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Bi-objective optimization approaches to many-to-many hub location
routing with distance balancing and hard time window

Mohadese Basirati1,2 • Mohammad Reza Akbari Jokar2 • Erfan Hassannayebi3

Abstract
This study addresses a many-to-many hub location-routing problem where the best-found locations of hubs and the best-

found tours for each hub are determined with simultaneous pickup and delivery within the hard time window. To find

practical solutions, the hubs and transportation fleet have constrained capacity, in which every node can be serviced by

multiple allocations with the hard time window and limited tour length. First, a bi-objective optimization model is proposed

to balance travel costs among different routes and to minimize the total sum of fixed costs of locating hubs, the costs of

handling, traveling, assigning, and transportation costs. The problem is then solved using an augmented e-constraint
technique for small to medium size instances of the problem. Due to the NP-hardness nature of the problem, the proposed

multi-objective optimization model is solved by a multi-objective imperialist competitive algorithm (MOICA). To show

the superior performance of the MOICA, the solutions are compared with those obtained by the non-dominated sorting

genetic algorithm (NSGA-II). For the large-scale problem instances, the comparative results indicate that the MOICA can

indeed provide better Pareto optimal solutions compared to NSGA-II for the large-scale problem instances.

Keywords Capacitated hub location routing � Multi-objective optimization � Hard time window � MOICA

1 Introduction

The optimal design of the supply chain network plays a

vital role in reducing transportation costs and improving

system performance [55]. Supply chains have grown

rapidly in recent years and focusing solely not only on

economic performance but also guarantee sustainability

[18, 43]. Hub location problems have significantly taken

into account in recent decades due to their high

applications in modern transportation and communication

systems [1, 37]. The hub location problems aim to meet the

demands by moving the individuals, goods, and informa-

tion through specific facilities called hubs as the distribu-

tion intermediates between the pairs of origin and

destination nodes [8]. In these networks, the pickup and

delivery of demands on the hubs can be two- or one-way

depending on demand volumes [53]. Hub location-alloca-

tion has various application areas in telecommunication

networks [32], air transport [17, 48], freight transportation

[33], postal services [6], public and urban transportation

[39], rail transport [24, 25], and emergency services [4].

The problem is to locate hub and non-hub facilities in a

distribution network and to allocate all the origin and

destination points (non-hub) directly to the hub so that the

network costs including costs of collection, distribution,

and other related costs are minimized [27].

Some studies have only dealt with the allocation prob-

lem by determining the location of the hub [19]. However,

some others addressed the hub location-allocation deci-

sions together with the routing problem [34]. Having

mutually influence each other, these two problems have to
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be considered simultaneously, as regarded in this study.

Hubs prevent any direct connection of all the nodes by

reducing the number of these links among the origin and

destination nodes which in turn results in reducing costs as

compared to the networks with complete graph connections

[56]. In general, three assumptions are considered in classic

hub location-routing problems including (1) the network

structure is based on a complete graph, (2) interactions

among hub include the discount factor, (3) direct routes

among non-hub nodes are forbidden [28]. However, the

freight transport industry faces with network design prob-

lem where cargo flows from different origins need to be

handled by a number of nodes. In this case, the freight

flows are re-routed to other nodes where the items are

separated to be transported to the destinations. To effi-

ciently manage this type of transport service, vehicles

perform local tours for the pickup and delivery purposes.

By growing population, demand for freight increases. By

doing so, the importance of properly designing freight

networks has become increasingly evident. The use of hubs

in the transportation networks and fair routing of vehicles

significantly reduces transportation costs and energy con-

sumption. On the other hand, maintaining customer service

is a critical task due to the significance of effective supply

chain operations [38].

This study is motivated by the need to decide the hub

facility locations and vehicle routing decisions with the aim

to minimize not only the total cost but also the distance

imbalance between the service tours while the capacity and

hard time windows constraints are respected. The objective

is to coordinate the decisions related to the tour planning,

the flow exchange between pairs of clients as well as the

inter-hub flow interactions.

2 Literature review

The basic version of location-routing problems (LRPs) was

originally addressed by [23], where a schema was proposed

to classify the location problems. Wasner and Zäpfel [54]

designed an integrated model for multi-depot hub LRP for

parcel delivery service networks. The decision model

accounts for determining the number, locations of depots

and hubs and their allocated service zones as well as the

vehicle routes. Due to the complexity of the problem, a

heuristic method was applied to solve the large-size

instances of the problems.

Several existing types of research addressed the LRP

with soft time window constraints [22, 47, 51]. Duhamel

et al. [14] proposed a hybrid meta-heuristic algorithm to

optimize depot locations together with the fleet sizing and

routing decisions under capacity constraints. The solution

method employs a greedy randomized adaptive search

procedure (GRASP) and local evolutionary search (ELS) to

generate optimal solutions for the large-size instances of

the problem. Çetiner et al. [10] developed an iterative two-

stage optimization approach to hub location routing where

the multiple allocations of hubs were allowed. They also

considered simultaneous pickup and while considering

maximum sub-tour length constraints. In the first step, a

decision was made to determine the location of the hubs,

and non-hub nodes were multiplied allocated to the hubs.

Then, routing decisions were made based on the traveling

salesman problem (TSP) for each located hub. Since the

problem for each hub was solved separately, it is possible

to have a non-hub node at two routes. It was assumed that

there is no limitation for hub and vehicle capacity, and only

tour length is limited. Also, every vehicle starts from a hub,

and all the allocated non-hub nodes are revisited and turned

back to the hub. Baños et al. [3] tried to minimize the total

costs of the transportation system and additionally reduce

the distance differences by the vehicles, called the distance

balancing, in the vehicle routing problem (VRP) with a

hard time window. They proposed meta-heuristic solution

methods in order to find a Pareto optimal solution set.

An innovative formulation of hub location-routing

problem with total cost minimization function was intro-

duced by de Camargo et al. [12]. This study has focused on

the same shipping and discount coefficient and simultane-

ous pickup and delivery. However, there are no capacity

constraints, and each non-hub node is met one. They pro-

posed a Benders decomposition technique to find optimal

solutions for real-world instances of the problem. Zarandi

et al. [60] addressed an LRP subject to the time window

limits. To deal with the uncertainty associated with the

possibility of serving a new customer by a vehicle, a fuzzy

chance-constrained model was proposed.

An essential aspect of the LRP is the possibility of

combining two well-known problems as VRP and the

single assignment hub location [41]. This problem is ter-

med as many-to-many hub location-routing problem

(MMHLRP) which is not sufficiently considered in the

related literature. In general, MMHLRP is a multi-objec-

tive optimization problem in nature. The MMHLRP was

first mathematically formulated by Nagy and Salhi [45]. In

this formulation, the vehicles are allowed to perform the

pickup and the delivery services on separate locations

subject to the capacity and maximum distance constraints.

They proposed a heuristic technique to find efficient solu-

tions for hub location-routing problem. Despite the novelty

of the formulation, the vehicles’ costs the scale economies

in the inter-hub connections were neglected.

Yetgin et al. [58] proposed evolutionary multi-objective

meta-heuristics, i.e., multi-objective differential evolution

(MODE) and non-dominated sorting genetic algorithm-II

(NSGA-II) to optimize routing strategies in multi-hop



wireless ad hoc network. The solution method considers

multiple conflicting objectives, i.e., energy consumption

and transmission delay due to bandwidth constraints. Rieck

et al. [49] presented a mixed-integer linear program based

on a multi-commodity network flow model for a variant of

many-to-many location-routing problems (MMLRP).

Given the inter-hub transport cost parameters in this model,

routing decisions were decided optimally through a vari-

able fixing technique.

