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Abstract—The electricity grid is evolving to a distributed in-
frastructure in which smart grids integrating renewable energies
will become dominant. Because of the limited capacity of the
battery to store the energy produced at certain time of the day,
it is necessary to shift the consumption to when the electricity
is actually produced. This paper deals with the estimation of
solar panel production in order to forecast when and how much
electricity will be available. We propose an Artificial Neural
Network model to predict the hourly production of photovoltaic
(PV) plants. We evaluate our approach over a large dataset of
solar panel electricity production over a period of seven years.

Index Terms—Solar Panel, Renewable Energy, Machine Learn-
ing, Forecasting, Neural Networks

I. INTRODUCTION

Different efforts are made in the electricity industry toward
smart grid [1], a distributed system including microgeneration
units using renewable energies. Different use cases drive smart
grid deployment: provide electricity to isolated lands (e.g.
small islands that are disconnected from the grid) [2], provide
electricity with autonomous or inter-connected systems [3],
or reduce the dependency on carbon and/or nuclear energy
[4]. The major challenges to integrate renewable energies
in the grid are instability and intermittent production. Most
renewable energy sources are dependant on the weather or
other environmental phenomena, such as tides or storms. This
adds an intrinsic uncertainty in their production.

A smart grid comes with a communication framework
in which components may exchange monitoring and control
information [5], [6]. Through a standardized set of protocols,
objects talk the same language, and any of them can talk with
any other one. The smart meter is certainly the most popular
communicating element in the smart grid [7]. It allows to
remotely monitor the energy consumption in real time and
may also be used to broadcast price information. The bi-
directional nature of the communication allows devices to
negotiate with each other. Interestingly, it allows consumer
devices to exchange information with production units, thus
making the system flexible: the consumer devices may adapt
their behavior depending on the energy availability, to some
extent. For example, the grid may choose the best source
and time for dispatching energy when there is a request for
supply. In order to fully take advantage of the smart grid, real
time monitoring and control is not enough, but predictions are
needed [2], [8], [9]. Accurate and reliable forecasting of the

productions can further feed the optimization problem to align
the consumption with the production.

Solar energy is one of the largest and fastest-growing
sources of renewable energy. Solar power plants range from a
few connected solar panels for individual households or small
industries to larger PV farm where panels are spread over an
area of a 2 - 5 square kilometers. Accurate forecasting of
the production can help plan the electricity usage efficiently.
Forecasts can also help monitor and maintain solar power
plants. While hourly and daily forecasts can help examine the
proper functioning of the plant, daily and weekly forecasts can
help with scheduling maintenance and long term planning.
This paper focuses on forecasting the production for solar
microgrids. The microgrids are harder to model using weather
data since the weather forecasts are provided for areas accurate
up to a couple of square kilometers while the microgrids vary
from a few square meters to a couple of hundred square meters
in area. For larger PV plants, the inaccuracies in the weather
forecasts are compensated by the large area of the power plant.
We propose a two-step neural network based model to forecast
the hourly production of solar power plants. The first step is
the prediction of hourly irradiance values based on the weather
forecast. The second step is the hourly production forecast
using a separate model to forecast every hour of the day.

The remainder of the paper is as follows. Next section deals
with the related work and discuss the most recent works on
solar panel production forecast and the main differences with
our approach. Section III describes the data set, and gives
an overview of our model. Section IV indicates our choices
regarding the selected artificial neural network and section V
finally presents our model. Section VI presents the results we
obtained, and section VII concludes the paper by giving some
perspectives.

II. RELATED WORK

There has been a lot of works in the area of machine
learning for solar power production forecasting due to the
increase in the urgency to shift to renewable power sources.
With the climate change and the price drop of solar panel,
smart grids need to better integrate this source of energy into
the traditional grid. However, in order to provide a smooth
integration, we need to cope with the intermittent production
and forecasting the production is key to address this challenge.



