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Abstract

Multi-label scene classification has emerged as a critical research area in the domain
of remote sensing. Contemporary classification models primarily emphasis on a sin-
gle object or multi-object scene classification of satellite remote sensed images.
These classification models rely on feature engineering from images, deep learn-
ing, or transfer learning. Comparatively, multi-label scene classification of V.H.R.
images is a fairly unexplored domain of research. Models trained for single label
scene classification are unsuitable for the application of recognizing multiple objects
in a single remotely sensed V.H.R. satellite image. To overcome this research gap,
the current inquiry proposes to fine-tune the state of the art Convolutional Neural
Network (C.N.N.) architectures for multi-label scene classification. The proposed
approach pre trains C.N.N on the ImageNet dataset and further fine-tunes them to the
task of detecting multiple objects in V.H.R. images. To understand the efficacy of this
approach, the final models are applied on a V.H.R. dataset: the U.C.M.E.R.C.E.D.
image dataset containing twenty-one different terrestrial land use categories with a
sub-meter resolution. The performance of the final models is compared with Graph
convolutional network-based model by N Khan et al.. From the results on perfor-
mance metrics, it was observed that proposed models achieve comparable results in
significantly fewer epochs.

KEYWORDS:
Remote sensing; Converged and future applications; Aerial imagery; Satellite image processing; Deep
learning

1 INTRODUCTION

Land Use (L.U.) classification from remote sensed terrestrial imagery obtained using satellites is critical for monitoring and
managing human-made activities1,2. This is not possible for processing using manual methods due to the voluminous amount of
data that is generated from satellite images3. Besides, automated classification via machine learning is critical for understanding
the constantly changing the surface of the earth, especially anthropomorphic changes4,5. However, the classification of terrestrial
imagery is a momentous challenge because the terrain that symbolizes a given type of land use may have variability, and a few
identical objects are shared among different terrain categories6. Figure 1 gives the 5 sample images present in each of the 21

†Remote sensing with deep learning.
0Abbreviations: V.H.R., Very high resolution; U.C., University of California; BoVW, Bag of visual words
0Authorship: All authors contributed equally towards the design of the work, data analysis and interpretation, drafting, and critical revision of the article. A. Kumar
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classes of U.C.M.E.R.C.E.D. land-use dataset7. Each of the five sample images belong to a particular category yet have large
variability in appearance.

FIGURE 1 U.C.M.E.R.C.E.D. land use dataset contains 100 images from 21 land-use classes

Due to the high variability in the composition of the terrain and the voluminous amount of terrain categories, optimal identi-
fication with labeling for terrain types in V.H.R. Data have become challenging to solve using machine learning methods8,9,10.
This challenge has ignited interest in the domain of remote sensing11,6. Additionally, terrestrial images obtained from satellites
or aerial objects of land use contain several objects within the same image. In Figure 2 a, the label associated with the image is
Airport, Figure 2 b belongs to label Baseballdiamond and Figure 2 c belongs to label Mediumresidential. Each image has
multiple objects present within it, as indicated in the corresponding caption.
To effectively and efficiently label terrain types from satellite images, the literature proposes several techniques. State of

the art techniques focus on deep neural architectures, which learn tiered inner feature embeddings from visuals datasets and
create near-human performance. Nevertheless, a majority of approaches, counting even the conservative vanilla neural network
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(a) airplane, cars, grass and pavement (b) bare soil, building, grass, pavement (c) cars, pavement, grass, trees, bare soil, building

FIGURE 2 U.C.M.E.R.C.E.D. dataset images consisting of multiple objects

methods and deep neural networks, solitarily focus on fitting a model to recognize a single label within an image12. Multi-label
classification of very high resolution (V.H.R.) images is still to receive sufficient attention in the scientific literature13.
Analyzing the timeline of the automated labeling of terrain inV.H.R. reveals a broad spectrum of techniques. Traditional image

feature extraction (F.E.) and image processing techniques used handcrafted FE4 that relied on kernels to extract features. The
mainstream conventional frameworks, such as the bag-of-visual words (BoVW) centered terrain extract cataloging technique,
rely on heuristics that measure features such as color histogram, local binary pattern, and scale-invariant feature transform
(S.I.F.T.) among others in a visual and allot a semantic identifier to the visual according to its essence12. Although F Zhang et al.
argue that the BoVW approach achieves the state of the art efficiency, its ability to tackle complex terrestrial images of land use
is constrained as it fails to encompass spatial and structural information in the V.H.R. image11,6. Though FE and BoVWmethods
have achieved excellent performance, despite relying on low-level image features obtained through kernels. The inadequate
expressive capability of these primitive and intermediate level hand-engineered features has become a bottleneck for improving
their LU scene classification performance14. The main drawback of F.E. and BoVW based techniques lies in the assumption
that a general feature descriptor can adequately represent the complex image structures by employing expert knowledge through
manually designed all-around purpose features13.
The maximum contemporary effort in visual classification has been concentrated on Deep-learning (D.L.) algorithms that

employ unsupervised learning of adequate and discriminative feature representations from unlabelled input data11 as shown in
Figure 3 .