Mokhtari et al. [42] suggested a combination of VNS

and PSO meta-heuristics to construct a multiple hub

transport network. It was assumed that the hubs and vehi-

cles have an infinite capacity that is far beyond the existing,

realistic situation in hub location-routing problems. The

result of computational experiments demonstrated the

superior performance of the proposed solution method as

compared to existing algorithms. The hybrid meta-heuristic

method could solve large-size instances of MMHLRPs up

to 300 nodes through acceptable optimality gap and solu-

tion time. Yang et al. [57] considered a single-objective

airline hub-and-spoke system design under stochastic

demands. Also, the effect of hub congestion was modeled

as a linear function. The problem was formulated as a two-

stage stochastic programming model. Boukani et al. [7]

studied a robust version of capacitated hub location prob-

lems with multiple allocations while neglecting routing

decisions. The mathematical model accounts for the

uncertainty associated with fixed setup cost and of hub

capacity. Kartal et al. [30] proposed three alternative for-

mulations for a single allocation p-hub median LRP with a

concurrent pickup and distribution without any time win-

dow constraint. To solve the problem, multi-threat simu-

lated annealing (SA) and an ant colony (ACO) meta-

heuristic were used. Dukkanci et al. [15] proposed an

incapacitated hierarchical hub location-routing model for

an airline network. The designed model does not take into

account the variable transportation cost and may generate

an impractical solution in real-world problems. To solve

the problem, a sub-gradient heuristic, some variable fixing

strategies, and valid inequalities were designed.

Recently, Khosravi and Jokar [31] studied MMHLRP

based on the gravity rule with a single minimization fixed

costs objective and without any capacity, time and tour

length constraints. Karimi [29] addressed the capacitated

hub covering LRPs with instantaneous pickup and distri-

bution systems. The problem was mathematically formu-

lated as a single-objective optimization model without any

time window constraint. Ghaffarinasab et al. [20] proposed

a continuous approximation model and two heuristic

solution methods for hub LRP. The model aims to mini-

mize the total transport cost which includes pickup and

delivery costs and line-haul transportation costs.

As reviewed, the literature on MMHLRP is very limited.

To the best of our knowledge, this study is the first to

develop a bi-objective model for capacitated MMHLRP

with the balanced allocation of vehicles at a hard time

window. The contributions of the present research are

threefold:

(1) To the best of the author’s knowledge, there are no

published papers that addressed the multi-objective

version of MMHLRP. In this study, a multi-objective

mathematical formulation is developed for the capac-

itated MMHLRP with a hard time window constraint.

The first objective concerns minimizing the total cost

including the hub installation cost and transportation

costs. The second objective is defined to minimize the

difference between the minimum and maximum costs

of vehicles allocated to each route.

(2) To the best of the authors’ knowledge, this research

is the first to introduce the concept of distance

balancing in many-to-many hub location-routing

problems. Here, the hub location-allocation and

vehicle routing decisions are concerned with a fair

allocation of vehicles to routes in terms of the

traveled distances. The developed model in this

study sets its sight on not only minimizing the total

distance traveled by the vehicles of the fleet but also

minimizing the imbalance in the distances traveled.

(3) In this study, multi-objective evolutionary meta-

heuristic algorithms are adopted to find the best hub

locations, assignment and routing decisions for test

cases. The efficiency of the proposed multi-objective

optimization algorithms is also in comparison with

state-of-the-art solution methods in the literature.

The rest of the article is organized as follows: In the next

section, the formal description of the capacitated

MMHLRP is provided. Then, the mathematical formula-

tion of the problem is presented in Sect. 3 as well. In

Sect. 4, multi-objective optimization methods are proposed

to solve the problem. The solution approaches include the

augmented e-constraint method, NSGA-II (non-dominated

sorting genetic algorithm-II), and MOICA) A multi-ob-

jective imperialist competitive (algorithms. In Sect. 5, the

validity of the mathematical model and the solution

methods are examined through numerical test problems.

Finally, in Sect. 6, concluding remarks are presented and

further research is discussed.

3 Problem definition and formulation

Suppose the capacitated MMHLRP where certain demand

flows between pairs of origin and destination nodes are

given. This model guarantees that the non-hub points could



be allocated to at least one hub. That is, it is possible that

some spokes request services to more than one tour. Only if

there is a set of potential hubs for installation, it would be

possible that some of them become opened for service. In

the second stage, their balanced routes will be determined.

The capacitated vehicles have to pickup and deliver from

multiple origins to multiple destinations passing at least

one hub at a hard time window of that by considering

maximum travel time and tour length. Complementary

assumptions are considered as follows:

• All the nodes can be changed into the hub and

parameter 0\ a\ 1 defines the economies of scale

as an inter-hub discount factor.

• Concurrent pickup and delivery are allowed to serve the

customers.

• Hubs are considered as the origin of the vehicle routes.

• Every vehicle which exits each hub should turn back to

that point, and its movement has maximum time and

tour length constraints.

• Multiple allocations are allowed which means that

every node can be served by more than one hub.

• A hard time window is defined for each service visiting

a spoke node.

• The transportation fleet is homogeneous with limited

loading capacity.

• The transport network is a mono-product, single

commodity, and single period type.

• The number of hubs is a variable, and their capacity is

limited.

• The connections between hubs create a complete or

fully interconnected graph.

In this study, the aim is to find optimal locations for hub

installation among potential locations. The model also

decides the best assignment of specific spokes to hubs and

the best allocations of vehicles to the travel tours. The first

objective is to minimize the total cost including the hub

installation cost, the cost of handling demands, the exe-

cution cost of the local tours, the cost of allocating vehicles

to the hubs, and the inter-hub transportation costs. The

second objective is to balance the workload imbalance in

the distances traveled by the vehicles used. It is appre-

hended that, in order to satisfy the second objective, the

model is not enthusiastic to establish new hubs. However,

to meet the first objective, the model is inclined to employ

more new hubs. Therefore, in general, these objective

functions are incompatible. To better reflect the advantages

of accounting for both conflicting objective functions, a

simple illustrative example is provided. The example

includes 20 nodes which are labeled in Figs. 1, 2, and 3.

The results of a simple case based on three scenarios are

illustrated in Figs. 1, 2, and 3, respectively. To note that in

each of these scenarios, the maximum number of hubs that

could be selected among these 20 potential nodes is 5.

After the node number of hubs became clarified, spokes are

chosen among the rest of the nodes to assign each hub. In

these figures, the opened and closed potential locations for

installing hubs are displayed by red squares with the

number labeled and dashed-line in the middle, respectively.

Figure 1 shows the solution generated in the first scenarios

when only the first objective function is minimized. Taken

for example that, the optimization model concerns the

minimization of the total cost of hubs installation, the cost

of demand satisfaction, the cost associated with the allo-

cating vehicles to the hubs, the execution cost of the local

tours, the fuel cost, and the inter-hub traveling costs. As

can be seen in Fig. 1, among 5 potential locations of hubs,

merely two of them are opened and installed (node number

‘‘9’’, ‘‘2’’). Moreover, assigned spokes to each hub are

shown with blue circles along with the allocation direction

of each tour to each hub and inter-hub connection. How-

ever, there is no balance between the distances traveled by

vehicles on different tours. Although the sum of these costs

is decreased, differences in the vehicle distances are sig-

nificant. Also, Fig. 2 shows the solution generated using

the second objective function. In this case, the objective is

to balance the workload imbalance in the distances traveled

by the vehicles used. As illustrated in Fig. 2, all potential

Fig. 1 Solution example obtained based on the optimization of the

first objective function

Fig. 2 Solution example obtained results based on the optimization of

the second objective function



locations for the establishment of hubs are opened. In this

case, despite the equal distance traveled by vehicles among

different tours, the hub location costs are raised gradually.

In conclusion, Fig. 3 depicts an optimized solution when

both objective functions are minimized concurrently. In the

third scenario, four potential points for the establishment of

hub facilities are opened, and the workload in the distances

is also balanced to some extent.

