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Abstract

Background: Sleep disorders are a major public health issue. Nearly 1 in 2 people experience sleep disturbances during their
lifetime, with a potential harmful impact on well-being and physical and mental health.

Objective: The aim of this study was to better understand the clinical applications of wearable-based sleep monitoring; therefore,
we conducted a review of the literature, including feasibility studies and clinical trials on this topic.

Methods: We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and the Web of Science through
June 2019. We created the list of keywords based on 2 domains: wearables and sleep. The primary selection criterion was the
reporting of clinical trials using wearable devices for sleep recording in adults.

Results: The initial search identified 645 articles; 19 articles meeting the inclusion criteria were included in the final analysis.
In all, 4 categories of the selected articles appeared. Of the 19 studies in this review, 58 % (11/19) were comparison studies with
the gold standard, 21% (4/19) were feasibility studies, 15% (3/19) were population comparison studies, and 5% (1/19) assessed
the impact of sleep disorders in the clinic. The samples were heterogeneous in size, ranging from 1 to 15,839 patients. Our review
shows that mobile-health (mHealth) wearable–based sleep monitoring is feasible. However, we identified some major limitations
to the reliability of wearable-based monitoring methods compared with polysomnography.

Conclusions: This review showed that wearables provide acceptable sleep monitoring but with poor reliability. However,
wearable mHealth devices appear to be promising tools for ecological monitoring.

(JMIR Mhealth Uhealth 2020;8(4):e10733)  doi: 10.2196/10733

KEYWORDS

sleep; eHealth; telemedicine; review; medicine; wearable electronic devices

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 4 | e10733 | p. 1https://mhealth.jmir.org/2020/4/e10733
(page number not for citation purposes)

Guillodo et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:elise.guillodo@chu-brest.fr
http://dx.doi.org/10.2196/10733
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Sleep Disorders
Sleep disorders are a major public health issue. Nearly 1 in 2
people experience sleep disturbances during their lifetime [1]
with a potential harmful impact on well-being and physical and
mental health [2]. The International Classification of Sleep
Disorders distinguishes the following 6 categories: insomnia,
sleep-related breathing disorders, central hypersomnia, circadian
rhythm disorders, parasomnias, and sleep-related motor
disorders [3]. For example, insomnia is characterized by
complaints about the duration and quality of sleep, difficulty
falling asleep, nocturnal awakenings, early awakening, or
nonrecuperative sleep [4]. This symptomatology must be present
at least three times a week for at least 1 month, with negative
consequences the next day. Sleep and mental health are highly
related, with many mental health problems also being associated
with sleeping disorders [5]. Traditionally, sleeping disorders
have been viewed as a consequence of mental health disorders,
and evidence also suggests that sleeping disorders can contribute
to the development of new mental health problems [6].

Sleep Monitoring
Normal sleep is characterized by a succession of 4 to 6 cycles
lasting approximately 90 min. Each of these cycles consists of
slow-wave phases and rapid eye movement (REM) sleep, which
are related to the slowdown and activation of the central nervous
system. During REM sleep, or stage 5, REMs are observed and
muscle tone is abolished. The early-night cycles are especially
rich in deep, slow sleep, and the latter cycles are dominated by
REM sleep [7]. The duration of normal sleep varies between 6
and 10 hours depending on several factors, the most important
of which are age and genetics.

Normal and pathological sleep can be explored either
subjectively, that is, by asking the subject, or objectively, using
sensors. An epidemiological study conducted in 2013 with over
1000 participants found the prevalence of subjective insomnia
to be 15%, whereas the objective prevalence measured by
polysomnography (PSG) was 32% [8]. To date, PSG remains
the gold standard for objectively assessing sleep characteristics.
The polysomnograph plots a hypnogram, integrating data from
several sensors: an electroencephalogram (EEG), an
electromyogram (EMG), an electrooculogram (EOG), thoracic
movement (from belts on the chest and abdomen), airflow
measures, oximetry, and an electrocardiogram (ECG). The sleep
stages are scored according to standard visual criteria based on
the EEG, EOG, and EMG sensors [5]. The assessment must be
carried out under controlled conditions in the laboratory for 8
to 12 hours. An automated hypnogram analysis is possible but
still requires manual integration of data [7]. Successful recording
of the PSG over the course of the recording and the analysis of
the results must be carried out by a clinician with expertise in
sleep pathologies and brain disorders. Although PSG is
considered the gold standard, it is an examination with
limitations: it can be cumbersome for the patient, is not very
accessible, and is not being realized in ecological conditions.

