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ABSTRACT In this paper, we consider large-scale MIMO systems and we define iterative receivers which
use the simplicity-based detection algorithm referred to as Finite Alphabet Simplicity (FAS) algorithm. First,
we focus on uncoded systems and we propose a novel successive interference cancellation algorithm with
an iterative processing based on the shadow area principle and we optimize its parameters by exploiting
the theoretical analysis of the detector output. Secondly, we assume FEC-encoded systems and we propose
an iterative receiver based on a maximum likelihood-like detection with restricted candidate subset defined
by the FAS algorithm output. We also introduce another receiver based on FAS detection whose criterion
is penalized with the mean absolute error function. Simulations results show the efficiency of all proposed
iterative receivers compared to the state-of-the-art methods.

INDEX TERMS Compressed sensing, source separation, successive interference cancellation, underdeter-
mined system, simplicity, large-scale MIMO, iterative detection, iterative decoding, regularization.

I. INTRODUCTION
The expected exponential growth in the number of connected
mobile machines and data traffic is motivating 5G designers
to look for new technologies and approaches to meet the
growing demand. It has been theoretically demonstrated that
conventional schemes cannot achieve the overall throughput
capacity of multi-user wireless systems and that the maxi-
mumnumber of users supported is limited by the total number
of orthogonal resources [1]. To overcome this problem and
to support the massive connectivity of users and devices,
improved technologies are needed. The large-scale Multiple-
Input Multiple-Output (MIMO) is considered as a potential
candidate to meet the challenges of 5G. To better exploit
spatial diversity, the idea is to implement a large number
of antennas in order to provide higher bandwidth within the
spectrum limitation. Massive MIMO is a special case of
large-scale MIMO systems that involves higher number of
antennas.

In this paper, we are interested in the detection problem in
large-scale MIMO systems.

The usual detection algorithms cannot be applied in our
context. Optimal detection of maximum likelihood (ML)
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meets the requirement of diversity, but its complexity is obvi-
ously too high. The ML-like sphere decoding technique [2]
involves an exhaustive search in the hypersphere, the dimen-
sions of which remain high in the case of large-scale MIMO,
resulting in detection that is impossible to solve from a
complexity point of view. Linear solutions such as Minimum
Mean Square Error (MMSE) [3] and Zero Forcing (ZF) have
a low computational complexity at the expense of a high
performance loss. Successive interference cancellation (SIC)
schemes [4], [5] have been proposed such as MMSE-SIC
in [6] to improve linear detector performance at the expense
of higher complexity. A further decrease in the error rate was
obtained by combining the (SIC) and lattice reduction (LR)
schemes, as was done, for example, in the MMSE-SIC-LR
studied in [7].

An interesting phenomenon in large-scale MIMO can be
exploited, it is the channel hardening [8]. It is shown that
when an overdetermined MIMO system is considered (the
number of receive antennas ismuch higher than the number of
transmit antennas), the linear detectors such as ZF andMMSE
perform close to the optimum thanks to the channel hardening
phenomenon and become attractive from an implementation
point of view. However, in this case the spectral efficiency is
limited by the number of transmit antennas which must be
low. Hence, we lose one of the most important benefits of
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large MIMO systems. To get high spectral efficiency, the two
MIMO system dimensions should be large and the perfor-
mance of linear detectors degrades in that case. To overcome
this problem, local search-based algorithms well suited for
large-scale MIMO systems like Likelihood Ascent Search
(LAS) [9] and Reactive Tabu Search (RTS) [10] achieve
near optimal performance while keeping the same range of
complexity as linear detectors. The task here is to get a first
solution delivered by linear detection and to improve it by
looking for a better chosen local minimum from the solution
neighbors of the linear detection output.