Before presenting the formal mathematical formulation,

the notations associated with sets, indices, input parame-

ters, and decision variables are summarized as follows:

Sets

N A set of nodes

K ( N A set of potential nodes for hub

A A set of arcs

V A set of vehicles

Indices

i, j, k, m [ N Index of origin and destination nodes

(u, v) [ A Index of arcs connecting nodes u, v

l [ V Index of vehicles

Parameters

wij The flow of demand from client i to

customer j

Dj ¼
P

i wij The total demand destined to customer j

Oi ¼
P

j wij The total demand originated from client i

tuv The traveling time of arc) u,v(

stv Time to service node v including loading

and unloading time

T Maximum duration allowed for completion

of the tours

a The discount factor associated with the

inter-hub transportation cost, where

0� a� 1

ak The fixed cost of locating and installing a

facility hub

ĉik The handling cost of the inbound and

outbound demand flows for client i by hub k

€cuv The cost of traveling arc) u,v(

_cl The cost of assigning a vehicle l to a hub

ckm The transportation cost for the inter-hub

connection (between hubs k and m)

c
^km

ij
The transportation cost of demands wij and

wji with an economic coefficient of a which

is c
^km

ij ¼ a wij � ckm þ wji � cmk
� �

Vk The capacity of hub k

Capl The maximum loading capacity of vehicle l

E The maximum distance length of vehicle

tour

ruv The distance between nodes u, v

M A sufficiently large positive number

bj The earliest time for customer j to allow the

service

cj The latest time for customer j to allow the

service

Decision variables

zkk = 1 if the node k is nominated as a hub facility;

otherwise equals to zero

zik = 1 if the node i is assigned to the hub k; otherwise

equals to zero

xijkm The fraction of the demand from client i to customer

j that is routed from hubs k to hub m

qkl = 1 if the vehicle l is assigned to the hub k;

otherwise equals to zero

Ykl
uv

= 1 if the vehicle l assigned to the hub k uses arc u, v

in its path; otherwise equals to zero

Pkl
u

= 1 if the vehicle l assigned to the hub provides

service to node u; otherwise equals to zero

Fig. 3 Solution example

obtained based on optimizing

both objective functions

simultaneously



Slj The time of beginning to serve the jth node by the

vehicle l

Considering the defined assumptions and notations, a bi-

objective optimization approach to multiple hub location-

routing problems with distance balancing and the hard time

window is formulated as follows:

Min f1 ¼
X

k

zkkak þ
X

i

X

k

zikĉik þ
X

k

X

l

X

u;vð Þ2A
Ykl
uv €cuv

þ
X

k

X

l

_clqkl þ
X

i

X

j

X

k

X

m

xijkm _ckmij

ð1Þ

Minf2 ¼ Maxl2V
X

k

X

u;vð Þ2A
Ykl
uv €cuv

8
<

:

9
=

;

�Minl2V
X

k

X

u;vð Þ2A
Ykl
uv €cuv

8
<

:

9
=

;
ð2Þ

s:t:
X

k

zik � 1 8i 2 N ð3Þ

zik � zkk 8i; k 2 N : i 6¼ k ð4Þ
X

m2N
xijkm ¼ zik 8i; j; k 2 N; i\j ð5Þ

X

k2N
xijkm ¼ zjm 8i; j;m 2 N; i\j ð6Þ

X

u;vð Þ
ykluv ¼ pklu 8u; k 2 N; l 2 V ð7Þ

X

u;vð Þ
ykluv ¼ pklv 8v; k 2 N; l 2 V ð8Þ

ykluv � qkl 8 u; vð Þ 2 A; l 2 V ; k 2 N ð9Þ

qkl � qk l�1ð Þ 8l 2 V ; k 2 N : l[ 1 ð10Þ
X

l

pkli ¼ zik 8i; k 2 N : k 6¼ i ð11Þ

X

u;vð Þ
ykluvtuv þ

X

u;vð Þ
ykluvstv � T 8l 2 V ; k 2 V ð12Þ

X

j

X

i

X

m

Oixijkm �Vkzkk 8k 2 N ð13Þ

X

j

X

i

X

k

Dixijkm �Vmzmm 8m 2 N ð14Þ

X

u;vð Þ
ruvY

kl
uv �E 8k 2 N; l 2 V ð15Þ

X

i

X

k

X

u;vð Þ
OiY

kl
uv �Capl 8l 2 V ð16Þ

X

i

X

m

X

u;vð Þ
DiY

ml
uv �Capl 8l 2 V ð17Þ

Sli þ tuv þ stv �M 1� Ykl
uv

� �
� Slj 8i; j; u; v; k 2 N; l 2 V

ð18Þ

bjzkk � Slj � cjzkk 8j; k 2 N; l 2 V ð19Þ

zkk; zik; Y
kl
uv;P

kl
u ; qkl 2 0; 1f g 8u; v; k; l; i ð20Þ

0� xijkm � 1 8i; j; k;m ð21Þ

Slj � 0 8l; j ð22Þ

The first objective function is defined in Eq. (1). It com-

putes the sum of the cost of hub facility network design, the

cost of handling demand flows, the inter-hub transportation

costs, the cost execution of the local tours, and the allo-

cation cost of vehicles to the hubs. As Eq. (2) shows, the

second objective function is followed by the balance of

distance of each vehicle indicating the cost of their tour. It

is important to note that these two conflicting objective

functions used in the optimization model do not have a

common cost component. The second objective function is

to balance the cost of transportation on different tours so

that balancing the tour distance reduces the need for labor

and decrease fuel consumption. Also, it helps to improve

the utilization of vehicles.

Constraint (3) indicates that each non-hub node is at

least allocated to one hub node. Constraint (4) indicates

that a non-hub node is allocated to a node if it is considered

as the hub. Constraint (5) guarantee that the exchange of

flow between the origin–destination pair i and j, with node

i 2 N being serviced by hub k 2 N, will only exist if node

i 2 N is first allocated to hub k 2 N. Likewise, constraint

(6) imposes the same logic to node j 2 N and hub m 2 N.

Constraints (7), (8) establish that an arc must leave and

arrive, respectively, at a nod, if a vehicle of a hub is

assigned to service that node. Constraints (9) are activation

constraints. A vehicle l 2 V of hub k 2 N can only use

u; vð Þ 2 A if this vehicle is first allocated to the hub.

Constraint (10) indicates that the lth vehicle cannot be

allocated as long as the previous vehicle (l - 1th vehicle)

has not been assigned. Thus, this inequality refers to the

sequence of allocating vehicles to the routes. Constraint

(11) indicates that if a vehicle, which started a tour from a

particular hub, is allocated to a node, then the node should

be allocated to that hub. Constraint (12) is related to the

maximum time allowed for constructing a tour. Constraints

(13) and (14) are related to the hub capacity at the origin

and destination nodes, respectively. Constraint (15) indi-

cates the maximum tour length. Constraints (16) and (17)

are related to the limited capacity of vehicles moving from

origin to destination. Inequalities (18) and (19) define the

hard time window constraint. Finally, constraints (20),



(21), and (22) express variables domains as the binary and

nonnegative real variables, respectively.

4 Solution methods

This section proposes the classic and state-of-the-art solu-

tion approaches in the domain of multi-objective opti-

mization methods. The aim is to compare the efficiency of

the multi-objective solution methods based on the ran-

domly generated test problems of multi-objective

MMHLRP. In this context, the decision-makers are inten-

ded to find the most preferred solutions called Pareto

optimal set, or Pareto frontier. The concept and definition

of the Pareto frontier and Pareto optimality conditions can

be found in [9, 46, 52]. In this study, we first adopt an exact

approach based on classical multi-objective optimization

methods. Then, because of the high computational cost of

generating the exact Pareto set, two multi-objective meta-

heuristic algorithms are proposed.

