning architectures
[9, 19, 32] is to train a solver using observation y as inputs. Such approaches may be regarded as the application
of a one-step fixed-point solver for criterion (2) [13].The resulting interpolator is Φ(y). We refer to this solver
as FP(1).

• a learnable gradient-based solver: the LSTM solver given by (4) involves a convolutional LSTM cell whose
hidden states involve 5 channels. We refer to this solver as LSTM-S.

For benchmarking purposes, we include sparse coding approaches using OMP (Orthogonal Matching Pursuit) and Lasso
solutions [23]. We adapt these schemes for interpolation issues through iterative coding-decoding steps, the observed
data being kept after each decoding step, except in the final iteration4. Our evaluation relies on three normalized metrics
for the test dataset, using σ2 as normalization factor: the normalized mean square error (NMSE) of the reconstruction
over the entire image domain (R-Score), the NMSE of the reconstruction over the unobserved image domain (I-Score)
and the NMSE of the projection error x− Φ(x) for true states x (P-Score).

We report in Tab.1 a synthesis of these experiments. We may first notice that the learnable solver significantly improves
the reconstruction error compared with the direct minimization of (2) given a pretrained model (e.g., 0.54 vs. 1.09 (resp.
0.71 vs. 1.51) for the PCA (resp. AE) version of operator Φ)5. Despite AE and PCA architectures having very similar
representation capabilities for the true states (P-scores of ≈ 0.12), the reconstruction performance is much better with
a PCA representation, which may relate to the simpler and convex nature of the associated variational cost (2). As
illustrated in Fig.1, the learnable solver identifies a much better descent pathway for the reconstruction error from the
differentiation of variational cost (2) than the direct minimization of this cost.

The second key result is the significant gain issued from the joint learning of operator Φ and of the solver (0.33 vs.
0.54 for the best I-scores of 2S-CNN and PCA representations). Note that the 2S-CNN-based operator Φ used as
a direct solution for the inversion (FP(1) solver in Tab.1) is also significantly outperformed. Intriguingly, the better
reconstruction performance issued from the 2S-CNN representation involves a worse P-score. It suggests that a coarser
approximation of true states by operator Φ may be better suited to reconstruction issues than the one best describing the
true states. The visual inspection of examples in Fig.2 is in line with these results. The 2S-CNN parameterization in the
joint learning setting clearly outperforms the other approaches. The FSGD minimization of the learned 2S-CNN-based
variational cost leads to visually relevant reconstructions, though the contrast of interpolated areas is often too low. This,
with the consistent descent pathways of the FSGD and learnable solvers for the 2S-CNN case in Fig.1, supports the
consistency of the learned variational representation. Fig.1 also stresses the fast convergence of the learnable solvers
with 10 to 20 iterations, compared with hundreds or thousands for the FSGD scheme.

4These sparse coding schemes are run with MiniBatchDictionaryLearning function in scikitlearn [26].
5We do not carry a similar experiment with the 2S-CNN architecture as by construction the associated pre-trained version of

operator Φ could lead upon convergence to a meaningless prior Φ(x) = x.
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Reference

Observation

Sparse coding schemes, adapted from [23]

PCA-based Operator Φ

AE-based Operator Φ

2S-CNN-based Operator Φ

Figure 2: Reconstruction examples for MNIST experiment. We randomly sample 15 examples for MNIST test
dataset: first row, reference images; second row, observed images; third and fourth rows, sparse decomposition methods
[23] using respectively OMP and Lasso solutions. From the fifth row to the tenth row, we report results using the
proposed framework using PCA-based, AE-based and 2S-CNN-based parameterizations for operator Φ. For each
example, we first report the output of a gradient descent of the considered variational cost (e.g., the fifth row for the
PCA-based setting) and of the learnt LSTM solver (e.g., the sixth row for the PCA-based setting). We let the reader
refer to the main text for the details on the considered experimental setting and parameterizations.

4.2 Multivariate signals governed by ODEs

The second case-study addresses multivariate signals governed by ODEs so that we are provided with a theoretical
ground-truth for the true representation of the data: namely, Lorenz-63 and Lorenz-96 dynamics, which are widely used
for benchmarking experiments in geoscience and data assimilation. Both systems involve bilinear ODEs which lead to
chaotic patterns under the considered parametrizations. We detail our experimental setting, which involves noisy and
undersampled observations, in the Supplementary Material.