Compressed sensing (CS) techniques have attracted con-
siderable attention. They suggest that it may be possible to
go beyond the traditional limits of sampling theory. Thanks
to a sparse transformation of the received signal and the
use of source separation techniques such as basic pursuit
(BP) which searches for a sparse solution vector, it becomes
possible to successfully recover the desired signal [11]–[13].
In [14], exploiting the finite alphabet signal simplicity [15]
(all its elements are bounded) we proposed a low-complexity
detector suitable for large-scale MIMO systems with the
ability to handle the underdetermined case. Unlike [11]–[13],
with the exception of the problem real-valued formulation,
no signal transformation is required. The detection is based
on a quadratic criterion with bounded constraints to recover
the received signal. We have shown that this algorithm works
in the same way as [11]–[13] with less complexity and better
than MMSE with an equivalent order of the calculation cost.

A forward error correction (FEC) is usually applied before
modulation. Turbo-like receivers [16] based on iterative
exchanges of information between their components (detec-
tion, synchronization, decoder, channel estimation, . . .) have
proven to be efficient in achieving almost optimal perfor-
mance [17]. To this end, the authors proposed in [18] to
combine CS-based detection with a soft-decision decoder as
part of an iterative process based on a regularized detection
criterion associated with a judicious sparse formulation of
the detector output. However, the regulation parameter is
set empirically and the output of the FEC decoder is pre-
processed, which can degrade the conveyed information.

In this paper, we consider large-scale MIMO systems
with an independent and identically distributed i.i.d. chan-
nel model. This model corresponds to a spatially white
MIMO channel, which in practice can occur in rich diffusion
environments with multipath elements uniformly distributed
in all directions. We define iterative receivers that use the
simplicity-based detection algorithm proposed in [14] and
called Finite Alphabet Simplicity (FAS) algorithm in the rest
of the paper.

In the first part, we focus on large-scale uncoded MIMO
systems. We propose a novel successive interference cancel-
lation algorithm with an iterative processing based on the
shadow area principle [19] that exploits the symbols reli-
ability. We analytically optimize its parameters by taking
advantage of the theoretical analysis of the detector output
for a two-iteration process. For a higher iteration number,

the optimization is empirically carried out from simulations.
The idea is to consider a set of reliable symbols at each
iteration contrary to classical interference cancellation proce-
dure which only considers one symbol as reliable and then to
eliminate their contribution to the large-scale MIMO system
in order to further improve the detection of the unreliable
symbols in next stages. Herein, the goal is to reduce the
number of necessary iterations compared to usual interfer-
ence cancellation schemes which need an iteration number
equal to the symbol number. The proposed algorithms are also
extended to frequency-selective channels and we investigate
the effect of spatial channel correlation on the algorithm
performance.

In a second part, we assume that large-scale MIMO sys-
tems are FEC-encoded and our goal is to define an iterative
turbo-like receiver. We propose an iterative receiver based
on an ML-like detection whose restricted candidate subset is
defined by the FAS-detection output. We also present another
receiver based on the FAS algorithmwhose criterion is penal-
ized by the mean absolute error function.

Our contributions are: (i) an iterative FAS-algorithm that
uses shadow-area constraints in uncoded large-scale MIMO
systems (ii) an analytical expression of the parameter defining
the shadow-area. For the FEC-encoded large-scale MIMO,
(iii) we reduce the complexity of ML detection by restricting
the candidate subset of the FAS-algorithm output (iv) to
further reduce the complexity of the receiver, we propose
a second iterative receiver with a detection based on a reg-
ularization of the FAS criterion without pre-treatment of the
FEC-decoder output (v) and whose regularization parameter
is fixed analytically.

The paper is organized as follows. Section II describes
the large-scale MIMO system model discussed below and
recalls the FAS detection scheme proposed in [14] and the
main theoretical results. Section III deals with the iterative
detection problem in the uncoded case solved by the shadow-
area principle applied with the FAS algorithm. Section IV
focuses on the design of turbo-like iterative receivers
based on FAS detection. Finally, Section V concludes the
paper.
Notations: Boldface lower case letters and boldface upper

case letters denote vectors and matrices, respectively. The
notations (.)T , (.)H and (.)∗ are used for the transpose, trans-
pose conjugate and conjugate operations respectively. The
Kronecker product is denoted by ⊗. Ik is the k × k identity
matrix and 1k is the all-one size-k vector. The complex-
valued vector z ∈ Ck can be tranformed to a real-valued
vector z ∈ R2k defined by
z =