Cococcioni et al. [10] propose an interesting model in which
the time series nature of the data is exploited. A single neural
network is trained to predict the output of the PV plant every
15 minutes. The neural network considered for this approach
is a feedforward network with tapped delay lines. The neural
network takes as input the irradiance and output values of the
previous day corresponding to the same hour. Depending on
the number and type of delay lines, the network may consider
more observations from the previous day or observations from
more days to learn the trend in the irradiance and output
values. It then predicts the output production solely based on
the time series characteristics of the data. While this approach
is suitable for large PV installations in regions with fairly
stable weather, smaller installations and locations with erratic
weather conditions are not well modelled by this approach.

Dolara et al. [11] show an interesting approach to the
problem. The paper proposes a hybrid method to predict hourly
power productions in a day-ahead manner. The proposed
model consists of a neural network which takes the weather
forecast and some temporal features as input. The model also
takes the clear sky irradiance values that are calculated based
on the deterministic Clear Sky Solar Radiation Algorithm
(CSRM) [12]. The neural network is trained to learn the
amount of irradiance actually used by the solar plant based
on the various weather forecast variables.

Nespoli et al. [13] propose a neural network model that takes
the average temperature and average measured irradiance of
the previous day to predict the irradiance of the current day. It
produces 24 outputs corresponding to the irradiance forecast
for 24 hours. The mean of these values is then used to decide
between two separate models for sunny and cloudy days based
on the mean of the predicted irradiance. The second models
then use the mean of irradiance, temperature and production
of the previous day to predict 24 values corresponding to the
hourly production of that day.

Grimaccia et al. [14] consider a neuro-fuzzy model which
feeds into the neural network the weather forecast at 3 different
points of the day all at once. The forecasts for 6 A.M., 12.P.M.
and 6 P.M. are used together to predict the complete day’s
production. The weather forecast supplied to the network also
includes a fuzzy logic pre-processed irradiance value for the
3 times of the day.

Lorenzo Gigoni et al. [16] compares several benchmark
models such as neural networks, kNN (k Nearest Neighbours)
and SVR (Support Vector Machine). The model uses large PV
plant data to compare and hence does not show much variation
from model to model owing to the averaging of irregularities.
This is not the case for micro and nano grids.

In this paper we propose a neural network based model
to predict the hourly productions. The model consists of two
parts, where the first part uses hourly weather forecast data to
predict the irradiance and the second part uses the forecast
irradiance values along with the weather and some other
processed data to predict the production. The hourly inputs
were considered since a lot of the hourly variation in data
is lost if the average values are provided as proposed in the

first paper explained. The neural networks in the second part
are separate models trained for every hour. This helps the
neural network to learn the structural and temporal features
separately. Using the same model to predict the value of
different hours leads to too much variance in the data for the
model to accurately learn important features.

III. DATASET AND OVERVIEW
A. PV module and Dataset

The used dataset are part of the project Photovolta2 [15].
These data are coming from two separate sets of solar panels,
which have the following characteristics:

« Solar panel technology - silicon mono-crystalline

o Panel Inclination - 15

« Panel rating - 960 W

« Total surface area - 5.52m?

e Microgrid Location - Latitude of 471420.76N and Lon-
gitude of 13330 24W

The first dataset contains about 1400 days of observations
from 2011 to 2017. The second dataset contains 1000 days
from 2014 to 2017. Both contain the measured irradiance
values and the output DC power. The weather forecast data
contain various variables with an hourly frequency. While the
weather forecast provides various variables (such as the UV
index, temperature, wind chill, etc.), only some of them will
be useful in the forecasting of the hourly production.

Fig.1 and 2 show the dependency between the DC power
and the irradiance, and the humidity respectively. We observe
a linear relationship between the irradiance and the DC power,
while there is no clear relationship between the humidity
and the DC power. However typical weather forecasts do not
directly provide irradiance values, thus the need for predicting
the irrandiance from other weather variables.