Mobile Health Wearables
The internet has increased the possibilities for improved patient
monitoring. The integration of mobile phones and wearable
tools into medical practice has been heralded as the electronic
health and mobile health (mHealth) era [9]. These tools can be
used to self-monitor or self-assess, allowing individuals to better
understand their behavior and body and therefore their health.
Aspects of daily life are particularly targeted, with measures of
diet, physical activity, or sleep. These self-measurements can
be tracked and analyzed with the objective of modifying
individual behaviors, including using educational approaches.
We therefore observed an association between the concepts of
self-monitoring or self-tracking and empowerment, with greater
patient involvement and better autonomy. Finally, these devices
also allow clinicians to access and review clinical data in real
time [10].

Wearables and Sleep Monitoring
The most frequent sensor embodied into commercially available
wearables for sleep monitoring is the actimeter. The actimeter
uses an accelerometer worn on the wrist and thus detects the
movements of the limb [11]. The use of the actimeter has
increased because it is easy to use and allows recordings over
periods of time longer than a single night of PSG. However,
this assessment method has some limitations. Indeed, according
to the numerous comparative studies with PSG, it has been
shown that the actimeter hardly detects sleepiness,
underestimates the latency of falling asleep, and overestimates
the number of microawakenings compared with the reference
examination. Finally, this device does not provide information
on the stages of sleep. Actimetry is therefore limited to subjects
with circadian rhythm disturbances and to evaluation of total
sleep time (TST) [12]. Some devices use
electroencephalographic and electro-oculographic recordings
[13]. However, these devices, still not widely used, require the
positioning of several electrodes and are therefore impractical
for home use by the patient [12].

Other devices measure heart rate and rely on the variability in
the heart rate to identify the stages of sleep. Indeed, this
variability is higher during paradoxical sleep or nocturnal
awakenings and lower during slow sleep [14] because of the
sympathetic or parasympathetic action modulations of the
autonomic nervous system [12]. These devices are available in
different forms, such as watches, chest bands, electrodes, and
monitors on the mattress or pillow, but still have poor results
[11].

Overall, wearables are promising sleep-monitoring methods
and allow for the recording of several nights, whereas PSG
assesses only a single night of recording [11]. A total of 3
reviews have examined the potential features of wearable
devices for sleep monitoring [15-17]. However, none of these
reviews used a systematic review method to report recent clinical
research results. Another review recently assessed the efficiency
of actigraphy for evaluating mood disorders [18] and activity
[19] but did not have any specific focus on sleep monitoring
using mHealth wearable methods. Our hypothesis was that the
use of wearables was described in the scientific literature. We
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therefore conducted a review of the literature on the use of
mHealth wearable devices for sleep assessment.

Methods

Objectives and Databases
This literature review aims to identify published articles focusing
on wearable-based sleep recording in human participants.

We used the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses [20] to identify, select, and critically
appraise relevant research while minimizing bias.

Selection Criteria
The literature search was conducted in June 2019 in the PubMed,
PsycINFO, Science Direct, Cochrane Library, Scopus, and Web
of Science databases. The keywords used were chosen from the

terms used in the health terminology of the biomedical reference
thesaurus or MeSH terms. The search was conducted using AND
and OR logistic operators in the MeSH terms, titles, and
summaries (Figure 1). The keywords and search strategy we
used were (sleep) AND (wearables OR sensors OR
polysomnography OR actigraphy).

We included randomized controlled trials and nonrandomized
studies. We excluded studies without a clinical population,
theoretical articles, editorials, and viewpoints without practical
results. We excluded articles with an exclusive focus on
technical aspects, sleep-monitoring devices that were not
connected to the internet, articles presenting monitoring
procedures that were not performed ecologically (ie, at home),
and unstructured narrative reviews. We also excluded narrative
reviews or any article reporting results in an under 18-year-old
population.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. MESH: Medical Subject Headings.