(
Re (z) Im (z)

)T . The complex-valued matrix H ∈
Cn×N is transformed also to a real-valued matrix H ∈

R2n×2N defined by H =

(
Re (H) − Im (H)
Im (H) Re (H)

)
. The

Q-function Q (·) is defined by Q (x) = 1
√
π

∫
∞
x
√
2
e−t

2
dt . The

Dirac delta function and the indicator function of a subset A
are denoted by δ(·) and 1A(·) respectively.
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II. SYSTEM MODEL AND OVERVIEW
We consider a noisy mixing model which can be described
by the following linear equations:

y = Hx+ ζ , (1)

where y ∈ Cn is the complex-valued observation vector,
x ∈ CN is the complex-valued source vector, and H ∈

Cn×N is a complex-valued random matrix. The components
ofH are assumed to be independent and circularly symmetric
Gaussian with zero mean and unit variance. The vector x
belongs to a complex finite alphabet. It can be written as
x = a+ jb where (a, b) ∈ FN × FN and F = {α1, α2, .., αp}
which is the real-valued alphabet. We denote by M = p2 the
complex alphabet size. The equivalent real-valued system can
then be written as:

y = Hx+ ζ , x ∈ F2N . (2)

The elements of F are assumed to be equiprobable under the
realization of x. Our problem is, given H and F, to recover
of x from y.
In order to resolve the above problem, we briefly describe

the detection technique proposed previously in [14]. For that
purpose, we introduce the following definition:
Definition 1 (Simplicity [20]): A given vector x ∈

[α1, αp] 2N is called k-simple if it has exactly k entries
different from α1 and αp.

The simplicity property of F is exploited to propose an
optimization problemwhose complexity is independent of the
constellation size and is lower compared with [13], while per-
forming the same in terms of error rate. The vector x is simple
and its components are minored by α1 and majored by αp.
It can be decomposed as x = Bαrwhere Bα = I2N⊗[α1;αp]
and r ∈ [0, 1]4N . We used the previous decomposition
to define the simplicity-based optimization problem given
by [14]

argmin
r
‖y−HBαr‖2

subject to B1r = 12N ,

r ≥ 0. (3)

where B1 = I2N ⊗ 1T2 . The optimization problem defined
by (3) is a quadratic programming model. The linear equality
constraint combined with the positivity constraint imposes
that the detected vector will be minored by α1 and majored
by αp.
The criterion (3) can be optimized by the interior point

methods [21] or the simplex [22]. In this paper, algorithms
based on interior point methods are considered. These algo-
rithms start by finding an interior point of the polytope satis-
fying the constraints and then move inside the polytope to
converge to the optimal solution. The resulting detector is
referred to as Finite Alphabet Simplicity (FAS) detector in
the remaining of the paper.

Theorem 3 in [14] demonstrates that the system condition
n
N >

p−1
p is a necessary condition to the solution uniqueness

for FAS detection in the noiseless case.

Our purpose is to include the FAS algorithm within an
iterative detection for either uncoded or FEC-encoded large-
scale MIMO systems. Both of them require the knowledge of
the analytical distribution of the detector output which was
established in [14]. Let r̂ denote the solution of (3). Then
the components of the FAS detector output x̂ = Bα r̂ follow
a censored normal distribution and their probability density
function is given by [14]:
Theorem 2 (Statistical Distribution of the Detection

Output): The components of x̂ = Bα r̂ follow a censored
normal distribution given by

fx̂k (x) =
1
p

p∑
j=1

fx̂k |xk=αj (x), (4)

with

fx̂k |xk=αj (x) =

(
Q

(
αj − α1

σx̂

)
δα1 (x)+Q

(
αp−αj

σx̂

)
δαp (x)

+
1

√
2πσx̂

exp

(
−
(x−αj)2

2σ 2
x̂

)
1[α1,αp](x)

)
(5)

and

σ 2
x̂ =

2n−2∑
k=0

(
2N
k

)(
1
p

)2N−k (p− 1
p

)k 2nσ 2

2n− k − 1
, (6)

where σ 2
= E[ζ 2

i
], ∀i = 1, . . . , 2n.