4.1 Augmented e-constraint method

The e-constraint method has been known as one of the

most effective existing approaches to generate the exact

Pareto optimal set [5]. It has different successful applica-

tions to multi-objective optimization problems [5, 26]. In

this multi-objective optimization technique, one of the

objective functions with the highest priority is optimized

by using a lexicographic approach, while the other objec-

tive functions are transferred to the constraint set. More

discussion on recent development and the details about the

e-constraint method can be found in [11, 36].

In this study, the augmented e-constraint method

(AUGMECON2) is adopted to solve the MMHLRP and to

find a Pareto optimal solution set known as the exact Pareto

set. AUGMECON2 is an improved version of the e-con-
straint method in which an acceleration method is utilized

to avoid generating the weakly efficient or infeasible

solutions [35]. The notation of the AUGMECON2 is

summarized in Table 1. The general formulation of

AUGMECON2 is represented in Eqs. (23)–(25). The

method and formulation are implemented in GAMS soft-

ware to generate Pareto optimal solutions.

maximize
x

f1 xð Þ þ eps � s2
r2

þ 10�1 � s3
r3

þ � � �
��

þ 10� p�2ð Þ � sp
rp

�� ð23Þ

s:t:

fk xð Þ þ sk ¼ ek; 8k 6¼ j ð24Þ

x 2 X; sk 2 Rþ ð25Þ

The algorithm starts with the calculation of the payoff

tables using the lexicographic optimization method. In this

step, the ranges for objective functions, including the lower

and upper bounds are obtained. At the next step, the second

objective function is transferred to the set of constraints as

equality using a surplus variable. To adjust the number of

intermediate solutions, a grid point is defined to suitably

dividing the variability range for objective function

i. Therefore, the range of objective function i is departed

into qi intervals with equal length [36]. As a result, the

right-hand side (ei) of objective function i is changed

parametrically. The number of generated Pareto optimal

solution sets (or solution density) is adjusted by deciding

the proper values of qi. It means that the higher the number

of grid points, the higher the solution density. When an

infeasible solution is found, then the associated values of e2
are disregarded, and finally, the algorithm terminates

instantly. In this case, the algorithm exits from the inner-

most loop and continues with the next grid point.

4.2 Non-dominated sorting genetic algorithm-II

As noticed by Nagy and Salhi [44], due to the NP-hardness

of the LRP, exact multi-objective optimization methods

possibly fail to obtain the exact Pareto set in reasonable

computational time for complicated real-size instances of

the location-routing problem. To cope with the tractability

of the problem, a non-dominated sorting genetic algorithm-

II (NSGA-II) is adopted as one of the most well-known and

influential multi-objective evolutionary algorithms. NSGA-

II was first introduced by Deb et al. [13] which is adopted

for the presented article, and it found different successful

applications in supply chain management. It is worth to

mention that the main issues in multi-objective evolution-

ary optimization are: (1) computational complexity, and (2)

non-elitism approach. NSGA-II uses a fast non-dominated

sorting approach to deal with computational complexity.

NSGA-II also uses an efficient constraint-handling method

to solve constrained multi-objective optimization prob-

lems. It also presents the elite strategy to avoid missing the

best solution and improve the robustness along with the

Table 1 Notation of the AUGMECON2

Parameter Description

sk Slack variables for the kth objective function

rk The range for kth objective function

stepk Discretization step of the kth objective

LBk The lower bound of the kth objective

np Number of Pareto optimal solutions



calculation speed of the search process. Recently, NSGA-II

has been widely implemented as an efficient multi-objec-

tive solution method in hub location literature [21, 50, 59].

The algorithm utilizes crossover and mutation operators,

as proposed in the genetic algorithm (GA), to generate new

individuals known as offspring. At that point, the current

solution set and the generated offspring are combined to

produce the next generation. Accordingly, the best-found

solutions in terms of crowding distance (CD) metric are

picked up from a combined population and moved to the

next generation. The flowchart of the NSGA-II used for

MMHLRP is illustrated in Fig. 4.

4.2.1 Solution encoding schema

The structure of the solution representation is one of the

first steps in the successful implementation of the meta-

heuristic algorithms. In the NSGA-II algorithm, the struc-

ture of the encoded solution consists of three parts (Fig. 5).

Suppose there are Ak k customers/spoke, Vk k vehicles and

Fig. 4 Flowchart of the NSGA-

II for MMHLRP



Nk k candidate points for hub locations. Then, the chro-

mosome length is 2 Vk k ? Ak k. In the first part, the

number of genes is defined as Vk k with integer values

between 1 and Nk k, which indicates the allocation of

vehicles to the hub i. The second part of the chromosome

also contains Vk k genes. The values of the genes in the

second part include non-repetitive integers between 1 and

Ak k, indicating the first customer served by the lth vehicle.

The third part of the chromosome also contains Ak k genes,

and their values include non-repetitive integers between 1

and Ak k. These numbers represent the sequence of serving

customers with the assumption that they all are in the same

direction. For a better illustration of the encoding scheme, a

schematic of the coded solution in an example is shown in

Fig. 6.

4.2.2 Genetic operators

The evolving process requires the use of selection, and

genetic operators, e.g., crossover and mutation to enrich the

elite genes of selected individuals. In this study, a tourna-

ment selection is utilized which randomly chooses the best

ones among some chromosomes to perform crossover

operation. In our implementation, a two-point crossover

operator is utilized. Also, the mutation operator follows a

uniform alteration method for the selected individual.

4.2.3 Pareto front evaluation

As stated previously, the CD is a well-known metric of the

solution diversity and population density of the generated

Pareto solutions. This metric is very popular in the domain

of multi-objective optimization. It represents an estimation

of the density of the points neighboring a specific solution.

Let r be the total number of objective functions, the CDi

metric is defined as the normalized cost for the ith emperor.

This index is calculated in Eq. (26).

CDi ¼
Xr

k¼1

f pk;iþ1 � f pk;i�1

f p;max
k;total � f p;min

k;total

ð26Þ

where f pk;iþ1 represents the value of kth the objective

function for the (i ? 1)th solution. Likewise, f pk;i�1 denotes

the value of kth objective function associated with (i - 1)th

solution just after sorting the solution set based on CD

metric. Also, f p;max
k;total and f p;min

k;total are defined as the maximum

and minimum value of the kth objective function, respec-

tively. Whenever two different solutions have the same

rank, the solution with a higher value of the CD is pre-

ferred. In Fig. 7, the non-dominated Pareto set is shown by

a set of black circles. Besides, the area surrounded by the

dotted line shows the value of CD metric for the solution i.

In this study, the selection procedure is handled through

a binary tournament method. This selection method is

utilized in choosing individuals for both the crossover and

gene mutation operators. In this selection procedure, two

2 3 1 3 5 2 6 8 6 1 3 8 9 2 4 7 5

Part A

Part B

Part C

Fig. 5 Solution representation for NSGA-II

Customer or Spoke

Located hub

Potential hub

Vehicle path

No. of vehicle L

Fig. 6 Schematic of the coded

solution in the example



solutions are first selected from the current population size,

and then, the front with the lowest number is chosen in the

case when two individuals were coming from dissimilar

fronts. Otherwise, the solution with the highest value of the

CD metric is nominated.

4.3 Multi-objective version of imperialist
competitive algorithm

MOICA is the multi-objective version of the imperialist

competitive algorithm (ICA) which formerly introduced by

Atashpaz-Gargari and Lucas [2]. This meta-heuristic was

mainly proposed to solve continuous engineering opti-

mization problems. ICA is an evolutionary search opti-

mization algorithm. This algorithm was inspired by the

sociopolitical development and evolution of humanity in

order to establish an effective search strategy [16]. ICA

starts with an initial solution set (or population) which is

considered as countries in the world. Solutions (countries)

are divided into two types based on their fitness function

value: (1) imperialists and (2) colonies which all together

form empires. The algorithm follows a competition

between the empires, in which powerful empires dominate

their colonies and less powerful empires will be devastated.