FIGURE 3 Deep learning models for satellite image processing

Deep-learning (D.L.) algorithms, which learn complex and nonlinear representative and discriminative features in a tiered
manner from the inputs, are an emerging field in the artificial intelligence community and have entered into the satellite image
processing community for R.S. unstructured data analysis15,16,17. This new field of investigation opened by deep learning has
led to mushrooming of literature and frameworks4,12. As D.L. algorithms are computationally expensive and time-consuming
to train, transfer learning approach was utilized to overcome these issues. In transfer learning, knowledge learned from training
the model on a particular dataset is transferred to a different problem. This approach enables the training of D.L. models on
tasks where data is limited.
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The critical contribution of the current paper is proposing a deep learning-based convolutional neural network model for the
multi-label scene classification of V.H.R. images. To overcome the issue ofmodel overfitting due to limited data availability, fine-
tuning is used. To elaborate on fine-tuning, initially, the C.N.N. models are pre-trained on the ImageNet dataset, and additional
layers are added to the models. The additional layers are trained on the dataset for the task of recognizing multiple objects in
images. In spite of extensive literature review, multi-label classification of U.C.M.E.R.C.E.D. Land Use V.H.R. Images using
pre-trained D.L. models was not found. Hence, the contribution extends the research in this domain. For the experimental study,
16 selected deep learning architectures pre-trained on the ImageNet dataset were fine-tuned and applied on the multi-label
classification of U.C.M.E.R.C.E.D. L.U. Dataset on standard parameters, a discussion is presented along-with the conclusion
and future course of action.
The contents in the current research are grouped as follows. In Section 2, a brief review of the related works about fea-

ture engineering based classifiers, unsupervised feature engineering based classifiers, and transfer learning-based classifiers are
introduced. In Section 3, the pre-trained D.L. models are described in detail. The details of the experiments and the results are
presented in Section 4. Eventually, Section 6 draws the outcome of this paper with an elaboration of the results and guidelines
for future work.

2 REVIEW OF LITERATURE

The current endeavors in the literature can be grouped into three categories: techniques based on handcrafted features, techniques
based on data-driven features, and techniques based on transfer learning (see Figure 4 ). The review describes the methodologies
used by techniques in each category. It is concluded from the literature, that multi-label classification on V.H.R. images has not
received sufficient attention.

FIGURE 4 Categories of machine learning models for land use classification

2.1 Feature engineering-based classifiers
E Aptoula18 focused on Content-based image retrieval (C.B.I.R.) using global image descriptors. The author speculated that
global image descriptors are more efficacious in C.B.I.R. compared to local descriptors. Results of applying global morpholog-
ical texture descriptors (circular covariance histogram (C.C.H.), rotation-invariant point triplets (R.I.T.), and descriptors based
on Fourier power spectrum of the quasi-flat-zone-based scale space (F.P.S.)) on U.C.M.E.R.C.E.D. land-use (U.M.L.U.) dataset
are presented. The author has concluded through experimentation that features of the image extracted using C.C.H., R.I.T. and
F.P.S. is more suitable for C.B.I.R. compared to local descriptors on the U.M.L.U. dataset7. L Gueguen19 proposed a compound
structure representation for image classification. It utilized local features descriptors extracted from the multiscale segmentation
of the original image. The extracted features are clustered into visual words with the KD-Tree algorithm. Distributions of the
visual words are used to elaborate on the image compound structures. N He20 proposed a framework to combine two low-level
visual features viz. Gabor feature and color feature for scene classification. S Kumar et al.21 proposed a parallel architecture for
extraction of morphological features such as circular covariance histogram (C.C.H.), rotation-invariant point triplets (R.I.T.).
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2.2 Unsupervised feature engineering based classifiers
J Fan et al.22 argued that handcrafted feature descriptors (local and global) are less suitable for image recognition compared to
features learned from the image data in a data-driven manner. The authors have preferred an unsupervised learning approach for
learning feature descriptors from images using multi-path sparse coding architecture. F Luus et al.23 use a deep convolutional
layer neural network (D.C.N.N.) for image classification. The authors prefer to avoid handcrafted features relying instead on
D.C.N.N. for feature determination. R Stivaktakis et al.24 proposed amulti-label image classification architecture usingD.C.N.N.
To avoid model overfitting, data augmentation techniques such as rotation of the visual by various degrees, image re-scaling,
horizontal and vertical flips, translations to the x and y-axis, and the incorporation of noise were used. H Wu et al.14 proposed
a hybrid architecture called deep filter banks. It combined multicolumn stacked denoising sparse autoencoder (S.D.S.A.E.) and
Fisher vector (F.V.) to consequently infer the complex nonlinear features in a hierarchical manner for L.U. Scene classification
in the U.M.L.U. Dataset. F Zhang et al.11 proposed an unsupervised feature learning framework using the saliency detection
algorithm to extract an illustrative set of areas from the significant regions in the U.M.L.U. Image dataset. These representative
patches were given as input to a sparse auto-encoder to convert these image patches into low-dimension feature vectors. The
training of the S.V.M. was performed using these feature vectors for image classification.
F Zhang et al.12 proposed a gradient boosting random convolutional network (G.B.R.C.N.) framework for scene classification.