Simulations were carried out in [14] to support the theo-
retical study and they showed that the analytical distribution
coincides with the simulated histogram for different system
dimensions and different SNR values. In practice, channel
state information needs to be estimated. FAS detection was
proved to be robust to channel estimation inaccuracy in terms
of error rate [14].

III. ITERATIVE DETECTION BASED ON THE SHADOW
AREA PRINCIPLE
In this section, our purpose is to improve the FAS detection
performance by including it within an iterative detection
procedure. For that purpose we consider shadow area con-
straints (SAC) used in [23] to limit error propagation [24],
[25] in successive interference cancellation (SIC) schemes.
Contrary to usual SIC, multiple feedback SIC with shadow
area constraints (MF-SIC-SAC) feeds back more than one
constellation point to the IC. Symbols are selected accord-
ing to their belonging to a shadow area or not. In [23] the
parameter which defines shadow areas is fixed empirically.

Herein, we propose to apply a similar approach to
FAS detection and to exploit the theoretical distribution of its
output (4) to fix the optimal parameter that limits the shadow
areas.

A. SHADOW AREA AND DETECTION RELIABILITY
In the detection method described in previous section, all
sources are detected at once and some decisions may be less
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reliable than others. In this section, we propose a reliability
measure based on the shadow area principle [19], [26], [27]
that exploits the output statistics reminded in Section II.
We first define the centers as the elements of F. The principle
is to take decision on components xk such that x̂k is close
enough to one center and cancel their contribution in the
observation y so as to proceed a novel detection iteration.
To do so, we propose to take into account the reliabilities
of the output x̂k . According to (4), the distribution of x̂k
given xk = αi has a Gaussian shape centered on αi and
moving away from the center makes the symbol less reliable.
From this observation, we define shadow areas as intervals
whose middle isn’t a center and whose width depends on
a threshold to be fixed hereinafter. x̂k is considered either
as unreliable when it falls in a shadow area, or as reliable
otherwise. We take decisions on reliable x̂k , cancel their
contribution from y and proceed another detection. Adjacent
to shadow areas, the high-reliability intervals are defined
as intervals of length 2η and are centered on the different
symbols of F. Let us denote by A the set of indices k such
that x̂k is considered as reliable. The decision on x̂k , k ∈ A

is taken as the nearest symbol value in F. We denote by x̃A
the resulting decision vector. The equivalent notations for
unreliable elements (falling in shadow areas) are respectively
A for the set of indexes and vN for its cardinality. The
observation after interference cancellation is denoted by ỹ and
equals

ỹ = y−HAx̃A

= HAxA + ζ̃ , (7)

where ζ̃ = HA(xA − x̃A)+ ζ .
The task is to estimate the vector xA which can be recov-

ered by the following problem:

argmin
r̃
‖ỹ−HAB̃α r̃‖2

subject to B̃1r̃ = 1vN ,

r̃ ≥ 0. (8)

where B̃α = IvN ⊗ [α1, αp], B̃1 = IvN ⊗ 1T2 and
r̃ ∈ [0, 1]2vN .

The shadow area constrained (SAC)- FAS detection pro-
cedure is detailed in Algorithm 1. The performance of the
proposed iterative procedure highly depends on the choice of
the parameter η, which needs optimization.

1) ITERATIVE FAS-SAC FOR k = 2
We chose to use the error probability as an optimization
criterion. The error probability is a monotonically increasing
function of the variance of the components of the detector
output which can be calculated for the second iteration output
only. Then, we propose to optimize the parameter η so as to
minimize the variance σ 2

x̃ . Theorem 3 provides an approxi-
mation of σ 2

x̃ .

