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Abstract—In-memory computing is a promising solution to address
the memory wall challenges in future processing systems. Substantial
improvement in performance and energy efficiency is expected, in
particular for data intensive applications. A typical use case is neural
network applications, where large amount of data should be processed
and moved between memory and processing cores. Although several
recent works tried to accelerate processing through dedicated parallel
hardware designs, data movement cost is still a critical technical
challenge. In this context, we propose a novel programmable architec-
ture design for in-memory deep neural networks (DNN) computation.
Based on a new logic design style, namely Memristor Overwrite
Logic (MOL), specialized computational memory is designed. The
original architecture of the proposed computational memory allows to
execute multiply-accumulate operations between stored words using
MOL. Outstanding features are demonstrated with respect to other
recent logic design styles based on emerging non-volatile memory
technologies.

Index Terms—In-memory computing, Memristor, Deep neural net-
work (DNN), Memristor Overwrite Logic (MOL).

I. INTRODUCTION

Emerging and future IoT devices are expected to analyse raw
data by running machine learning algorithms such as neural
networks. Acquired data will be typically sent to the cloud for
processing. However, this doesn’t guarantee the required real-time
response. Edge computing aims to get rid of the network latency
by processing data locally. Yet, running an intensive workloads
such as deep neural networks (DNN) on traditional cores (CPUs
and GPUs) results in slow processing speed and high energy
consumption. This is due to the intensive data movement between
memory and processing cores. The idea of in-memory computing
emerges to address this issue. Instead of sending large amount
of data to the processing cores, in-memory computing allows the
computation of a part of the tasks inside the memory. It reduces
the memory accesses bottleneck and can result in significant
performance increase. Several existing works have proposed the
use of in-memory computing for accelerating the performance
of neural network. This can be achieved by keeping the trained
weights and the input data inside the memory [1]. The emerging
memristor devices have recently shown its potential in the field
of in-memory computing. Memristors are usually employed to
build non-volatile memories (NVM) such as resistive RAMs. These
memories allow for processing and storage within the same cells.
Several techniques for in-memory computing in NVM have been
investigated. In this context, the memristor aided logic (MAGIC)
gate [2] and the memristor-based material implication (IMPLY) [3]
have been recently explored to allow in-memory computations.
In fact, IMPLY and MAGIC allow the execution of universal
Boolean functions (Implication and NOR respectively) within the
memristive elements. Based on these gates, storage and processing
are both allowed within the same cells keeping the same topology
of the memristive memory array. However, it is shown that the
performance of such operations inside memory is highly affected
by the parameters of the adopted memristive devices and other
design constraints [3–5].

In this paper, we propose a novel programmable architecture
design for in-memory DNN computation. The proposed architec-

ture allows to execute any sequence of arithmetic tasks inside
a specialized computational memory. In-memory addition and
multiplication operations associated with the execution of a DNN
weighted accumulation process is illustrated as a relevant case
study. The computations are based on a new logic design style,
namely Memristor Overwrite Logic (MOL) [6]. MOL operations
are independent from memristor technology parameters and thus
it is considered eligible for highly reliable applications.

We use the terms memristor and memristive device interchange-
ably for simplicity.

II. IN-MEMORY COMPUTING USING MOL

A. Computing inside memristive crossbars

The non-volatile internal resistance state of a memristive device
is dependent on the polarity and duration of the applied bias across
its terminals [7]. Normally, a sufficient magnitude and duration of
the bias lead to a full switching of the device to its boundary resis-
tance state (RON or ROFF ). Otherwise, a partial switching occurs
leading to a resistance state R where RON < R < ROFF . This
intermediate state is undesired in most digital memristive systems.
However, if we succeed to guarantee a sufficient magnitude and
duration of the applied bias, the resistance state of the memristive
device can be considered as binary (R ∈ {RON , ROFF }). Based
on these considerations, we represent the current internal state Qn

of a memristive device in digital domain. The terminals A and B
are modeled as binary input ports. The new internal state Qn+1

is function of the logical states at the terminals A, B and the
previous internal state Qn. By taking all the possible combinations
of A, B and Qn, the finite state machine (FSM) of a memristive
device is proposed and demonstrated in Fig. 1. Based on this
FSM representation, the state equation of a memristive device is
expressed as follows:

Qn+1 = QnA+QnB +AB (1)

The state representation expressed in (1) describes the computa-
tional as well as storage capability of a single memristive device.
Six possible computational cases have been derived from (1) and
are expressed in (2).