It was an ensemble framework consisting of multiple single deep neural networks. J Bergado et al.25 proposed a multi-resolution
convolutional network, called FuseNet, and its recurrent version, called ReuseNet, to perform image fusion, classification, and
map regularization of a multi-resolution V.H.R. image in an end-to-end fashion. Z Gong et al.26 introduces structured metric
learning, a strategy that modifies the binary cross-entropy loss metric to allow it to discriminate the remote sensing image scenes
with the great similarity. The new metric is incorporated into a D.C.N.N. model for image classification in U.M.L.U. Dataset.
C Cao et al.27 concentrated on the estimation of eight transferred C.N.N.-based models on land-use classification tasks and
submission of the optimal performing transferred C.N.N.-based model as a discriminator to classify and plot the land-use.
R Minetto et al.28 proposed Hydra, an ensemble of convolutional neural networks (C.N.N.) for geospatial land classification.

The ensemble of C.N.N. is created from ResNet and DenseNet architectures pre-trained on the ImageNet dataset. Additional
layers of ResNet and DenseNet architectures are added to create an end-to-end deep learning pipeline for image classification.
H Parmar29 proposed a multi-neighborhood LBPs combined with the nearest neighbor classifier that can achieve an accuracy
of 77.76% for image classification on U.M.L.U. Dataset. In30, K Karalas et al. utilize a C.N.N. to categorize the dissimilar types
of terrestrial covers by allocating one or more labels to perceived spectral vectors of the multi-spectral image pixels.

2.3 Transfer learning approach for classification
DMarmanis et al.13 extended the use of D.C.N.N. in image classification by utilizing a DCNN pre-trained on ImageNet dataset
instead of training a DCNN from scratch. The authors argued that the large pre-trained deep convolutional neural network
(D.C.N.N.) generated a set of high-level representations, which could be used for image classification in the next processing stage.
G Scott et al.4 preferred features learned byD.C.N.N. from the training data than handcrafted features. The authors experimented
with three architecture viz. CaffeNet, GoogLeNet, and ResNet50 for image classification on U.M.L.U. dataset. To improve the
model performance, transfer learning and data augmentation were used. Q Weng et al.6 used pre-trained C.N.N. to learn deep
and robust features from the images of the U.M.L.U. Dataset. The authors modified the CNN architecture by replacing the fully-
connected layers of the C.N.N. by the extreme learning machine classifier. Y Zhen et al.31 also argued in favor of pre-trained
deep neural networks for image classification. The authors modified the standard GoogLeNet with a structure called ’Inception’.
The modified network reduced the parameters and trained faster compared to the original network. E Flores et al.32 used a
ResNet-50 DCNN architecture pre-trained on the ImageNet dataset for feature extraction from images. The learned parameters
of the ResNet-50 were used to extract 2048 bit deep feature vectors of each input image. These feature vectors were then used
to classify the image. N Uba33 utilized architectures of AlexNet, CaffeNet, and GoogleNet on ImageNet dataset and transferred
the leanings of the model from the ImageNet dataset to the U.M.L.U. Dataset for image classification. M Castelluccio et al.34
speculated that training CaffeNet and GoogLeNet from scratch would not be advisable for the limited-sized U.C.M.E.R.C.E.D.
land-use (U.M.L.U.) dataset. The authors observed that careful fine-tuning of the CaffeNet and GoogLeNet architectures pre-
trained on the ImageNet dataset, involving several layers of the architecture, provided good results, in general. J Li et al.35 utilized
a class activation map (C.A.M.) encoded C.N.N. model trained using original R.G.B. patches of ImageNet dataset and attention
map based class information. The parameters of the architecture are then used for classification on the (U.M.L.U.) dataset.
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Multi-label classification of U.M.L.U. Dataset is considerably more instinctive in remote sensing tasks. Considering the lack
of research on pre-trained D.L. architectures in this domain, the scope of this work was defined. D.L. architectures were selected
based on their accuracy (Top-1 and Top-5) on ImageNet35. Results obtained by these D.L. models were on a fixed experimental
environment and hyper-parameters. Optimization of hyper-parameters or selecting the best D.L. model for the task is beyond
the scope of this work.