We consider two architectures for operator Φ. A Neural ODE representation is first fully-informed by the true ODE
using a bilinear ResNet architecture6 [14], referred to as L63-RK4 and L96-RK4. We also investigate CNN-based
representations (3), where operators Φ1,2 involve bilinear convolutional blocks with 30 channels. Referred to as
L63-2S-CNN and L96-2S-CNN, they involve respectively 15,000 and 52,000 parameters.

We consider the same optimization schemes as for MNIST case-study. Regarding evaluation metrics, we focus on
the R-score and the P-score7. Tab.2 further supports the relevance of the proposed framework. Similarly to MNIST
case-study, the learnable LSTM solver clearly outperforms the FSGD minimization. The joint learning of the variational
representation and of the solver further improves the reconstruction performance. Besides, we also retrieve that the best
reconstruction schemes involve a significantly worse representation performance for the true states.

6It relies on a 4th-order Runge-Kutta integration which provides a good approximation of the integration scheme considered for
data generation.

7Given the noise level and regular sampling, R-score and I-score provide relatively similar information.
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Model Φ
Joint

learning Solver R-Score P-score

L63-RK4 No FSGD 2.71e-3 1.41e-7
No LSTM-S 1.52e-3 1.41e-7

L63-2S-CNN Yes LSTM-S 1.00e-3 2.78e-4

L96-RK4 No FSGD 5.65e-2 6.70e-7
No LSTM-S 4.46e-2 6.70e-7

L96-2S-CNN Yes LSTM-S 1.94e-2 3.70e-3

Table 2: Experiment with multivariate signals governed by ODEs: we report for Lorenz-63 and Lorenz-96 dynamics
(7-8) reconstruction experiments from noisy and under-sampled observations. We let the reader refer to the main text
for the details on the experimental setting and the parameterizations considered for operator Φ in (2). The evaluation
procedure is similar to Tab.1.

True and observed states Reconstruction examples and associated error maps

Figure 3: Reconstruction of Lorenz-96 dynamics. Upper left panel: solvers energy pathways using a predefined
ODE-based cost or a learnable variational formulation. Upper right panel: associated pdfs of the reconstruction errors.
Lower panel: We depict the first half of an example of 200-time-step series of 40-dimensional Lorenz-96 states, the
x-axis being the time axis; first row, reference states, FSGD-based reconstruction for variational cost (2) with the true
ODE model, reconstruction using the learned LSTM solver for this ODE-based setting, reconstruction when jointly
learning the variational representation and the LSTM solver; second row, observation with missing data, absolute error
maps of each of the 3 reconstructions. All states and errors are displayed with the same colormap.

5 Related work

Direct learning of inverse models: Supervised learning has been increasingly used to address inverse problems by
learning the relationship between observations and true states [24, 21]. Interestingly, learnable data-driven solvers have
been derived from standard model-driven algorithms, e.g. reaction-diffusion PDEs [9], ADMM algorithm [33]. Such
approaches do not however learn some underlying variational representation beyond the learned solver.

Plug-and-play and learning-based regularizers: In order to make learning approaches more versatile, and not
specialized to a particular instance of a problem, so-called plug-and-play methods have been designed [31], including
for instance denoising neural networks [25] and adversarial regularizers [22]. These regularizers trained offline can be
incorporated to proximal optimization algorithms. This method can also lead to convergence guarantees of the resulting
variational framework, provided the learned operator is sufficiently regular [30].

Bi-level optimization for inverse problems: Recently, some learning schemes for inverse problems took a meta-
learning [18] orientation, in the form of bi-level optimization problems. A given variational cost function (or a
pre-trained regularizer such as with plug-and-play algorithms) forms an inner optimization problem, which is not solved
directly as in classical variational schemes, but involves a learning-based solver, so that the reconstruction error is

7
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minimized in an outer loop [20, 1]. Note that a recent monograph covers most of the aspects discussed in this section so
far [4].