The competition between empires continues, and the

algorithm gradually converges to a specific mode wherein

only one empire remains. In this case, all its colonies place

in the same status and their cost equals that of the impe-

rialist. The details of the MOICA are explained in the

following subsections.

4.3.1 Solution representation

The first step of MOICA is to generate initial solutions. In

similar to the genetic algorithm, every solution (i.e.,

country) corresponds to a ‘‘chromosome.’’ A potential

solution is represented by an array, as illustrated in Fig. 8.

Let’s assume there are n customers, m vehicles, and

d candidate points for the hub. From the left to the right,

the first 10 cells (n) define the series of nodes in each path;

the 3 yellow cells (m) correspond to the number of nodes to

be serviced by the vehicle. Finally, the red cells (d) define

the location of the hubs and start point of each vehicle

route.

Consider a matrix of 1 � nþ pð Þ, where n is the total

number of nodes and p is the number of hubs to be installed

in the supply chain network. Matrix numbers consist of bits

1 to n (random numbers between zero and one) and bits nth

to nþ pð Þth (natural numbers between 1 and n). The

numeric value for the nþ pth bit is the total number of

nodes in the network. For example, suppose there are 10

potential nodes in the solution matrix (Fig. 8). It is

assumed that from these 10 nodes, 3 nodes must be selected

as the hub. Initially, bits of numbers 1 to 10 are generated

with uniform random numbers in the interval [0,1]. Then,

random values of bits 11 and 12 are generated with integers

between 1 and 9, and the 10th node is placed in the 13th

bit. Then, the largest random number from the values in

bits 1–13 is identified and a numeric value of 1 is assigned.

At that point, the second-largest numeric value is searched

and a numeric value of 2 is assigned. This process con-

tinues the same way for all 10 random numbers. The

numbers in bits 11–13 show the location of the hubs which

is illustrated in yellow. In other words, the numbers inside

the yellow cells (bits 2, 7, and 10) represent the location of

the hubs in the first part of the solution matrix. The loca-

tions of the hubs belong to nodes 1, 6, and 7. Other num-

bers in the solution matrix also represent non-hub nodes,

each node being assigned to the hubs positioned to its right.

In this numerical example, node 8 is assigned to the 1st

hub, nodes 2, 4, 9, 10 are assigned to the 6th hub, and

nodes 3 and 5 are assigned to the 7th hub. To determine the

number of vehicles, a 1 9 V matrix is generated on the

right-hand side of the chromosome in which, for each cell,

a numerical value of continuous uniform distribution

within the interval [0,1] is generated. The location of the

larger numeric value indicates the number of assigned

vehicles to each hub. For example, suppose V = 5, indi-

cating that 4 vehicles are used. To allocate vehicles to the

hubs, random numbers are first multiplied by the number of

hubs and then it rounds to the highest integer. The resulting

number indicates how many vehicles are assigned to each

hub.

4.3.2 Generating initial empires

The generation of the initial empires is handled through the

method suggested by Mohammadi et al. [40]. In the first

step, a non-dominance sorting procedure is performed.

Then, the individuals are selected from the current

i

i+1

i-1

F1

F2

Fig. 7 Schematic of CD metric for a bi-objective minimization

problem



population and ranked based on their CD. The best-found

solutions (known as the imperialists) are selected from the

current population. The solutions belong to the first front

are also archived, and the remaining solutions move to the

colonies. The colonies are distributed among the imperi-

alist based on the relative power of each imperialist

country. In order to find the relative power of each impe-

rialist, the cost functions for each imperialist are calculated

as follows:

Ci;n ¼
f pi;n � f p;besti

�
�
�

�
�
�

f p;max
i;total � f p;min

i;total

ð27Þ

where Ci;n shows the normalized value associated with the

ith objective function obtained for nth imperialist. Like-

wise, f pi;n corresponds to the value of the ith objective

function obtained for nth imperialist. f p;besti ; f p;max
i;total ; and

f p;mini;total define the best, lower and upper bounds for the ith

objective function obtained during the search process,

respectively. Given the notation above, the normalized

value of the cost function for each imperialist is calculated

as follows:

Cn ¼
Xr

i¼1

Ci;n ð28Þ

The dominance level associated with each imperialist is

computed as indicated in Eq. (29).

Pn ¼
Cnj j

PNimp

i¼1 Ci

ð29Þ

Let Ncol denoted the total number of all colonies.

Eventually, the number of colonies dominated by each

empire is simply computed as follows:

N � Cn ¼ round Pn;Ncolf g ð30Þ

where N � Cn corresponds to the initial number of the

colonies possessed by the nth imperialist. The colonialism

process continues by dominating the colonies. During this

process, the emperors attempt to have more colonies.

The fitness function values for each potential solution

are computed so as to satisfy the elitism criteria. The

infeasible solutions are also allowed during the search

process in order to have a better diversification in the

proposed algorithm. The solution infeasibility is measured

by the amount of violations for capacity and hard time

window constraints. However, whenever the constraints are

violated, a penalty term is summed up with the evaluation

function which penalizes infeasible solutions. Thus, the

fitness function includes the cost of two objective functions

and the penalty of violating the capacity and time horizon

constraints of each country.

4.3.3 Assimilation procedure

To model the competition between empires, the colony’s

movement toward the imperialist is simulated based on

their power. This evolution process is known as fusion or

assimilation policy which is schematically illustrated in

Fig. 9. Let y denotes the initial space between colony and

imperialist and h specifies the direction of the movement.

The movement of the colony toward the imperialist is

measured by d units. d is a random variable that follows a

uniform probability distribution between 0 and b 9 y, and

b is a parameter within the range [1,2]. Here, parameter h is
defined as a random angle which varies between –c and c
randomly where c is an adjusting parameter to control the

deviation between the original and the actual movement

path.

Fig. 8 Solution representation for MOICA

ɵ New position
of colony

Colony

Fig. 9 Schematic representation of the assimilation process



The position of an imperialist and a colony may change

due to the higher power (lower cost) gained by the colony

compared with that of its imperialist. The total cost of an

empire (or equivalently the overall power) is essentially a

weighted function of the imperialist’s power and the

average power of its colonies. Thus, the total power of the

nth empire (T � Cn) can be obtained by:

T � Cn ¼ Cost Imperialistnð Þ þ n
�mean Cost colonies of empirenð Þf g ð31Þ

where n is a weight factor that varies between 0 and 1. As a

good setting, it was reported that n = 0.1 yield superior

results in most of the previous applications of ICA.

In the assimilation phase, an order crossover operator is

utilized, in which a crossover point is selected randomly.

The utilized crossover operator is also illustrated in

Fig. 10.

4.3.4 Imperialistic possession

The competition between the empires allows them to gain

more power (lower cost). Given the structure of MOICA,
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Fig. 10 Single-point crossover operator used for MMHLRP
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each empire can achieve a top position by possessing the

colonies of other empires in a probabilistic way. The

empires with a higher power are more likely to beat the

other empires. During the competition, some weaker

empires will be discarded. The competition process is

terminated when only one imperialist remains. The nor-

malized power of an imperialist (N � T � Cn) is estimated as

follows:

N � T � Cn ¼ maxfT � Cig � T � Cn ð32Þ

Given the new colonies, the power of nth imperialist is

then normalized by the following equation:

Pn ¼
N � T � Cn

PNimp

i¼1 N � T � Cn

�
�
�
�
�

�
�
�
�
�

ð33Þ

To escape from local optimum, the revolution policies

are employed as insertion, inversion, and swap. The pro-

cess involves random alteration for the position of the

countries in a way that a colony gains more power that

helps to be exchanged by an empire. During the revolution

process, a weak empire may lose all of its colonies and then

it collapses. Based on the explained features of the

MOICA, the pseudo-code of this algorithm is summarized

Table 2 TheTonnage of goods transferred daily between the origin and destination pairs (wij; tons)