Algorithm 1 Shadow Area Constrained (SAC) - FAS
Detection
1: Input: H , y
2: r = argmin

r
‖y − HBαr‖2 subject to B1r =

12N and r ≥ 0.
3: Compute x̂ = Bα r. Set K = 1, AK = ∅,
4: Repeat until K = k
5: K = K+ 1

6: Define AK =

{
j | min

αi∈F
|x̂ j − αi| ≤ ηK−1 j ∈ AK−1

}
,

vN = card(AK).
7: Compute x̃AK

by x̃ j = argmin
αi∈F

|x̂ j − αi|, j ∈ AK and

ỹ = y−HAK
x̃AK

.
8: r̃ = argmin

r̃
‖ỹ − HAK

B̃α r̃‖2 subject to B̃1r̃ =

1vN and r̃ ≥ 0.
9: Compute x̃AK

= B̃α r̃.
10: end Repeat
11: Output: x̃.

Theorem 3 (Variance of the Iterative Detector-Output):
Let x̃ be the output of Algorithm 1 for a given η ∈ R+. Then,
the variance of its components can be approximated by:

σ 2
x̃ (η) = (1− Zη)

2 n σ 2
ζ̃
(η)

2n− 2N (1− Zη)− 1
+ ZηYη. (9)

where Zη is the probability that x̂k is reliable and is equal to

Zη = Pr(k ∈ A) =
p∑
i=1

Pr(|x̂k − αi| < η)

=

p−1∑
`=0

2(p−`)
p

Q

(
`1−η

σx̂

)
−
2(p−`−1)

p
Q

(
`1+ η

σx̂

)

+

(
Q

(
η

σx̂

)
− Q

(
−η

σx̂

))
. (10)

with 1 = αp−α1
p−1 . Yη is the variance of the components of the

vector x̃A given by

Yη = E[x̃2k | k ∈ A]− E[x̃k | k ∈ A]2

=
12

Zη

p−1∑
`=1

2`2(p− `)
p

Q

(
`1− η

σx̂

)

−
2`2(p− `− 1)

p
Q

(
`1+ η

σx̂

)
. (11)

and σ 2
ζ̃
(η) is the variance of the components of the vector ζ̃ :

σ 2
ζ̃
(η) =

1
2n
Yη + σ 2. (12)

Proof 1 (Proof of Theorem 3): We prove hereinafter
equation (9). The proof of equations (10) and (11) is provided
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in the Appendices. Let x̃ the output of Algorithm 1 for a given
η ∈ R+. Then, the variance of its components is given by:

σ 2
x̃ (η) = var(x̃k ) = var(x̃k | k ∈ A) Pr(k ∈ A)

+ var(x̃k | k ∈ A) Pr(k ∈ A).

Using the definitions of Zη and Yη, we can write:

Zη = Pr(k ∈ A) and 1− Zη = Pr(k ∈ A) (13)

Yη = var(x̃k | k ∈ A) for any k ∈ A. (14)

As mentioned earlier, their expression is computed in the
Appendix. To compute the variance var(x̃k | k ∈ A), let
us study the covariance matrix 6x̃

A
by exploiting the fact

that the number of elements of A denoted by vN is a random
variable independent from x̃. Therefore, 6x̃

A
is defined by:

6x̃
A
= E

[
(x̃A − E[x̃A])(x̃A − E[x̃A])T

]
. (15)

By using the conditional expectation on the random variable
vN , we can rewrite equation (15) as follows:

6x̃
A
= E

[
E[(x̃A − E[x̃A])(x̃A − E[x̃A])T |vN ]

]
.

By assuming that the vector x̃A can be estimated by:

x̃A = (HT
A
HA)−1HT

A
ỹ

= xA + (HT
A
HA)−1HT

A
ζ̃ , (16)

and substituting equation (16) in equation (15), we can com-
pute the covariance matrix as

6x̃
A
= E

[
E[(HT

A
HA)−1HT

A
ζ̃ ζ̃

T
HA(HT

A
HA)−T |vN ]

]
.

By using the conditional expectation on the randommatrix
HA, the second expectation of previous equation can be
rewritten as follows:

E[(HT
A
HA)−1HT

A
ζ̃ ζ̃

T
HA(HT

A
HA)−T |vN ]

= E
[
E
[
(HT

A
HA)−1HT

A
ζ̃ ζ̃

T
HA(HT

A
HA)−T |vN ,HA

]]
= E

[
(HT

A
HA)−1HT

A
E
[
ζ̃ ζ̃

T
|vN ,HA

]
HA(HT

A
HA)−T |vN

]
.