3 DEEP LEARNING FRAMEWORKS

• V.G.G. proposed by K Simonyan et al. is a 3x3 stacked convolutional layer. It uses Max Pooling and Fully connected
Networks, followed by Softmax classifier. It can be both 16 and 19 layered36.

• ResNet (or Residual Network) was first introduced by He et al. to solve the problem of gradient decay in deep neural
network architectures through "shortcuts" in the network. These shortcuts are additive identity transformations of the
previous nodes. It relies on micro-architecture modules referred to as "building blocks"37.

• C Szegedy et al. proposed InceptionNet which acts as a "multi-level feature extractor". It computes 1x1, 3x3 and 5x5
convolutions inside the same module of the network. It returns a stacked output along the channel dimension. Its weights
are mere 96 MB, much smaller than VGG and ResNet38.

• Proposed by F Chollet, Xception is implemented in 2 steps, Spacial Dimension Transformation and Channel Dimension
Transformation. In InceptionV3, a 1x1 convolution is followed by a 3x3 convolution allowing channels to merge first.
While in Xception, the 3x3 space convolution takes place before the 1x1 channel convolution. It also has no Re.L.U.
operation present in the architecture39.

• MobileNet is an application of Xception. When Xception attempts to improve accuracy, MobileNet is employed for both
compressing the model and ensuring accuracy. A standard convolution is decomposed into depthwise and pointwise
convolutions to reduce space40.

• DenseNet architecture attempts at improving Resnet architecture through gradient flow, improved parameter efficiency,
and low complexity features. It achieves these by connecting each layer to every other layer in a feed-forward fashion.
Hence, instead of L layers having L connections, DenseNet has L(L+1)/2 connections41.

TABLE 1 Models for visual classification mentioned with parameters trained on ImageNet39

Name Size in MB Top-1 Accuracy Top-5 Accuracy Parameters Depth
Xception 88 0.79 0.95 22,910,480 126
VGG16 528 0.71 0.90 138,357,544 23
VGG19 549 0.71 0.90 143,667,240 26
ResNet50 98 0.75 0.92 25,636,712 -
ResNet101 171 0.76 0.93 44,707,176 -
ResNet152 232 0.77 0.93 60,419,944 -
ResNet50V2 98 0.76 0.93 25,613,800 -
ResNet101V2 171 0.77 0.94 44,675,560 -
InceptionV3 92 0.78 0.94 23,851,784 159
InceptionResNet 215 0.80 0.95 55,873,736 572
MobileNet 16 0.70 0.89 4,253,864 88
MobileNetV2 14 0.71 0.90 3,538,984 88
DenseNet121 33 0.75 0.92 8,062,504 121
DenseNet169 57 0.76 0.93 14,307,880 169
DenseNet201 80 0.77 0.94 20,242,984 201
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Table 1 , shows results obtained by D.L. architectures on ImageNet. Top-1 and top-5 accuracy of the model are recorded
based on its performance on the ImageNet validation dataset. Depth includes activation layers and batch normalization layers.

4 EXPERIMENTAL STUDY

Configuration of the system on which an experimental study was conducted had Windows7 OS with Intel(R) Core(T.M.) i5-
6402P CPU@2.8GHz with quad cores and 8GB DDR3 RAM. Implementations of the pre-trained D.L. models and default
settings used were in Keras package using python39.

TABLE 2 Hyper-parameters of the models

Description Value
Pretrained D.L. Model Non trainable and default

Additional layers appended GlobalAveragePooling2D,
Dropout and Dense

Dropout
probability 0.4

Optimizer RMSProp
Metric Accuracy
Loss Binary cross entropy

Performancemeasures used for quantitative analysis areF1-score (Macro and samples), Precision (Macro and samples), Recall
(Macro and samples), Number of parameters (Trainable, Non-Trainable and Total) and Threshold. The hyper-parameters of the
models mentioned in Table 2 were fixed in order to reduce the degree of freedom in comparison.