From-to East

Azarbaijan

Esfahan Tehran

province

Khorasan

Razavi

Khuzestan Fars Kerman Central

province

Hormozgan Yazd Total

East

Azarbaijan

0.00 1.18 5.76 0.89 0.86 0.61 0.35 0.72 0.55 0.47 11

Esfahan 1.65 0.00 12.02 3.13 10.76 6.38 2.82 2.54 12.48 3.70 55

Tehran 3.48 4.92 0.00 5.56 4.02 3.82 1.96 1.90 3.56 1.26 30

Khorasan

Razavi

0.62 2.77 6.18 0.00 1.75 0.95 1.30 0.36 7.87 0.97 23

Khuzestan 3.88 13.32 11.21 3.29 0.00 3.99 1.34 4.48 1.52 2.29 45

Fars 0.83 5.39 3.88 1.05 3.19 0.00 1.60 0.87 6.35 5.81 29

Kerman 0.35 2.68 1.76 1.58 4.82 1.82 0.00 0.16 14.23 1.39 29

Central

province

0.75 3.69 7.71 0.88 6.56 1.12 0.55 0.00 1.26 0.47 23

Hormozgan 0.98 3.48 11.30 1.53 2.62 2.96 2.76 1.21 0.00 1.20 28

Yazd 0.91 4.62 2.57 1.69 8.04 3.67 3.48 0.66 6.02 0.00 32

Total 13.45 42.05 62.38 19.62 42.63 25.31 16.16 12.89 53.84 17.57 305.91

Table 3 Distance matrix between the origin and destination pairs (ruv; km)

From-to East

Azarbaijan

Esfahan Tehran

province

Khorasan

Razavi

Khuzestan Fars Kerman Central

province

Hormozgan Yazd

East

Azarbaijan

0 907 633 1526 1145 1391 633 751 1817 1153

Esfahan 907 0 448 1153 512 483 676 281 939 323

Tehran 633 448 0 899 824 934 990 278 1286 621

Khorasan

Razavi

1526 1153 899 0 1632 1345 908 1086 1391 907

Khuzestan 1145 512 824 1632 0 540 1100 542 1128 779

Fars 1391 483 934 1345 540 0 566 757 575 449

Kerman 633 676 990 908 1100 566 0 993 497 372

Central

province

751 281 278 1086 542 757 993 0 1290 625

Hormozgan 1817 939 1286 1391 1128 575 497 1290 0 696

Yazd 1153 323 621 907 779 449 372 625 696 0



in Fig. 11. In this study, the algorithm is stopped when it

reaches a predefined number of function calls (NFC).

5 Computational results and insights

This section provides the computational results of standard

experiments to investigate the accuracy of the mathemati-

cal optimization model and to test the performance of the

proposed multi-objective optimization methods. The

source of the data is adopted from the hub location data set,

known as the CAB, available in the literature. First, the

validity and tractability of the mathematical optimization

model presented in Sect. 3 are tested by solving small-size

instances of the MMHLRP. Then, the result of the aug-

mented e-constraint method is compared with those

attained by MOICA. The algorithmic framework is

implemented in the GAMS programming environment.

5.1 Model validation

In this section, the validity of the bi-objective optimization

model is verified using the solutions obtained by GAMS/

CPLEX solver. The problem instances are based on the

data of road freight transport in Iran. Road transport is a

significant contributor to freight logistic in Iran. 90% of

cargo and passenger transportation in Iran is carried out

with overnight work of more than 600 thousand drivers in

40 thousand kilometers of roads of the country. One of the

most critical problems in the Iran road transport sector is

the lack of proper distribution of vehicles in the main

distribution centers. In this research, the aim is to present a

suitable solution to this problem by implementing an

optimization model. The real-world problem instances

consist of a maximum of ten nodes and five potential

locations for hub installation. The data of the tonnage of

goods transferred daily between the origin and destination

pairs are provided in Table 2. Also, the distance matrix

between the origin and destination pairs (ruv) is given in

Table 3. The results of GAMthe S/CPLEX solver for real-

world test problems are provided in Table 4. The aug-

mented e-constraint method is implemented in the GAMS

version 24.2 optimization software tool. All the test prob-

lems are implemented on a laptop with Intel Core i5-4210U

2.40 GHz processor with 6 GB RAM running Windows

10.

In numerical experiments, the first objective function is

regarded as the primary objective function f1, and the cost

balance of every vehicle was considered as a constraint.

Table 5 shows the output with 10 nodes, 4 vehicles, and 5

hubs using GAMS/CPLEX. Table 6 reports the minimum

total cost of transportation based on different epsilon (e)
values. Figure 12 also shows the Pareto set generated by

the augmented e-constraint method. The schematic graph

of the solution obtained for MMHLRP in the case study is

illustrated in Fig. 13.

The comparative results of the multi-objective opti-

mization problem are provided in Table 7. To compare the

algorithm solution time, a test problem with 10 nodes and 4

vehicles is used. It should be noted that the dimensions of

Table 4 Result of GAMS/CPLEX solver for real-world test problems

Number

of nodes

Number of

vehicles

Optimal

objective value

(F1)

Optimal

objective value

(F2)

CPU(s)

6 3 5,718,901.40 48.6 1771

7 3 18,015,275.08 44.38 1936

9 4 27,702,802.52 39.16 2745

10 4 39,983,209 39.54 2977

Table 5 Result obtained for problem instance with 10 nodes and 4

vehicles

Iterations Epsilon (e) Minimum F1 Minimum F2

1 81 37,002,210 79

2 72.9 37,178,630 71.6

3 64.8 38,000,380 60.9

4 56.7 38,052,950 56.7

5 48.6 40,065,830 45.5

6 40.5 40,060,990 40.3

7 32.4 40,868,790 30.4

8 24.3 41,071,500 22.1

9 16.2 42,142,000 10.7

10 8.1 43,211,320 8.1

Table 6 Objective function values based on e values

Objective functions F1 (total cost) F2 (balance of

vehicle distance)

Minimum f1 37,000,102 89.1

Minimum f2 43,211,320 8.1
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Fig. 12 Pareto front generated by the augmented e-constraint method



this problem are the largest dimensions that GAMS soft-

ware has been able to solve optimally. Table 7 shows the

values of the objective functions of the various Pareto

optimal solutions extracted by the meta-heuristic algo-

rithms. The Pareto front obtained for augmented e-con-
straint and MOICA methods is also shown in Fig. 14.
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Fig. 13 Schematic graph of the solution obtained for MMHLRP in the case study

Table 7 Comparative results of the multi-objective optimization problem

Pareto solution no. Augmented e-constraint MOICA Optimality gap (%)

f1* CPU(s) f2* CPU(s) f1* CPU(s) f2* CPU(s) f1* f2*

1 37,002,210 1 79 12 37,002,210 1 79 1 0.00 0.00

2 37,178,630 55 71.6 623 37,081,587 4 70 5 0.26 2.23

3 38,000,380 72 60.9 796 37,600,298 5 60.9 7 1.05 0.00

4 38,052,950 94 56.7 1083 38,000,287 6 56 10 0.14 1.23

5 40,065,830 356 45.5 1318 40,065,830 14 44.8 19 0.00 1.54

6 40,060,990 1018 40.3 2477 40,060,800 27 39.9 34 0.00 0.99



Based on the obtained results, it can be seen that the

optimality of the MOICA algorithm is acceptable com-

pared to the augmented e-constraint algorithm.

5.2 Parameter setting

The distributions for generating input data for numerical

test problems are presented in Table 8. The initial popu-

lation size of solutions for small- and large-scale test

problems is 100 and 200, respectively. Also, the mutation

and crossover probabilities are 0.2 and 0.8, respectively.

The maximum number of iterations allowed to run the

NSGA-II algorithm for small- and large-scale test problems

are 200 and 500, respectively.