Data Extraction and Analysis
The analysis of the articles was conducted in two stages. As a
first step, a census based on the review of titles and abstracts
of scientific papers meeting the inclusion criteria was conducted.
Two review authors (SB and EG) independently assessed all
studies retrieved against the inclusion criteria. Disagreements
were resolved by a third review author (JR). During the literature
review process, relevant studies were categorized using a 2-step
approach. We first performed a review of the titles and abstracts
of all publications that were identified as relevant according to
the inclusion criteria. Abstracts were then categorized by the
type of methodology used, health condition, applications, and
purposes. The full texts of all publications that were not
excluded during the title and abstract review stage were checked.
Publications that met all inclusion criteria comprised the final
sample. The full texts of all publications that were not excluded
after the analysis of titles and abstracts were reviewed. All
studies meeting the inclusion criteria were included.

Results

Identification of the Articles
The steps of the literature review research and analysis are
summarized in Figure 1. The initial search identified 645
articles. After the removal of duplicate articles, screening based
on the titles resulted in the removal of 308 articles. A total of
194 articles were excluded after review of the abstracts. After
review of the full text, 83 additional articles were excluded
because they did not meet the inclusion criteria. Thus, 19 articles
meeting the inclusion criteria were included in the final
analysis—an overview of these studies is shown in Multimedia
Appendix 1.

Design and Size
Of the 19 studies in this review, 58% (11/19) were comparison
studies with the gold standard, 21% (4/19) were feasibility
studies, 16% (3/19) were population comparison studies, and
5% (1/19) assessed the impact of sleep disorders in the clinic.
The samples were heterogeneous in size, ranging from 1 to
15,839 patients.
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Analysis of Results
A review of the full text of the articles revealed 4 categories.
We identified feasibility studies, population comparison studies,
studies comparing mHealth wearables to PSG to identify sleep
stages, and a study describing the impact of sleep on clinical
outcomes.

Feasibility Studies
In their study, Baron et al [21] aimed to outline the theoretical
foundation and iterative process of designing the Sleep Bunny,
a technology-assisted sleep extension intervention including a
mobile phone app, a wearable sleep tracker, and brief telephone
coaching. The population comprised 6 adults with short sleep
duration (<7 hours), testing the application with the sleep
tracker, and the telephone coaching once a week over 4 weeks.
The survey, based on open-ended questions, asked participants
to provide comments for general feedback on the content and
layout of the app. In conclusion, users enjoyed the wearable
sleep tracker and found the app visually pleasing but suggested
improvements to the notification and reminder features.

The team of Castiglioni et al [22] studied the feasibility of
wearing a MagIC-SCG sternal wrist device during high-altitude
sleep, which is conducive to hypoxia. Their device recorded an
ECG, respiratory movements, sternal accelerations, and oxygen
saturation. The study demonstrated the feasibility of recording
and using the equipment in high-altitude conditions.

The study by Di Rienzo et al [23] demonstrated the feasibility
of estimating cardiac functions such as contraction and
isovolumic relaxation times or ventricular ejection time during
sleep. The data were transmitted in real time to an external
device via a Bluetooth connection.

Kayyali et al [24], in the United States, investigated the
feasibility of a wearable sleep recorder at the patient’s home.
Their device, PSG @ home, was placed in the thoracic region
and recorded respiratory movements, oxygen saturation, airflow,
snoring, body position, and an ECG. Their study demonstrated
the feasibility of using this discrete device overnight at the
subject’s home.

Population Comparison
The purpose of the study by Fagherazzi et al [25] was to
highlight the determinants involved in poor sleep. The authors
calculated the 7-consecutive-night deep sleep/total sleep ratio
of a large number of users of Withings wearable devices. They
used an algorithm that used the data obtained from both the
accelerometer and temperature sensor. A ratio indicating poor
sleep was defined as below 0.40. Their findings showed that
young men with elevated heart rate and high blood pressure
were at higher risk for poor sleep quality.

Migliorini et al [26] compared sleep records between a healthy
adult population and a patient with bipolar disorder. The
monitoring was performed by the Smartex T-shirt equipped
with sensors. The data collected were an ECG, respiratory
activity. and movement via an accelerometer, allowing the stages
of the sleep and an estimation of the percentage of paradoxical
sleep to be obtained. The results showed a variability in the
reduced heart rate in the individual with bipolar disorder, as

well as an increase in the percentage of paradoxical sleep. These
results need to be confirmed by a larger sample but seem to be
an interesting way of identifying emergent depressive disorders.

The study by Sringean et al [27] compared the sleep of
individuals with Parkinson disease in the homes with that of
their spouses or partners as healthy controls to provide a
quantitative analysis of nocturnal hypokinesia. Wearable sensors
were worn on the trunk and limbs. Records included number,
speed, acceleration, degree, and duration of
movement/turnarounds, number of bed exits, and limb
movements. The researchers noted the effectiveness of their
system to record nocturnal movements, demonstrating the
significant presence of nocturnal hypokinesia.