4.1 Dataset
U.C.M.E.R.C.E.D. Land Use dataset7 is a manually labeled ground truth dataset which consists of visuals of 21 terrain classes
chosen from aerial orthoimagery with a sub-meter resolution. Each image is in the R.G.B. colorspace fetched from United States
Geological Survey (U.S.G.S.) National Map. One hundred visuals measuring 256ÃŮ256 pixels are present for each of the 21
labels given in Table 3 (of Figure 1 ). Each image of the 21 classes contains multiple objects within it, as given in Table 3 .

5 RESULTS AND DISCUSSION

5.1 Analysis of precision and recall (macro and samples)
The results for the classification were analyzed using F1-score, Precision, and Recall. For the same, a confusion matrix is first
made to get an overview of the results. A confusion matrix describes the performance of the classification model on the test data
in a tabular form. Hence a summary of the prediction scores is obtained. The count of correct and incorrect predictions by each
class is given, hence conveying the ways in which the classification model is confused while predicting.
Precision gives the percentage of positive results predicted correctly out of all the predictions made. Thus, a high precision

value indicates that the positively predicted label is indeed positive. It can be thought of as the ability of a classification model
to identify only the relevant data points.

Precision = T .P .
T .P . + F .P .

This is a class level metric. To get an overall Precision or Macro Precision, we average out the class Precision.

Macro − Precision = Precision1 + Precision2
2



8 A Kumar ET AL

TABLE 3 The terrain types and their associated objects42

Terrain type Objects
agricultural field, trees
airport/airplane airplane, pavement, grass, building, car
baseball diamond bare soil, pavement, grass, tree, building
beach sea, sand, tree
urban area/buildings buildings, pavement, cars
chaparral sand, chaparral
dense residential buildings, pavement, trees, cars
forest trees, bare soil
freeway pavement, cars, grass, trees, bare soil
golf course grass, trees, bare soil
harbor ship, dock, water
intersection pavement, bare soil, cars, building, grass
medium residential buildings, cars, trees, grass, pavement, bare soil
mobile home park mobile home, cars, pavement, trees, bare soil
overpass pavement, cars, bare, soil, grass, trees
parking lot cars, pavement, bare soil, grass
river water, trees, bare soil
runway area/runway pavement, grass, bare soil
sparse residential buildings, grass, bare soil, tress, sand, chaparral
storage tanks tanks, bare soil, grass, pavement, buildings
tennis area/tennis court court, grass, trees, pavement, buildings

FIGURE 5 Comparison between pretrained D.L. multi-label classifiers on Precision (Macro)
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As Figure 5 suggests, Precision for ResNetV2- 50 was the highest at 0.918808 second only to ResNetV2- 101 by 2.25%.
What is intriguing is that the least Precision is from the earlier versions of ResNet- ResNet50, ResNet101, and ResNet152 by
78.79%, 79.07%, and 80.67%. To understand the stark difference between the ResNets, we need to understand its origins37.
ResNet was not the first to use the shortcut connection to overcome the gradient decay issue. Highway Networks had gated
shortcut connections that controlled information flow across the shortcut. Hence ResNet, in many ways, is a special case of
Highway Network. Strangely enough, while ResNet can be thought of as a subset of Highway Network, they tend to outperform
them. Thus, the need to keep the gradient highways clear and restrain from going for a larger solution space is necessary. Hence
the original ResNet was refined, and a pre-activation variant was proposed called ResNetV2. Gradients flowmore freely through
the shortcut connections. Hence, ResNet50V2 has 78.9% higher precision than ResNet50 in Figure 5 . Both ResNet50V2 and
ResNet101V2 outperform VGG16 and VGG19 by 15.8% on an average. This could be attributed to deeper layers and a lack of
gradient decay in ResnetV2.
InceptionV3 has a multi-modal architecture for predicting both globals through its 5x5 convolution layer and more salient

features through its 1x1 convolution layer. It outperforms VGG16 and VGG19 by 10.61% and 5.83%, respectively. However,
it could be a victim of gradient decay. Hence InceptionResnetV2, which is the combination of ResNet and InceptionV3, out-
performs it by 1.9%. However, it is not better in predicting the True Positives from the positive predictions when compared to
ResNet50V2 and ResNet101V2. It is less by 5.67% and 3.5%.
Xception is the modified Depthwise Separable Convolution. Its architecture is inspired by InceptionV3, with pointwise