Qn+1 =



Qn +A , B = 0, case : 1

QnA , B = 1, case : 2

Qn +B , A = 0, case : 3

QnB , A = 1, case : 4

AB , Qn = 0, case : 5

A+B , Qn = 1, case : 6

(2)

The cases in (2) are split into two groups. The first group includes
cases 1 to 4 which correspond to Memristor Overwrite Logic
(MOL). In these 4 cases, a memristor acts as logic accumulator.
The previously stored bit Qn is subjected to OR/AND with the
new input A/B while the other terminal of the memristor is
set to logic "0" or logic "1" depending on the desired function.
The obtained output is simultaneously saved in the form of new



internal state Qn+1. The rest cases (i.e. 5 and 6) are achieved
by initializing the memristor to a specific state (logic "0" or logic
"1"). These cases are considered as the conventional combinational
logic between its terminals (A and B) of the memristor. The result
of this combination is saved as the new internal state (Qn+1) of
the memristor.

The same concept applies inside memristive crossbar array. Fig.
2(a) illustrates cases 1 and 2. These cases are achieved within two
steps. In step 1, the input vector I = [IN−1 IN−2... I1 I0] is
written into the N memristors by mapping logic "0" and logic "1"
to the normalized voltage levels -1V and 1V respectively while
the common horizontal line is set to 0V. At the end of this step,
the resulting state of a given memristor Mk is Qk = Ik. In step
2, the same N memristors are overwritten with the input vector
A = [AN−1 AN−2... A1 A0]. However the input voltage level
on the common horizontal line is set to 0V or 1V depending on
the desired operation. For the case of MOL-OR, the horizontal
line is set to 0V and the result stored in a given memristor Mk is
Q′k = Ak + Ik. For the case of MOL-AND, the horizontal line is
set to 1V and the result which is stored in a given memristor Mk

is Q′k = AkIk.
Fig. 2(b) illustrates the use of case 5 inside crossbar array.

The first step corresponds to initializing the crossbar to zeros. In
the second step, an input vector A and an inverted vector B are
fed to the columns and rows of the crossbar respectively. This
combination results in a partial product of the two input vectors.
The result is achieved in a single computational step.

In fact, the operations presented in Fig. 2 require specialized
peripheral drivers to execute the process. Fig. 3 presents our
proposed memristive crossbar architecture which can be configured
to support the operations presented in 2. The architecture is
presented in two models:

(i) 1M crossbar model: Each cell is formed of a single memris-
tive device sandwiched between each horizontal (bitline BL)
and vertical (wordline WL) nanowires.

(ii) 1T1M crossbar model: A single MOSFET transistor is added
in series with each memristive device. The transistor is used
as a selector to prevent undesired sneak paths which are
encountered in the 1M memory models [8][9][10].

These architectures act similarly and could be configured in five
modes:
(1) Write mode: An input N-bit vector is supplied to the crossbar

memory by mapping logic "0" and "1" to the normalized
voltage levels of −1V and 1V respectively. The bitline driver
block (BLD) takes over this mapping role, while the isolation
block (ISO) acts as a connecting switch. Simultaneously, the
address decoder selects a single WL. The selected WL is
shared with VSEL = 0V , while the unselected WLs are kept
floating.

(2) Overwrite mode: The memory is configured to perform MOL-
OR/MOL-AND inside its crossbar array. BLD maps the
input data bits to the normalized voltage levels 0V and 1V
corresponding to logic "0" and "1" respectively. The ISO
block is kept in the connecting state. The address decoder
selects a single WL. For the case of MOL-OR, the selected
WL is shared with VSEL = 0V , whereas for the case of
MOL-AND, VSEL is set to 1V .