Then we can compute E
[
ζ̃ ζ̃

T
|vN ,HA

]
= σ 2

ζ̃
(η) In by

using the independence between HA and HA. Therefore,
the covariance matrix can be rewritten as

6x̃
A
= σ 2

ζ̃
(η)E

[
E[(HT

A
HA)−1|vN ]

]
= σ 2

ζ̃
(η)E

[
2n

2n− vN − 1
IvN

]
, (17)

where we have exploited that, for a given vN , the matrix
(HT

A
HA)−1 follows an inverse Wishart distribution and then

E[(HT
A
HA)−1|vN ] = 2n

2n−vN−1
IvN (see [28]). Let us mention

that 6x̃
A
is proportional to the identity matrix. The distribu-

tion of vN is provided by following Proposition 4.

Proposition 4: The set A cardinality follows the binomial
distribution with parameters 2N and (1− Zη):

vN = Card(A) ∼ B(2N , 1− Zη).

From Proposition 4, as the probability of the event {vN ≥
2n − 1} is not significant, this event will be neglected in the
calculation of 6x̃

A
. The diagonal elements of 6x̃

A
are given

by

var(x̃k | k ∈ A)=
2n−2∑
k=0

Pr (vN = k)
2n σ 2

ζ̃
(η)

2n− k − 1

=

2n−2∑
k=0

(
2N
k

)
Z2N−k
η

(
1− Zη

)k 2n σ 2
ζ̃
(η)

2n− k − 1
.

Applying the same reasoning as in [14], we can obtain the
following approximation for the variance var(x̃k | k ∈ A).
Lemma 5 (Variance Approximation): The variance of the

components of the vector x̃A can be approximated for n >
N
(
1− Zη

)
+ 1 as

var(x̃k | k ∈ A) ≈
2n σ 2

ζ̃
(η)

2n− 2N
(
1− Zη

)
− 1

. (18)

2) ITERATIVE FAS-SAC FOR k > 2
The proposed iterative process can be extended beyond two
iterations. However, as previously mentioned, the choice of
the limitation parameter η becomes more complicated. The
analytical calculation of the variance of the output at iteration
k > 2 is not possible due to hard decisions which are taken on
reliable symbols at each iteration. To overcome this difficulty,
we apply an empirical choice strategy which is illustrated
in Fig. 1. At the end of each iteration, we compute the out-
put histogram and we choose the largest possible parameter
which minimizes the error probability of hard decisions on
elements selected as reliable. The parameter η is chosen
by considering the place where the tail of the conditional
histogram of the adjacent symbol vanishes. The number of
necessary iterations highly depends on the SNR value.

In practical systems, the values of the parameter η over
iterations can be empirically fixed and stored, by running
simulations and by applying the above strategy for different
SNR values and for different system dimensions.

In the simulation results section, the proposed schemes
will be mentioned as FAS and FAS-SAC for the original and
iterative algorithms respectively.

B. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
FAS-SAC detection for a QAM constellation with different
modulation orders and different number of iterations.

1) ITERATIVE FAS-SAC FOR k = 2
Herein, we consider the FAS-SAC for two iterations.
We check the validity of the theoretical analysis and we
optimize the parameters through simulations.
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FIGURE 1. Empirical choice of the parameter ηi for the iteration i .

FIGURE 2. FAS output variance variation in function of the parameter η
for SNR = 15 to 30dB (up-to-down) and 16-QAM.

In Fig. 2, the variance of the detector output is plotted as
a function of η for different SNR values, N = 35, n = 30
and QPSK. The parameter η should be chosen so as to get the
minimum value of the variance.