Before the execution of the meta-heuristic algorithms, a

fine-tuning method is used that aims to design a high-

performance setting for computational experiments. The

best-coded values for MOICA’s parameters are obtained by

response surface methodology (RSM). RSM is a regres-

sion-based statistical method used to optimize an output

variable (known as the response). Since the response

variable is influenced by the value of the independent

inputs, the optimal design of the algorithm needs an

appropriate selection of these parameters. Here, the fine-
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Fig. 14 Pareto front obtained for augmented e-constraint and MOICA

methods

Table 8 Input data range and distributions

Parameter tuv stv a Capl cmk Vk E T ak

Distribution U(100, 800) U(20, 100) U(0.01, 1) U(700, 1200) U(5, 15) U(100, 1000) 5 3000 U(2000, 3000)

Table 9 Coded values for

algorithm parameters
Algorithm parameter (factors) Coded level

Value of -1 Value of 0 Value of ?1

S L S L S L

b 1 1 2 2 3 3

PA 0.4 0.5 0.6 0.7 0.8 0.9

PC 0.3 0.4 0.5 0.6 0.7 0.8

PR 0.2 0.3 0.3 0.4 0.4 0.5

n-Pop 75 125 125 200 175 250

N-imp 5 9 7 11 9 13

n 0.15 0.15 0.2 0.2 0.25 0.25

Table 10 Parameter tuning for

MOICA using RSM
Algorithm parameter (factors) Coded values (optimal) Real values (optimal)

S L S L

b - 0.15 0.20 1.85 2.20

PA - 0.20 0.10 0.52 0.72

PC 0.12 0.50 0.55 0.70

PR - 1 0.3 0.20 0.43

n-Pop 0.9 1 170 250

N-imp - 0.50 - 1 6 9

n - 0.60 0.40 0.17 0.22



tuning procedure is handled by examining two classes of

small and large sizes of test problems. Also, the algorithm

parameters are considered in two levels (low and high) for

each parameter. Let Xi and Ri denote coded variable and

real variable, respectively. Given the high and low levels of

algorithm parameters, the coded variable is calculated as

follows:

Xi ¼
Ri � highþlow

2

high�low
2

ð34Þ

The coded values for algorithm parameters are provided

in Table 9. The coded values are defined as - 1 and 1

which correspond to the low and high levels. The optimal

of real value and coded values for all factors used in small-,

medium- as well as large-scale problem instances are found

by using RSM, and the final values are summarized in

Table 10.

5.3 Performance evaluation

The effectiveness of the proposed MOICA is measured by

running on real-size test problems. The outcomes of the

MOICA are compared with those of NSGA-II based on a

variety of Pareto optimality performance indices. Here,

four indices including quality metric (QM), diversity

metrics (DM), spacing metric (SM) and mean ideal dis-

tance metric (MID) are used to compare the solution of the

MOICA with those of the NSGA-II algorithm.

Quality metric (QM) This metric indicates the number of

obtained solutions which are not dominated by the other

solutions. The process involves the comparison of the

number of solutions belonging to each algorithm with a

reference set (total number of found non-dominated solu-

tions). The higher value of the quality metric indicates a

better outcome of the multi-objective optimization

algorithm.

Spacing metric (SM) This metric measures the standard

deviation of the distances between Pareto optimal solu-

tions, in which smaller value is superior. It was proposed to

measure how uniformly the solutions of an approximate

Pareto front are distributed.

Diversity metrics (DM) This metric measures the spread

of the solution set and is calculated by:

DM ¼
Pnp�1

i¼1
�d � di

�
�

�
�

np � 1
� �

�d
ð35Þ

where di defines the Euclidian distance between two Pareto

solutions in the solution space. Furthermore, �d corresponds

to the average value of the Euclidian distances. Based on

this metric, the higher the DM’s value, the better the cor-

responding Pareto set.

Mean Ideal Distance Metric (MID) It measures how the

Pareto solutions are close to the ideal point (0,0). Here,

smaller values are more desirable.

Table 11 Computational results

of the performance metrics for

the small-size test problems

Test prob. QM SM DM MID

NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA

10#3 0.205 1 0.515 0.587 0.940 0.996 0.558 0.556

10#4 0.354 0.646 0.768 0.351 0.820 0.883 0.575 0.468

15#3 0.200 1 0.574 0.576 1.016 1.085 0.517 0.579

15#4 0 1 0.661 0.347 0.890 0.835 0.754 0.509

15#5 0 1 0.516 0.622 0.808 1.059 0.613 0.475

20#3 0 1 0.691 0.390 1.073 0.832 0.715 0.545

20#4 0.200 0.720 0.555 0.328 1.045 0.916 0.778 0.564

20#5 0.140 0.640 0.712 0.350 0.898 1.032 0.700 0.597

20#6 0.362 0.638 0.726 0.497 0.930 1.101 0.714 0.300

25#3 0.100 0.800 0.750 0.439 0.914 0.786 0.678 0.560

25#4 0.200 0.750 0.630 0.391 0.743 1.169 0.549 0.484

25#5 0 1 0.483 0.583 0.785 1.099 0.696 0.597

25#6 0 1 0.541 0.484 0.862 0.969 0.842 0.458

30#3 0 1 0.816 0.470 0.753 0.946 0.850 0.444

30#4 0 1 0.511 0.617 1.030 0.951 0.608 0.541

30#5 0.160 0.840 0.781 0.364 0.737 0.888 0.583 0.368

30#6 0.950 0.915 0.665 0.553 0.751 0.979 0.726 0.449

30#7 0 1 0.849 0.552 0.762 0.980 0.756 0.571

30#8 0 1 0.481 0.402 0.752 1.118 0.667 0.472



MID ¼
Pnp

i¼1 di
np

ð36Þ

The comparative performance and method accuracy of

the proposed solution method is linked with NSGA-II by

using these performance metrics. The comparative out-

comes of the multi-objective performance metrics for the

small-, medium- and large-scale test problems are provided

in Tables 11, 12, and 13, respectively.

Pareto front generated by the MOICA and NSGA-II

methods is shown in Fig. 15 (N. nodes = 100, N. vehi-

cle = 19). In this large-size test example, the comparison

between the Pareto fronts indicates the superior perfor-

mance of the MOICA as against the NSGA-II. To better

highlight the difference between these two algorithms, the

results of convergence tests and statistical analysis of the

outputs are provided in the next following subsections.