(3) Partial product mode: BLD maps the input data bits to
the normalized voltage levels 0V and 1V corresponding to
logic "0" and "1" respectively. The ISO block is kept in the
connecting state. The MUX block passes the input vector to
the WLs of the crossbar. Thus, the address decoder output is
ignored.

(4) Read mode: The ISO block acts as an open switch keeping all
BLs isolated from the BLD block. A single WL is selected
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Fig. 1. Finite State Machine (FSM) of a memristive device.
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Fig. 2. Computation inside memristive crossbar: (a) MOL-OR or/and
MOL-AND (b) Partial product.

by the address decoder to sense the individual states of its
memristors. The sensing voltage is supplied by VSEL and it
is set to 0.5V (normalized).

(5) Idle mode: The crossbar array of the memory is totally
isolated from BL side as well as WL side. The address
decoder is disabled. Hence, the memory is not active.

B. Proposed computational memory architecture

The proposed MOL-memory architectures presented in Section
II-A act as logic accumulators for the newly arriving bits. In
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Fig. 3. MOL memory architecture: (a) 1M model and (b) 1T1M model.
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Fig. 4. MOL-based computational memory: (a) Architecture (b) Simplified
diagram.

other words, computation in such memory is restricted for logic
accumulation. Accordingly, performing general boolean functions
in this memory requires an additional process to load the stored
data bits outside the memory. These additional load operations are
at odd with the concept of computation inside the memory. To
overcome these load operations, we propose to use two coupled
MOL memories (MOL-memory-A and MOL-memory-B), that
work in complementary manner. At each time step, one of these
memories acts as source of input data bits of the second memory.
The second memory performs MOL with the previously stored bits
in its memristive crossbar. Fig. 4(a) illustrates our proposed novel
computational memory architecture. The architectures of MOL-
memory-A and MOL-memory-B are identical. A controlled 1-bit
barrel shift driver (BSD) is added after the sensing stages of the
two memories to enable bit-level operations in addition to vector-
level operations. Fig. 4(b) is a simplified diagram for the proposed
architecture.

The proposed architecture presented in Fig. 4 has been verified
by simulation using Cadence Virtuoso toolset based on the CMOS
65nm process. An 8 × 8 memristive crossbar is designed. The
crossbar uses the Spin Transfer Torque Magnetic Memory (STT-
MRAM) [11] which is based on the Magnetic Tunnel Junction
(MTJ) memristive cell. The physical model describing the static,
dynamic and stochastic behaviors of the adopted MTJ device is
presented in [12][13]. An 8-bit addition has been carried out
successfully on two arbitrary vectors inside the memory. The
resulting sum is obtained after 6N+1 computational steps which is
equal to 49 for N = 8. Moreover, a partial product multiplication
is performed between two arbitrary 8-bit vectors. The result is
obtained within one computational step.

III. IN-MEMORY DNN COMPUTATION

Deep neural network is a propular category of machine learning
algorithms. Generally, it is presented as a network of intercon-
nected neurons, containing an input layer, an output layer and one
or more hidden layers. Fig. 6(a) presents an example of neural
network with an input layer of M neurons, an output layer of
three neurons and no hidden layers for simplicity. As illustrated in
the figure, each output neuron executes a weighted accumulation
of the input vector. Fig. 6(b) presents the multiply-accumulate
(MAC) operation in a matrix form. The total number of weighted
accumulations is proportional to the size of the network, i.e. size
of input vectors and number of hidden layers. For large DNN, this
represents a major challenge as it implies intensive data movement
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between memory and processing cores. In fact, the cost of the
multiply-accumulate operation and read/write memory accesses
becomes considerable in terms of time and energy consumption
[14].

In order to reduce this cost, we investigated the use of the pro-
posed computational memory architecture to perform in-memory
multiply-accumulate operations.