convolution taking place before depthwise convolution. It gives a better result than InceptionResnetV2 by 1.33%. However,
ResNet101V2 still outperforms it by 4.4%. MobilenNet is lightweight in architecture and was developed on the lines of Xcep-
tion. Its performance in terms of accuracy is not better than Xception. MobileNet has a Macro Precision of 0.813837, which is
7.34% less than Xception. In DenseNet121 and DenseNet169, has fully connected layers in a feed-forward way. Hence the num-
ber of layers is L(L+1)/2 compared to convolutional networks with L layers. It is an advanced version of ResNet. However, the
accuracy of DenseNet121 is 35.33% lower, and that of DenseNet169 is 11.47% lower than the Macro Precision of ResNet50V2.
Clearly, the depth of the layer is not an issue here. This can be attributed to the long training time and memory requirement of
DenseNet121 and DenseNet169.

FIGURE 6 Comparison between pretrained D.L. multi-label classifiers on Precision (samples)

The Precision, Recall, and F1-score samples calculate the metrics for each instance and finds their average in Figure 6 .
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From the figure, it is clear that theMacro Precision and Samples Precision are close to each other. For both the least values lie in
ResNet50, ResNet101 and ResNet152. The highest Precision Samples are for VGG19, just 0.84%more than ResNet50V2, which
is only 1.37% higher than ResNet101V2. MobileNet’s Precision Sample is higher than it is Macro Precision quite significantly,
by 2.77%. The Precision Sample is higher than that of MobileNetV2 by 22.6% and interestingly more than the Xception network
as well by 2.99%. All DenseNet values are less than those of ResNetV2 and more than ResNet.

FIGURE 7 Comparison between pretrained D.L. multi-label classifiers on Recall (Macro)

Recall gives the percentage of positive results predicted correctly from all the actual positive results. It is regarded as a model’s
ability to find all the data points of interest.

Recall = T .P .
T .P . + F .N.

The recall is also a class level metric. The overall Recall or the macro recall is:-

Macro − Recall = Recall1 + Recall2
2

There tends to be a trade-off between Precision and Recall. The two differ only by one term in the denominator. For a given
accuracy. if FP is high, FN is lower, meaning a lower Precision and higher Recall and vice-versa.
As visible from the Figure 7 , ResNet50 and ResNet101, and ResNet152, which had the lowest Macro Precision at 0.194986,

0.192298, and 0.177623, have an improved Recall of 0.98371, 0.0.90145 and 0.728313 respectively. Hence, we can conclude
that the False Positives for ResNet is higher than the False Negatives. ResNet50 and ResNet101 have values higher than VGG16
and VGG19 on an average by 31.42%. ResNet50V2 and ResNet101V2 have Recall Macro value as 0.581359 and 0.619112,
lower than their ResNet counterparts by 40.9% and 31.32% respectively. The Macro-Precision value for them was 0.918808 and
0.898132, hence a reduction by 36.72% and 31.06%, respectively. Hence for a given accuracy of ResNetV2, it can be said that
the FN is higher than the FP. Recall Macro for InceptionV3 is higher than InceptionResNetV2 along with both ResNet50V2
and ResNet101V2 by 15.17%, 28.29% and 22.56% respectively. This was not true for Macro Precision, and hence it can be
concluded that FP for InceptionV3 is higher than FN when compared to the above three models. The same is less by 18.72%
and 11.30%, from ResNet50 and ResNet101, hence indicating a lower FP and a higher FN. As mentioned previously, Xception
and MobileNet have similar architectures and hence are comparable. Xception has a higher Macro Recall value fromMobileNet
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and MobileNetV2 by 3.28% and 3.92%. However, the Macro Recall for Xception, MobileNet, and MobileNetV2 is lower than
their Macro Precision value by 20.16%, 16.66%, and 6.44% respectively. Hence the FN values for the same are higher than FP.
For Macro Recall, the values seem to reduce as more layers are added. ResNet50 has higher Macro Recall than ResNet101

by 8.36%, which in turn has higher Macro Recall than ResNet152 by 19.2%. Similarly, for VGG16/19, Macro Recall reduces by
26.38%. This is against the popular belief that more layers tend to increase accuracy, especially when it comes to ResNet, where
gradient decay is being prevented up to some extent by design.