P — Y
( N ) Production
B [ Iradiance Prediction | ———y Prediction: |~ Proditon
Model \ "/ Hour 7
N/

N\ <
vl\;!ourly J B\)/ \\ / Pr——
leather Pa\! L Production
Forecast Data ~ \ [ Prediction: —
\\__—+— :
/
/ N~

Hour 8

jour
Prediction

r/A

/
N

Production
Prediction:

Training Data Hour 21

Closest Training
Data Computation

Production
Prediction :
Hour 22

— e - J

Fig. 3: The proposed two step prediction model

B. Overview

We propose a two step process to forecast hourly production
values as shown in Fig. 3. In contrast to Cococcioni et al. [10]
who use the previous days record, we use the weather forecast
of the target day. This provides a lot more correlation between
the inputs and the output. The first step in the proposed method
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Fig. 1: Scatter plot between DC power (output) and
the irradiance (input)

is the prediction of hourly irradiance values from the hourly
weather forecast. The second step involves the feeding of the
predicted irradiance values along with the weather forecast
values and some processed neighbourhood statistics to the
hourly models. We propose the use of 15 hourly models to
predict the forecast for every hour. These models correspond
to the 15 hours between hour 7 and hour 15 of the day. This is
especially useful in the case of predictions for microgrids. The
hourly models also help in maintaining the inputs unconnected.
Providing more than one forecast at a time is recommended for
predicting average values but will confuse the network when
trying to predict the hourly production. One more reason for
the hourly models is that a single model would require 15
output neurons to make hourly predictions but in general, a
single neural network with multiple outputs performs better
when the outputs are correlated while multiple neural networks
with a single output are preferred for uncorrelated outputs.

IV. ARTIFICIAL NEURAL NETWORKS

Artificial Intelligence methods have become popular in
predicting outputs that are complex nonlinear functions of
the inputs. Artificial Neural Networks (ANNs) are a popular
subclass of machine learning models, which are loosely based
on the learning model of a human brain. ANNs are fairly
straightforward systems, which process the data with the help
of artificial neurons and learn intrinsic features which help
map the input to the output. The word intrinsic is used here
to stress the fact that the neural network learns without any a
priori knowledge about the features.

The ANN method proposed in this paper uses the Multi-
Layer Perceptron (MLP) model. An MLP generally consists
of an input layer followed by several hidden layers and an
output layer. Each layer consists of a predefined number
of artificial neurons. Every layer in an MLP starting from
the input layer is generally densely connected to the next
layer meaning that every neuron in a layer is connected to
every other neuron in the next layer. The connections between
neurons of consecutive layers carry weights and the neurons
then apply an activation function over the weighted inputs and
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Fig. 2: Scatter plot between DC power (output) and
the humidity (input)

pass it to the next layer. The usual rule of thumb is that a wider
neural network (more neurons per layer) tends to memorize
better and a deeper (more hidden layers) neural network is
able to learn highly nonlinear features better.

Training algorithms are then used to change the weights
of the connections to learn the best mapping between the
inputs and the outputs. The best mapping between the input
and the output is the solution to the optimization problem
of minimizing or maximizing a cost function depending on
the type of data. The cost function can be considered to
provide some prior knowledge to the model about the kind
of mapping. The most famous training algorithm is the error
backpropagation based on gradient descent. This algorithm is
computationally expensive but converges to a minima fairly
easily with the proper learning rate and batch size. The back-
propagation algorithm is, however, suitable for the problem
described in this paper.

V. DATA AND NORMALIZATION
A. Data Processing

The data used for the forecasting of the PV power plant
productions are (i) the static weather forecast data, (ii) the
irradiance prediction and (iii) the DC output from observations
with the closest weather conditions. The static weather forecast
data is the most important of the three and provides the basis
for the predictions. It is mined for the particular location
of the solar panels using the latitude and longitude. The
weather forecast used for this research was mined using the
world weather online API (Application Program Interface)
for python. The weather forecast consists of various variables
out of which the most suitable subset has been chosen. The
weather variables used for the prediction are UV Index, cloud
cover, humidity, temperature and visibility.

The irradiance prediction value is obtained from a neural
network model that is trained to predict the irradiance values
based on the weather forecast variables and past irradiance
recordings. This is a way of guiding the neural network to use
the features that are known to impact the production of the
panels. This intermediate step of predicting known features



that affect the production helps the neural network learn more
meaningful patterns. Otherwise, the network tends to learn
abstract features which may not be suitable for the problem
or may not be present in the testing data.