In-memory multiplication is achieved in two phases: (i) Phase
1 corresponds to the one-step partial product which is discussed
in Section II-B and (ii) Phase 2 corresponds to the addition of
the obtained partial product vectors inside the memory. Normally,
an N ×M multiplication requires addition of M partial products,
each of size N bits, to generate a (N+M)-bit products. Knowing
that each addition operation inside our proposed computational
memory requires 6N + 1 cycles, the total number of cycles to
obtain the final product is (M − 1)(6N + 1).

In order to reduce the required number of cycles, we use
the method of carry save adder (CSA) to add multiple numbers
together in tree structure inside the memory. CSA provides a 3:2
operands reduction, with a fixed latency irrespective of the size N
of the operands. Fig. 5 represents a diagram showing the addition
of M operands using tree-like CSA blocks. A single 3:2 addition
inside the memory requires a latency of 13 cycles. The last stage
is a classical 2:1 adder and requires 6N + 1 cycles. Therefore,
the overall latency required to add M operands is estimated as
C = 13(M−2)+6N+1 cycles. By including the first two cycles
required to obtain the partial products, a N ×M multiplications
inside the memory takes C + 2 cycles in total. By considering
the example of the network presented in Fig. 6, it is possible to
increase the level of parallelism to compute each output neuron
separately, as they have no dependency to each others.

Fig. 7 presents the proposed architecture design for in-memory
DNN computation, illustrated for the simplified neural network of
Fig. 6. It is composed of interconnected computational memory
blocks. Each block is in charge of the computation of one output
neuron. The convolution of the input vector [Xi] with the weight
matrix [Ai Bi Ci] is performed as follows. The weight matrix
[Ai Bi Ci] is supplied from the classical write path of the
memory blocks while the input data vector [Xi] is shared to all
blocks along their rows. The outputs YA, YB and YC are executed
simultaneously. The estimated total latency for the convolution
operation is equal to (C + 15)K + 6(N +M) + 1 cycles.

IV. DISCUSSIONS

MOL technique: Compared to the other existing in-memory
computing techniques such as IMPLY [3] and MAGIC [2], our
proposed MOL logic design style doesn’t have any constraints
on the technology of the adopted memristive device. In contrast,
MAGIC and IMPLY require memristive devices that have sufficient
margin between its low resistance states (LRS) and high resistance
states (HRS).
Latency: When comparing a single addition operation with the
works carried out in [3][4][15][16][17], MOL based in-memory
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addition requires 6N+1 cycles compared to the best case (10N+
3) achieved in [4].
Area overhead: In fact, the interconnected blocks in our proposed
in-memory DNN computation architecture shares the same address
decoder, MUX block and control signals. Therefore, the proposed
design efficiently utilizes the peripheral circuits by sharing them
to all sub-memory blocks on one hand, and between storage and
computation operations on the other hand. This implies significant
reduction in area overhead and simplifies the control. Moreover,
the proposed architecture uses direct digital-based computation
without any analog-to-digital conversion. This ensures a scalable
design approach.

In addition, we remove the necessity of using the unreliable
multi-level memristive devices. In fact, our design is based on
binary memristive devices only.

V. CONCLUSION

This paper proposed a novel architecture design for in-memory
DNN applications. The architecture is composed of interconnected
specialized computational memory blocks. The design efficiently
utilizes peripheral driving circuits which are shared between
all memory blocks. The proposed architecture is programmable,
allowing to execute any sequence of arithmetic tasks. A fully

digital in-memory addition and multiplication operations asso-
ciated with the execution of the DNN weighted accumulation
process is illustrated as a relevant case study. This addresses the
inefficiency of moving data between memory and processing cores
which is time and energy consuming. For verification purpose,
the architecture is simulated in Cadence virtuoso toolset based
on CMOS 65nm process and a realistic model for the adopted
MTJ device. Computation inside memory blocks are performed
using MOL design style. MOL operations are independent from
memristor technology parameters and thus it is considered eligible
for highly reliable applications.
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