FIGURE 8 Comparison between pretrained D.L. multi-label classifiers on Recall (samples)

The highest Recall Samples continues to be that of ResNet50 (see Figure 8 ) with value peaking at 0.97881, slightly higher
than ResNet101 by 1.46%. ResNetV2 continues being the worst performer for Recall, with ResNet50V2 having a Recall Sample
35.75% lesser than that of ResNet50. Recall Samples for DenseNet has improved overall. DenseNet121 has increased by 10.3%,
only 2.74% lesser than ResNet50 compared to being 13.19% lesser for Macro Recall. The metric for VGG16 has increased by
12.68%.

5.2 Analysis of Macro F1 and F1 samples
F1-score is the Harmonic Mean of Precision and Recall.

F1 = 2 ∗ Precision ∗ Recall
P recision + Recall

The harmonic mean punishes extreme precision and recall values, which arithmetic mean cannot.
The Macro F1-score is:-

Macro − F1 =
F11 + F12

2
For our particular case, Precision and Recall carry equal weightage. Hence Taking a weighted harmonic mean is not in our

interest.
The F1-score is closer to Precision than Recall with the ResNet being the worst performing model at 0.281844, 0.276691

and 0.248972 (see Figure 9 and Figure 10 ). InceptionV3 and Xception have performed the best overall with 0.754963 and
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FIGURE 9 Comparison between pretrained D.L. multi-label classifiers on F1-score (Macro)

FIGURE 10 Comparison between pretrained D.L. multi-label classifiers on F1-score (samples)

0.754138 F1 respectively. ResNet50V2 has a higher F1-score than ResNet50 by 67.15% and ResNet101V2 has a higher F1-
score than ResNet101 by 59.7%. InceptionV3 outperforms InceptionResnetV2 by 5.19%. Hence a multi-modal architecture
outweights the shortcut strategy of ResNets in this case. ResNetV2 has slightly a better F1-score than DenseNet on an average
by 1.11%. Hence layer depth is not too high to account for much decay. Xception architecture also performs better than every
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other architecture except InceptionV3. It outperforms MobileNet and MobileNetV2 by 6.14% and 19.32% respectively. This can
be because of the lightweight architecture of the MobileNet. ResNet continues to be the worst performing network for F1-score
Samples. VGG-16 and VGG-19 have improved values by 9.12% and 15.57% respectively.

5.3 Analysis of threshold
The optimum solutions were achieved for each model in the threshold values mentioned in the figure. The highest threshold is
for VGG19 at 0.18, and the least is for ResNet101 and ResNet152 for 0.001. VGG16 has a threshold of 44.44% lesser at 0.1, the
same as that of the Xception and ResNet101V2 network. ResNet50 has the second least threshold at 0.01, 10 times more than
ResNet101 and ResNet152. ResNet50V2 has the second-highest threshold at 0.15. InceptionV3 has a threshold at half of the
ResNet101V2 at 0.05, while InceptionResNetV2’s threshold lies somewhere between the two at 0.08. MobileNet’s 0.1 threshold
is the same as Xception and higher than MobileNetV2. DenseNet121 and DenseNet169 have values of 0.04 and 0.1 respectively
(see Figure 11 ).

FIGURE 11 Comparison between pretrained D.L. multi-label classifiers on Threshold

5.4 Analysis of total parameters
The number of elements in the network is called the parameters. These parameters may or may not be adjusted during back-
propagation. As the network becomes denser, the number of parameters increases. As is clear from the graph, ResNet has more
parameters than ResNetV2 by 22912 parameters for 50 layers. Similarly, for 101 layers, the number of parameters exceeds by
31616. InceptionResnetV2 has 32525248 more parameters than InceptionV3. Xception has 17650024 more parameters than its
counterpart MobileNet. Similarly, DenseNet121, even with more layers, has lesser parameters than ResNet101 by 35638080.

5.5 Analysis of non-trainable parameters
Non-trainable parameters are those whose weights are frozen and do not change in back-propagation. These can also be the result
of batch normalization, where layers are frozen. ResNet152 has the highest number of non-trainable parameters, 6.91% more
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than InceptionResnetV2 coming in second place. MobileNet, with its light features, has 84.52% lesser non-trainable parameters
than Xception. DenseNet121 has 87.94% lesser non-trainable parameters than ResNet152.

5.6 Analysis of trainable parameters
Xception and all ResNet networks except InceptionResNetV2 have 34833 trainable parameters. InceptionResNetV2 has 24.98%
lesser trainable parameters. VGG has the least with only 8721 such parameters. MobileNet has 49.97% lesser trainable
parameters. DenseNet and DenseNet121 have 6.19% and 49.97% lesser parameters than the top 7 networks.