Comparison With Polysomnography
Comparisons with PSG were conducted using either
commercially available devices or custom wearable devices
developed specifically for the study.

Commercially Available Devices
The American team of De Zambotti et al [28] compared data
from the Jawbone UP with PSG data collected simultaneously.
The Jawbone UP is a wristband that, in its first version, records
accelerometer data. Comparisons were made between TST,
bedtime, sleep latency, and nighttime awakenings. It has been
shown that the estimates of these parameters are in good
agreement with PSG, a reference examination for sleep
pathologies.

Kang et al [20] compared the commercial Fitbit Flex device
with PSG in terms of the accuracy of detecting sleep epochs.
They studied a population of 41 individuals with insomnia and
21 good sleepers. Participants wore the wearable electronic
device while undergoing PSG for 1 night. The measures of
interest in this study were TST, sleep efficiency (SE), sleep
onset length, and wake after sleep onset (WASO). They
concluded that the frequency of agreement was high in good
sleepers but significantly low in those with insomnia.

In their pilot study, Looney et al [29] compared
electroencephalographic recordings obtained with standard
electrodes at the level of the scalp and those obtained with an
intra-auricular device simultaneously during sleep. The lines
were read blindly by an expert. The results showed a significant
concordance between the two recordings.

Parak et al [30] compared the nightly heart rate recording of the
connected watch PulseOn with the reference test, the ECG. The
study, conducted at home, showed that the device correctly
detected 99.57% of heartbeats, making it an accurate method
during sleep.

Mantua et al [31] compared the data from 5 portable connected
devices recording sleep with those of the gold standard, PSG.
The devices studied were Actiwatch, Basis, Misfit Shine, Fitbit
Flex, and Withings Pulse O2. The recordings were made
simultaneously at the participant's home, with participants
wearing the 5 devices on the wrists, and PSG was performed.
Significant data loss was reported by Fitbit Flex and Misfit
Shine. The correlation analysis allowed them to conclude that
there was no significant difference in estimating TST between
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PSG and each of the 5 devices. In addition, only Actiwatch had
concordant data with the baseline SE test. The light sleep time
differed between all devices. Finally, a correlation of deep sleep
time was significant only for Basis.

Liang et al [32] aimed to examine the accuracy of Fitbit Charge
2 for measuring transition probabilities among wake, light sleep,
deep sleep, and REM sleep under free-living conditions. A Fitbit
Charge 2 and a medical device were used concurrently to
measure a whole night’s sleep in participants’ homes. Sleep
data were collected from 23 participants.

Fitbit had the tendency to overestimate the probability of staying
in a sleep stage while underestimating the probability of
transiting to another stage. SE>90% (P=.05) was associated
with a significant increase in measurement error. A Pittsburgh
Sleep Quality Index (PSQI)<5 and WASO<30 min could be
associated with significantly decreased or increased errors,
depending on the outcome sleep metrics.

Dafna et al [33] studied the use of a wearable respiratory
sound–recording tool, with the aim of estimating respiratory
rate by analyzing the audio signal. The data were compared
with those of PSG. The authors concluded that their method
was reliable and robust for estimating the respiratory rate. The
device was described to be not intrusive and did not interfere
with the subject’s sleep.

Sano et al [34] compared EEG data with the Q Sensor Affectiva
for the detection of waking and sleeping phases in a specialized
hospital laboratory. Q Sensor Affectiva is a watch that records
skin temperature, cutaneous conductance, and acceleration. In
their conclusion, it appears that the combination of acceleration
and skin temperature is most effective for the sleep/wake
classification.

Sargent et al [35] evaluated the validity of a commercial
wearable device, the Fitbit HR Charge, for measuring TST. This
study showed that the Fitbit HR Charge overestimated TST for
night-time sleep periods and for daytime naps.

Custom Devices
The team of Kuo et al [36] developed and evaluated a hand-held
wrist-based sleep-recording tool based on actimetry. The
wearable device was judged to be energy efficient and highly
accurate in measuring SE, TST, sleep time, and nighttime
awakenings. PSG measurements were taken simultaneously.
The different variables were concordant and significantly
correlated with TST and SE. According to the authors, this
system is an interesting option for obtaining objective sleep
data at the patient’s home.