The nearest weather neighbours are obtained by processing
every weather input individually to find the 50 nearest data
points from the training set that have the closest weather to
the forecast. The distance between two weather observations is
calculated using the Euclidean distance between them which
is calculated as follows

d(p,a) = d(q,p) = V(g1 —p1)2+ -+ (gn —pn)2 (1)

The power production of these 50 points is then retrieved and
sorted. The sorted list of production values is then reduced
by removing the highest and lowest 10 points. This is done
to effectively remove outliers that may influence the output
towards the outlier points. After the reduction of the 50 values
into a list of 30 values, the minimum, maximum and the mean
values of the list are taken as inputs to the final prediction
model.

The irradiance values for any new site can be obtained
from satellite data while the PV production values need to
be recorded at the site and trained continuously. The model
will continually improve as the training period increases and
reach a saturation after the first a rolling 8-12 month period
is reached.

B. Data normalization

Neural networks tend to perform better when the inputs
and outputs of the network are normalized [8]. Normalization
generally increases the speed of convergence of the error and
does not affect the accuracy. Raw data tends to be in different
scales and this leads to different range of weights for different
connections making it hard for the gradient descent algorithm
to smoothly descend into the minima.

The dataset is divided into a rolling yearly training and
testing sets, and each training set is scaled to [0;1] using a
Min-Max scaler. The Min-Max Scaler subtracts the minimum
values of a feature from every value and divides it by the range
(max - min) of the features. The same scaling is then applied
to the testing data. The training and testing data are scaled
separately to avoid data leakage (some information regarding
the future data is used to predict it). This is especially true
when using scaling algorithms that involve the mean and
variance of the data.
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C. Model Architecture

In this section, we detail our model architecture, which com-
prises two parts. The first part consists of the irradiance model
which takes the weather forecast data as input and predicts the
irradiance value. This model takes 7 inputs including the 5
weather forecast variables stated above and the corresponding
temporal data (day of the year and the hour of the day). It
contains two hidden layers with 7 and 4 neurons each with

the ReLU ( Rectified Linear Unit) activation function. The
output layer of the model contains a single neuron with a
sigmoid activation function since the values are scaled between
0 and 1. This model is trained with the historic irradiance
values to forecast future irradiance values as they are not
provided as a part of a typical weather forecast. The second
part consists of feeding the forecast irradiance values into a
second neural network along with the weather forecast data,
the nearest neighbours data and the previous day’s production
value. Separate models for every hour are not required for the
irradiance prediction as we are considering the hourly models
to learn the structural and temporal features more accurately,
and using them for both the irradiance and power generation
predictions will not improve the models accuracy.

Since the predictions are made hourly, we considered sepa-
rate models for every hour of the day. The alternative was to
consider a network with 24 outputs for every hour of the day
but this leads to a decrease in the prediction accuracy due to
the increase in the number of features. This increases in the
number of features paired with densely connected MLP layers
leads to the extraction of unwanted features from forecasts
of different hours thereby reducing the accuracy. To obtain
a similar accuracy using a single model, we had to use a
much wider model which leads to an unnecessary increase in
computation. The hourly models are definitely a better option
especially for microgrids as they are also able to learn the
periodic structural features such as shadows from buildings
or obstructions which are significant only during the early
and late part of days. The input layer of the hourly models
contains 10 features (predicted irradiance, UV Index, cloud
cover, humidity, temperature, minimum neighbourhood output,
maximum neighbourhood output, mean neighbourhood output,
day of the year, previous output for the hour). These hourly
models contain two hidden layers with 4 neurons each and an
output layer with a single neuron. The first hidden layer uses
a ReLU activation function while the second layer has a Tanh
(Hyperbolic Tangent) activation function. These activation
functions were considered after trying different combinations
and evaluating the convergence and accuracy. The output layer
has a sigmoid activation function to keep in range with the
scaled output values.

VI. RESULTS

The above described model architectures were considered
after experimenting with a different number of layers and
neurons. The different iterations of the model were evaluated
using multiple performance metrics. The performance metric
that is most important for such data is the Normalized Mean
Absolute Error (NMAE). The NMAE is defined as

N
1 |Pmeasured,n - Pforecast,n
NMAE = N E 100 (3)

i—1 Prated

where Ppcqsureq 18 the measured power, Pporecast 1S the
predicted power for the same hour and P,..q is the rated
power (maximum power) of the plant. The sum range N is the



Mean NMAE %
Year | Type of Error | Dataset 1 | Dataset 2
ST ——————
) ———
2016 |y 65143

TABLE I: Yearly NMAE for the 2 datasets

number of observations in a particular day if considering daily
NMAE or the number of observations in a week if considering
weekly NMAE. The NMAE calculates the error normalized to
the size of the system making it suitable to compare systems
of different sizes. All other absolute errors cannot be used to
directly compare the performance of different systems, owing
to the different sizes of solar power plants.