5.7 Summary of Results
Table 4 summarizes the results of the paper. Inception based architectures had optimal results in comparison with other models.
The baseline model42 obtainsMacro-precision: 0.76, Precision samples: 0.75, Macro-Recall: 0.69, Recall samples: 0.69, Macro-
F1: 0.69, F1 samples: 0.72. In the literature, it is the only paper that analyses the U.C.M.E.R.C.E.D. dataset for multi-label
classification. However, the graph convolutional network it uses requires 2,50,000 epochs for training. Comparatively, themodels
used in the current paper achieve similar accuracy utilizing ten epochs.

TABLE 4 Quantitative and qualitative results of models

Model Macro-Precision Precision
samples Macro-Recall Recall

samples Macro-F1
F1
samples

Total
parameters Non-trainable Trainable Threshold

Xception 0.88 0.81 0.7 0.76 0.75 0.76 20896313 20861480 34833 0.1
VGG16 0.76 0.77 0.74 0.85 0.72 0.79 14723409 14714688 8721 0.1
VGG19 0.8 0.86 0.55 0.65 0.61 0.72 20033105 20024384 8721 0.18
ResNet50 0.19 0.19 0.98 0.98 0.28 0.31 23622545 23587712 34833 0.001
ResNet101 0.19 0.2 0.9 0.96 0.27 0.32 42693009 42658176 34833 0.001
ResNet152 0.18 0.23 0.73 0.88 0.25 0.35 58405777 58370944 34833 0.001
ResNet50V2 0.92 0.85 0.58 0.63 0.66 0.7 23599633 23564800 34833 0.15
ResNet101V2 0.9 0.84 0.62 0.69 0.69 0.73 42661393 42626560 34833 0.1
InceptionV3 0.85 0.77 0.75 0.84 0.75 0.77 21837617 21802784 34833 0.05
InceptionResNet 0.87 0.82 0.69 0.73 0.72 0.74 54362865 54336736 26129 0.08
MobileNet 0.81 0.84 0.69 0.77 0.71 0.78 3246289 3228864 17425 0.1
MobileNetV2 0.72 0.65 0.67 0.81 0.61 0.68 2279761 2257984 21777 0.05
DenseNet121 0.59 0.53 0.85 0.95 0.64 0.65 7054929 7037504 17425 0.04
DenseNet169 0.81 0.73 0.63 0.74 0.63 0.71 12671185 12642880 28305 0.1
DenseNet201 0.75 0.63 0.72 0.87 0.63 0.70 18354641 18321984 32657 0.05

6 CONCLUSION AND FUTUREWORKS

In distinction to the predominant single label terrain identification techniques, the current inquiry argues the usefulness of
multi-label classifications for V.H.R. R.S. terrestrial visuals for the resolution of terrain classification. This challenging task is
comparatively unexplored in literature. Hence, to overcome this research gap, 16D.L. architectures were pre-trained on ImageNet
and further fine-tuned using additional layers for the task of multi-label scene classification. The intuition behind this approach
was that pre-trained models would minimize the need for large amounts of V.H.R. image data. Additionally, fine-tuning would
improve performance on the multi-label classification taskâĂŤempirical analysis derived on the multi-label U.C.L.U. Image
dataset was favorable to pursue this line of investigation.
Fine-tuning the pre-trained deep learning models on the V.H.R. dataset performed well for some specific models. To elaborate

on the results, considering F1-score as a viable metric, InceptionV3 gave the best performance at 0.7549 with a Precision Macro
of 0.850155 and a Recall Macro of 0.79955. Xception architecture gave a good result of 0.754138 with a Macro Precision
of 0.838788 and a Macro Recall of 0.701278. The ResNet architecture was the worst performing with Macro F1-scores of
0.281844, 0.276691, and 0.248972 for layers 50, 101, and 152, respectively. MobileNet and MobileNetV2 achieved a Macro F1-
score of 0.707787 and 0.608429, respectively, which can be attributed to their lightweight architecture having the least number
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of parameters at 3246289 and 2279761 only. DenseNet did not perform any better than ResNet with average DenseNet Macro
F1-score at 63.86% and that of ResNetV2 being 67.21%.
The F1-score achieved can be further improved through optimization techniques. There are cases when V.H.R. images might

not be available like in satellite images, and hence accuracy might drop. A separate model for a dataset of Low-Resolution
images can be developed. Further, the reason for the high variance in the metrics can be investigated. Network architectures
like ResNet giving a Macro F1-score as low as 0.276691 is a cause of concern when its counterpart ResNet101V2 has a Macro
F1-score of 0.686412. Apart from that, a ratio of non-trainable parameters to the total parameters can be compared among each
network architecture and investigated.
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