Rodriguez-Villegas et al [13] compared the effectiveness of a
wireless system for the detection of apnea and hypopnea with
that of PSG. The 17-gram device was placed on the skin of the
anterior aspect of the neck. It recorded turbulence in the trachea
using an acoustic chamber. Data were analyzed by blinded
investigators. The tolerance of the device was greater than that
of PSG. However, the results did not agree with the gold
standard regarding the correct detection of hypopneas. In
conclusion, this tool could be an adequate solution for the

monitoring of apneas in ecological conditions but would not
replace a complete recording in the sleep laboratory.

Impact of Sleep on Clinical Outcomes
In the study by Agmon et al [37], the impact of sleep on walking
performance in institutionalized elderly individuals was
measured using a connected watch and an accelerometer. SE,
sleep latency, TST, and nocturnal awakenings were taken into
consideration. The team demonstrated that a decrease in
recovery sleep was significantly associated with a decrease in
start-up speed and a greater variability in walking during double
tasks.

Discussion

Principal Findings
This review of the literature shows an increasing interest in the
use of wearable devices for sleep assessment. Overall, our
review shows that mHealth wearable–based sleep monitoring
is feasible but not reliable. Existing commercial technology
might be attractive for both clinicians and patients, as shown
by the excellent acceptance of mHealth wearable technologies
we found. This acceptance has clearly influenced the feasibility
of ecological sleep monitoring methods in the selected studies.
However, we identified some major limitations to the reliability
of wearable-based monitoring methods compared with PSG.

A Global Lack of Reliability
Our study and recent findings indicate that wearables are reliable
monitoring tools compared with PSG. However, some recent
findings have shown that these devices often over- or
underestimate TST or total wake time. This lack of reliability
might be partially explained by the power of the trials. For
example, only 7 studies among 18 included 30 participants or
more [38,39]. Furthermore, recent findings also emphasize that
little is still known about physiological monitoring in ecological
situations [40], which might explain some discrepancies in
results obtained ecologically compared with the gold standard
in sleep-recording laboratories. Furthermore, the most common
recording methodology identified in this review was motion
sensing via accelerometry, in which, recording limits are well
established [16]. The research literature consistently shows that
wrist accelerometry, even in healthy adults, has high sensitivity
but low specificity for sleep detection. The study by Liang [32]
showed that Fitbit Charge 2 underestimated sleep stage transition
dynamics compared with the medical device. Fitbit had the
tendency to overestimate the probability of staying in a sleep
stage while underestimating the probability of transiting to
another stage. SE>90% (P=.047) was associated with a
significant increase in measurement error. PSQI<5 and
WASO<30 min could be associated with significantly decreased
or increased errors, depending on the outcome sleep metrics. A
significant improvement in ecological sleep parameter detection
might be provided by recent improvements in miniaturized
sensors [41] and embodied data analysis methods.

Limitations of the Review Method
Although the studies selected for this review are recent, the
rapid evolution of technologies in this area makes it difficult to
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adjust research to keep pace with commercial releases. Since
the start of the review process, additional articles may have been
published. Moreover, while the conclusions are encouraging,
most of them are pilot studies with small samples. Limits on
scientific validity mean that these devices are not usable in the
current clinical setting, and it may be premature to recommend
them. Given the rapid progression of technologies, it does not
seem unrealistic to think that more complete and validated
devices will be available soon. Moreover, the heterogeneity of
the population studied in this review makes it difficult to draw
a general conclusion. Our review reflects the broad spectrum
of usability of mHealth wearable devices in the field of sleep.
Finally, it should be noted that this review of the literature does
not provide any data on the use of these objects in the long term
because the studies included were mostly short-term clinical
trials [29] with devices that may have defects in the collection
of data because of limited battery life, for example.

Data mining is the core of analysis and is used to explore clinical
questions in large databases as those produced by mHealth
wearables. The data mining process includes several steps,
including data selection, data processing, and machine learning,
to identify which factors may influence results. This review did
not identify any studies describing the data mining techniques
employed. This finding might be explained by the editorial
policies of the clinically oriented articles our inclusion criteria
selected. Another reason is that mHealth wearables are
commercial products, and the analysis methods are patented.
As an example, Fitbit devices that were used in several studies
do not give access to the raw data gathered by Fitbit wearables,
which make these devices hardly suitable for medical purposes.
Consumer sleep devices contribute to the blurry boundary
between sleep as a medical concept and sleep as wellness and
the need for a framework to interpret consumer sleep device
outputs.