The prediction NMAE for both the data sets can be seen
from Table I. It shows the year wise daily NMAE and NMAE
averaged over a week. One can observe from Fig. 4 that
the weekly NMAE for 42 consecutive weeks from dataset 1
averages at around 15%. The weekly NMAE is calculated by
carrying out the sum of the NMAE for all observations in a
particular week. Fig. 5 shows the daily NMAE of the same
predictions. It can be seen that the NMAE is below 20% for
most days. The higher NMAE days have lower overall energy
production thereby increasing the relative percentage. The
NMAE gives an idea on what percent of error is observed in
terms of the total rated power. While simpler models are able
to predict with an NMAE below 10% for power plants whose
production is in the range of a few 100 KW, they do not work
well for smaller installations. Our model allows us to estimate
the production with a maximum error of 20%. This accurate
predictions are suitable for all the different applications such as
unit commitment, electricity market, maintenance scheduling
and electricity dispatch planning involving a microgrid.

Fig.7 shows the frequency distribution of the errors for the
various hourly predictions cumulated for both data sets. A
positive Normalized Error% from this figure corresponds to
an underestimated prediction while a negative Normalized Er-
ror% corresponds to an overestimated prediction. The fact that
the model is underestimating more often than overestimating
is of significance advantage as this can give an estimate on
the minimum production and can help in planning distributing
for the maximum production without overestimating.

Fig. 6 shows the actual and forecast daily energy produc-
tions for 100 days from data set 2. The figure also shows the
percentage error in green. The percentage error in the plot
is the Mean Absolute Percentage Error (MAPE), which is
calculated as follows

X ctual — X redicte
MAPE = ZActual = 2 Predicted 4, 4)
Xactual

It can be seen that the model underestimates most of the time.
This is a desirable characteristic in production prediction mod-
els as this allows the user to know the minimum production
that can be expected. It should also be noted that the MAPE is

considerably high for certain points. MAPE tends to increase
with lesser production because it is expressed as a ratio of the
production. This however does not mean that the absolute error
is high. When considering weekly or monthly productions, the
days with lesser productions are insignificant when compared
to the total production.

The model was also trained with different time frames of
training data for a fixed testing data to evaluate the effect
of the training data on the performance of the network. The
best results were achieved when the training included the past
12-15 months for forecasting the future 6 months. Any new
physical obstructions that might cast shadows on parts of the
system or degradation in the infrastructure must be considered
while deciding the training period. The solar panels also
tend to degrade over the years due to aging and/or improper
maintenance. It is therefore recommended not to train on
data older than 2 years to avoid inconsistencies between the
training and testing data. Fig. 8 illustrates that the model is
able to accurately follow the measured power. The results are
accurate considering that microgrids are highly sensitive to
minute weather and climatic changes.

VII. CONCLUSION

In this paper we focused on the prediction of solar power
production. We proposed a novel approach to predict hourly
production of PV plants. The proposed model consists of
two parts where the first part involved the use of neural
networks to extract more appropriate features for the model.
The second part involved hourly models which are trained to
predict the production for a particular hour using the various
input features.

We have evaluated the model for different time frames and
applications. It is important to note that the approach is tailored
to predict the hourly production of micro and nano grids. The
size of the grid is an important factor in the prediction model,
in terms of choosing the features and the model architecture.
The proposed model is able to predict daily production values
with an average NMAE of 15%. This average is over a testing
period of 400 days. The weekly NMAE for over 42 weeks
averages at 13%.

It can be concluded that using only weather forecast data,
the prediction accuracy may reach a limit. This is especially
true for microgrids due to the inaccuracies in the weather
forecast. Nevertheless, the accuracies of forecast obtained on
an hourly, daily and weekly basis are sufficient to benefit the
short and medium term planning of solar power plant.
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