Optimizer learning: Learning solvers to minimize cost functions, in a so-called "learning-to-learn" fashion [3], has
attracted a lot of attention recently. The idea is to unroll an optimization algorithm (e.g., a descent direction algorithm),
where the descent direction is parameterized by a RNN. The parameters of the RNN are learnt to to minimize the
objective function. LSTMs are a popular choice since they allow to keep a memory of the past gradient information, as
in momentum-based algorithms such as Adam. They also lead to sample-efficient algorithms and faster convergence
than classical optimization algorithms [3], as evidenced in our experiments. Optimizer learning is related to the
bi-level optimization framework [15], as the formal bi-level optimization setting can be relaxed by replacing the inner
minimization through an unrolled optimization algorithm. Our learning strategy (5) can also be regarded as a relaxed
version of a bi-level optimization problem

arg min
Φ

∑
n

L(xn, x̃n) s.t. x̃n = arg min
x
UΦ (x, yn,Ωn) (6)

where the inner minimization is replaced with a fixed number of iterations of a gradient-based solver. Here, the inner
cost function also has trainable parameters. This relaxation, combined with automatic differentiation, allows our
approach to jointly learn the parameters of the variational cost and of the associated solver, instead of resorting to a
sequential minimization as in classical bi-level frameworks. If we fix the inner cost function,we can incorporate any
direct learning-based inversion scheme or plug-and-play approach to be fined tuned via meta-learning. The potential
interest is two-fold: a lower complexity of the trainable operators and a greater interpretability of the learnt variational
representations compared with a sole solver.

6 Conclusion

To the best of our knowledge, the problems of learning a variational cost (or more restrictively, a regularizer) from
data for inverse problems, and learning a solver for a given variational cost, have always been treated sequentially so
far. Our approach allows the joint data-driven discovery of a variational formulation of the inverse problem and the
associated solver. Our experiments show that this is a better strategy than only learning the solver using a pre-defined or
pre-trained variational cost, or even than directly inverting with the true generative model.

This work opens new research avenues regarding the definition and resolution of variational formulations. A variety of
energy-based formulations may be investigated beyond regularization terms ‖x− Φ(x)‖2 as considered here, including
physics-informed and theory-guided formulations as well as probabilistic energy-based representations.
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A Supplementary Material

A.1 Lorenz-63 case-study

Lorenz-63 dynamics involve a three-dimensional state governed by the following ODE:
dXt,1

dt = σ (Xt,2 −Xt,2)
dXt,2

dt = ρXt,1 −Xt,2 −Xt,1Xt,3
dXt,3

dt = Xt,1Xt,2 − βXt,3

(7)

We consider the standard parameterization, σ = 10, ρ = 28 and β = 8/3, which leads to a strange attractor. We may
refer the reader to [?] for additional illustrations.

In our experiments, we simulate time series with a 0.01 time step using a RK45 integration scheme [11]. More precisely,
We first simulate a 20000-time-step sequence from an initial condition within the attractor. We use time steps 0 to
150000 to randomly sample 10000 200-time-step sequences for the training dataset, and time steps 15000 to 2000 to
randomly sample 2000 200-time-step sequences for the test dataset. Observation data are generated similarly to [?]
with a sampling every 8 time steps and a Gaussian additive noise with a variance of 2.

A.2 Lorenz-96 case-study

Lorenz-96 dynamics involve a 40-dimensional state with a periodic boundary condition governed by the following ODE

dxt,i
dt

= (xt,i+1 − xt,i−2)xt,i−1 − xt,i + F (8)

with i the index from 1 to 40 and F a scalar parameter set to 8. These dynamics involve chaotic wave-like patterns as
illustrated in Fig.3

In our experiments, we proceed similarly to Lorenz-63 case-study. We first simulate a 10000-time-step sequence from
an initial condition within the attractor.

we simulate time series with a 0.05 time step using a RK45 integration scheme [11]. The training and test datasets
involve time series with 200 time steps. We use time steps 0 to 7500 to randomly sample 2000 200-time-step sequences
for the training dataset, and time steps 7500 to 10000 to randomly sample 256 200-time-step sequences for the test
dataset. Observation data are generated similarly to [?] with a sampling every 4 time steps, for only 20 randomly
selected components over the 40 components of the state, and a Gaussian additive noise with a variance of 2.
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