Future Applications and Recommendations
Regarding the results of our review and as a proposal for future
applications and development, some recommendations can be
made.

Make Sleep Data Readily and Remotely Available for
Nurses and Physicians
Our review shows that sleep can be monitored using wearables
for an extensive panel of physical and mental conditions. Most
of the research used commercially available devices that were
linked to a mobile phone, increasing the networking capabilities
and the user experience [28-30]. Collected data can be processed
and transferred over the internet to a remote clinical back-end
server for further analysis, assessment, decision making, and
intervention. However, we noted that the potential to explore
sleep remotely and in real time has been poorly reported. Recent
research has specifically focused on comparing the reliability
of wearables to monitor sleep with PSG. The ability to capture
that data, apply machine learning to evolving trends, and alert
patients, nurses, and physicians instantaneously is powerful. As
sleep is a risk factor for many chronic diseases, the momentary
tracking of everyday sleep quality of patients may be very useful
for a wide range of clinical conditions, including mental health
disorders, neurological disorders, and other chronic diseases.

Thus, innovative procedures aiming to make (even simpler than
PSG-like signals) outpatient sleep records accessible to
clinicians are needed.

The Future of Wearable Sleep Monitoring: Long-Term
Assessment
Sleep quality is a key component of health and well-being. Our
review shows that most wearables lack the ability to monitor
sleep with the same accuracy as PSG. Another important
limitation to note is that sleep monitoring using wearables has
been poorly explored in a long-term setting. The study duration
did not exceed 1 month. However, the main advantage of
wearable PSG is that the recording of sleep can be performed
over a long period. This ability might help to strengthen or
reveal the links between sleep quality and health outcomes,
such as depression [42], respiratory problems [43], and epilepsy
[44]. Thus, we recommend long-term sleep-monitoring studies.

Development of Specific Sleep-Monitoring Devices
Acceptance is one of the key components of implementation in
the clinical setting of wearables. A recent review showed that
designing an all-purpose wearable activity tracker (WAT) is
unreasonable [19]. A variety of design concepts and data models
should continue to emerge that align with the personal
preferences of various groups of users. However, it is important
to note that most commercially available wearables described
in our review have been developed for activity tracking. Sleep
monitoring is often presented as a secondary feature of activity
trackers. Although some specific sleep-monitoring devices exist,
the further development and assessment of devices aiming to
specifically monitor sleep are needed. Furthermore, these
devices should take more advantage of existing mHealth
features, as goal-based gamification, continuous feedback, and
social support seem to encourage healthy sleep behaviors.

Commercially Available Versus Custom Wearable
Activity Trackers
Our reviews show that most research focuses on commercially
available WATs. This important limitation reflects the lack of
cooperation among device industries, information technology
scientists, and clinical researchers, who might be tempted to
implement commercially available wearables instead of
developing expensive customized hardware devices. A major
limitation of commercially available devices is the poor
accessibility of data for analysis purposes, especially in the
clinical population. However, analyzing the data generated by
commercial wearables is feasible. These data sets are orders of
magnitude larger than traditional research studies and can be
accessed by researchers at a relatively low cost [45]. However,
the consumer market of wellness claims is not necessarily
adapted to clinical practice settings and, as a result, may reduce
the adoption of these devices in clinical practice by both patients
and clinicians. Overall, we believe that further studies should
incorporate device developments to better fit long-term and
reliable ecological sleep monitoring.

Conclusions
This review of the literature on mHealth wearable devices for
sleep monitoring shows the growing interest in these new
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technologies, as well as their wide application. Indeed, it was
observed that the studies can reflect different specialties of
medicine and that the populations studied varied. In addition,
this interest is recent, with the majority of studies from 2014 or
after. Qualitatively, the majority of devices were considered
comfortable [30], easy to use [24], and to preserve the natural
sleep of the user [29,33], making them good candidates for
home monitoring and care [13,26,36]. In addition, the wearable

devices have an economic advantage, and the preliminary results
of this study show a good correlation with the reference
examination [28]. Given the many benefits, we must consider
mHealth wearable devices as promising tools for ecological
sleep monitoring. Our review also highlighted some limitations
that may help clinicians and researchers better identify current
challenges in ecological sleep monitoring using wearables.
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