5.4 Algorithm convergence tests

Despite the fast search capability of the NSGA-II and

MOICA, the computational costs of multi-objective meta-

heuristic approaches would be a problem, especially for

large-size hub networks. As shown in Figs. 16, 17, 18, and

19, the convergence ratio plots for NSGA-II and MOICA

are provided. Based on what computational results show,

the proposed algorithm generates more efficient solutions

as compared to NSGA-II for large-scale instances of the

MMHLRP. According to the obtained results, comparing

MOICA and NSGA-II, for quality, spacing, and mean ideal

Table 12 Computational results

of the performance metrics for

the medium-size test problems

Test prob. QM SM DM MID

NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA

40#3 0 1 0.572 0.273 0.996 1.263 0.799 0.537

40#4 0 1 0.731 0.523 0.985 0.850 0.504 0.413

40#5 0.200 0.800 0.717 0.267 1.068 1.058 0.519 0.362

40#6 0 1 0.666 0.278 0.916 1.041 0.767 0.326

40#7 0 1 0.729 0.459 0.929 1.057 0.741 0.532

40#8 0.240 0.760 0.717 0.288 0.879 1.197 0.710 0.361

40#9 0.100 0.900 0.521 0.578 1.085 0.995 0.792 0.416

40#10 0 1 0.501 0.577 1.012 1.203 0.783 0.466

50#3 0.400 0.600 0.896 0.333 0.992 1.393 0.614 0.402

50#4 0 1 0.568 0.581 0.947 0.746 0.718 0.396

50#5 0 1 0.603 0.356 0.604 1.358 0.894 0.551

50#6 0 1 0.659 0.380 1.022 0.712 0.786 0.341

50#7 0.050 0.950 0.529 0.540 1.062 1.179 0.836 0.380

50#8 0 1 0.774 0.446 0.986 1.249 0.673 0.586

50#9 0.200 0.800 0.661 0.531 0.621 1.074 0.688 0.216

50#10 0 1 0.894 0.419 0.789 1.320 0.724 0.590

50#11 0.150 0.850 0.661 0.382 0.952 1.330 0.607 0.275

50#12 0 1 0.748 0.311 0.965 1.138 0.800 0.467

70#3 0.200 0.800 0.579 0.432 0.912 0.896 0.630 0.344

70#4 0.400 0.600 0.578 0.412 1.032 0.971 0.620 0.382

70#5 0 1 0.631 0.561 1.044 1.267 0.504 0.354

70#6 1 1 0.853 0.416 1.016 0.995 0.716 0.501

70#7 0 1 0.688 0.373 0.827 0.936 0.538 0.494

70#8 0.100 0.900 0.661 0.417 0.881 0.876 0.558 0.372

70#9 0 1 0.571 0.485 1.001 0.998 0.753 0.478

70#10 0 1 0.888 0.206 0.744 0.987 0.844 0.579

70#11 0 1 0.663 0.521 0.744 0.865 0.890 0.514

70#12 0.020 0.980 0.838 0.257 0.808 1.017 0.728 0.482

70#13 0 1 0.746 0.391 0.910 0.845 0.899 0.243

70#14 0 1 0.651 0.302 1.090 1.107 0.721 0.356

70#15 0 1 0.851 0.348 0.984 0.805 0.706 0.436

70#16 0 1 0.814 0.465 0.825 1.087 0.632 0.384



Table 13 Computational results of the performance metrics for the large-scale test problems

Test prob. QM SM DM MID CPU time (s) *103

NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA NSGA-II MOICA

100#3 0 1 0.634 0.524 0.556 0.207 0.556 0.207 0.995 0.905

100#4 0 1 0.739 0.342 0.604 0.374 0.604 0.374 1.012 1.004

100#5 0 1 0.861 0.229 0.534 0.533 0.534 0.533 1.03 1.025

100#6 0 1 0.781 0.436 0.672 0.447 0.672 0.447 1.056 1.037

100#7 0 1 0.651 0.564 0.603 0.408 0.603 0.408 1.066 1.048

100#8 0.05 0.95 0.794 0.277 0.619 0.546 0.619 0.546 1.295 1.059

100#9 0 1 0.882 0.373 0.67 0.239 0.67 0.239 1.337 1.089

100#10 0 1 0.717 0.5 0.547 0.564 0.547 0.564 1.368 1.10

100#11 0 1 0.716 0.215 0.698 0.243 0.698 0.243 1.402 1.11

100#12 0.5 0.95 0.624 0.579 0.783 0.407 0.783 0.407 1.424 1.115

100#13 0 1 0.528 0.506 0.597 0.257 0.597 0.257 1.451 1.123

100#14 0 1 0.572 0.424 0.814 0.424 0.814 0.424 1.495 1.147

100#15 0 1 0.537 0.273 0.529 0.201 0.529 0.201 1.539 1.175

100#16 0 1 0.685 0.399 0.657 0.507 0.657 0.507 1.585 1.185

100#17 0.1 0.9 0.503 0.407 0.501 0.54 0.501 0.54 1.792 1.242

100#18 0 1 0.866 0.598 0.588 0.567 0.588 0.567 1.805 1.287

0

20

40

60

80

100

120

300 400 500 600 700 800 900

f 2

f1×105

NSGAII
MOICA

Fig. 15 Pareto front generated by the MOICA and NSGA-II methods

(N. nodes = 100, N. vehicle = 19)
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Fig. 16 Comparison of convergence plots of NSGA-II and MOICA

on MID index
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Fig. 17 Comparison of convergence plots of NSGA-II and MOICA

on DM index
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on SM index



distance metrics, MOICA shows a higher convergence rate

as compared to NSGA-II. The outcomes indicate that the

parameter fine-tuning process achieves superior results in

each generation of MOICA by decreasing the number of

iterations required to achieve algorithm convergence. Fig-

ure 20 illustrates the box plot for the convergence speed of

the meta-heuristic algorithms. As the results show, the

convergence speed of the MOICA algorithm is signifi-

cantly higher than that of the NSGA-II algorithm.

5.5 Statistical results

To compare the significance of the difference between the

performance of the NSGA-II and MOICA algorithms, a

paired t test is conducted. The significant difference is

examined based on the result of four multi-objective per-

formance indices, e.g., QM, SM, DM, MID. Suppose Di

equals to the difference between the values of the perfor-

mance metrics in the ith test problem. Therefore, the t test

statistic is calculated as t ¼
ffiffi
n

p
� �D
SD

where �D ¼
P

Di

n and

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Di� �Dð Þ2

n�1

q

.

In this study, the paired t-test is conducted for 30 test

problems using SPSS software. The calculated test statistic

is equal to the seventh column (t) for each comparison as

represented in Table 14. The result shows the significance

(2-tailed) is 0.00, referring to the values of the t-table. The

detailed statistics along with 95% confidence intervals (CI)

are shown in Table 14. This test shows that there is a

statistically significant difference between solutions

obtained by MOICA and NSGA-II for each performance

index. According to the last column of Table 14, since the

significance (2-tailed) (p value) is lower than 0.05 for each

performance index. Thus, it is concluded that the proposed

MOICA has superior performance as compared to the

NSGA-II.

6 Conclusion

Effective flow management of goods between different

origins and destinations requires optimized hub networks

that allow fully connected links to be substituted with

fewer indirect links. The main aim is to provide a cost-

effective plan for the design of the hub-and-spoke facilities

and the routing plan for the vehicles. However, when the

number of local tours increases, there is a need to find a

trade-off between the maximum and minimum costs of

vehicles allocated to each sub-tour.

This study proposed a new multi-objective mathematical

modeling formulation for capacitated many-to-many hub

location-routing problem with a hard time window. The

model has different applications such as in parcel delivery
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Fig. 19 Comparison of convergence plots of NSGA-II and MOICA

on QM index

Fig. 20 Box plot for the convergence speed of meta-heuristic

algorithms

Table 14 Detailed statistics of

the paired t test
Metric Mean SD Std. error mean 95% CI of the difference t df Sig. (2-tailed)

Lower Upper

Quality 0.85 0.19 0.021 0.825 0.928 40.1 56 0.00

SM - 0.45 0.15 0.017 - 0.496 - 0.411 - 22.6 56 0.00

DM 0.11 0.22 0.027 0.074 0.178 5.23 56 0.00

MID - 0.25 0.16 0.019 - 0.274 - 0.203 - 14.5 56 0.00



network design problems. The proposed model was cap-

able of determining the optimal locations of hubs and the

optimal tours for each hub. The aim was to minimize the

total sum of fixed costs of locating hubs, the costs of

handling, traveling, assigning, and transportation and the

vehicle costs. The small to medium size instances of the

problem was first solved using an augmented e-constraint
method. Due to the complexity of the hub location-routing

problem, MOICA and NSGA-II were used to generate

near-optimal solutions. The performance of the MOICA

and NSGA-II was compared using Pareto solution indica-

tors. The computational results indicate that the MOICA

can provide better Pareto optimal solutions compared with

NSGA-II for the large-scale problem instances. As the

numerical results showed, the proposed MOICA was effi-

caciously satisfied with the goal to find optimal or near-

optimal Pareto solutions for large-size applications of the

MMHLRP in expected computational time.

Future research may focus on extending the modeling

framework and solution method to address the uncertainty

associated with the travel time or demand flow between

different origins and destinations. Future research can also

be directed toward the extension of the model to include

more details of commodities within a dynamic planning

horizon. As another field for further research, the effects of

flow congestion in hubs and links, due to the existence of

the capacitated resources, can be handled within the

mathematical modeling framework.
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