In Fig. 3, we have plotted the BER after first (FAS) and sec-
ond (FAS-SAC) iteration of proposed detection compared to
RTS and LAS algorithms for N = 64, n = 64 and different
M -QAM (M = p2 = 4, 16, and 64). We observe that
the proposed FAS-SAC detection improves the performance

FIGURE 3. BER performance of FAS-SAC detection for N = n = 32.

of the FAS algorithm at all SNR values and for all QAM
modulations. For instance, FAS-SAC detection achieves a
gain between around 2dB and 3dB at 10−3 BER. We also
show that the FAS-SAC better exploits the receive diver-
sity than the LAS detector and it achieves a gain that gets
higher as the BER decreases or M increases. For QPSK,
the FAS-SAC outperforms the LAS by 2.2dB at 10−3 BER,
the gain increases when M increases to achieve 7dB at 10−2

BER (64-QAM).
As for RTS algorithm, we observe that it outperforms the

FAS by 1dB at 10−2 BER for QPSK. As the modulation order
increases the FAS gets better than RTS from a given BER
value (5.10−4 BER for 16-QAM, 4.10−3 BER for 64-QAM)
with a flattering effect on the RTS performance curve. The
FAS-SAC performs close to the RTS for QPSK and gets better
than RTS below 3.10−3 BER for 16-QAM and 2.10−2 BER
for 64-QAM.

The comparison of FAS and FAS-SAC detectors to
MMSE-SIC detector is considered for a 64× 64 determined
MIMO system with QPSK in Fig. 4 and with 16-QAM
in Fig. 5. The FAS-SAC detector better exploits the receive
diversity than the MMSE-SIC detector and it achieves a gain
that gets higher as the BER decreases or M increases. For
QPSK, the FAS-SAC outperforms the MMSE-SIC by 2.4 dB
at BER 10−2 and by more than 4 dB at BER 10−4. For
16-QAM, the gain equals 4.3 dB at BER 10−2 and 6 dB at
BER 10−4.
In Fig. 6 and 7, we consider underdetermined systems

with QPSK and 16-QAM respectively. We observe that pro-
posed FAS-SAC algorithm performs remarkably even with
underdetermined configurations. For instance, at BER 10−4,
the gains of FAS-SAC over FAS vary between 1 dB and 2 dB
for QPSK and between 2 dB and 3.8 dB for 16-QAM.

2) ITERATIVE FAS-SAC FOR k > 2
Let us now consider the case of higher number of iterations k .
We fixed the maximum number of iterations to 8 and we
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FIGURE 4. BER performance of FAS-SAC detection compared to
MMSE-Successive Interference Cancellation (SIC) for N = n = 64
and QPSK.

FIGURE 5. BER performance of FAS-SAC detection compared to
MMSE-Successive Interference Cancellation (SIC) for N = n = 64
and 16-QAM.

show the BER performance for different modulation orders.
We will note that the number of maximum iterations can be
reduced for low SNR values, as there is no improvement after
a given low number of iterations. The same observation holds
for high SNR values: few iterations are sufficient to reach the
convergence and perform close to the lower bound.

In Fig. 8, we consider QPSK modulation and k = 8. We
plotted the BER performance of the system with an AWGN
channel (no interference) as a lower bound. We observe that
the proposed FAS-SAC performs remarkably. For instance,
at BER 10−4, the gains of FAS-SAC with k = 8 over FAS
and FAS-SAC with k = 2 are about 3.3 dB and 1.2 dB
respectively. Furthermore the FAS-SAC with k = 8 per-
forms very close to the lower bound with a gap of 0.4 dB
at BER 10−4.

FIGURE 6. BER performance of FAS-SAC detection for N = 64,
n = 64,50,46 and QPSK.

FIGURE 7. BER performance of FAS-SAC detection for N = 64 and
n = 64,60,50 and 16-QAM.

In Fig. 9, we consider 16-QAM modulation. FAS-SAC
with k = 8 always performs better than FAS and FAS-SAC
with k = 2. For instance, at BER 10−4, the gains of
FAS-SAC with k = 8 over FAS and FAS-SAC with k = 2
are about 6 dB and 2.2 dB respectively.

In Fig. 10, we show the impact of high dimensions on the
performance of the FAS-SAC algorithm. We show that when
the system dimensions increase the FAS-SAC becomes even
more efficient and beyond a given SNR value its performance
converges towards the AWGN channel lower bound. For
instance, in the case of 128× 128, the FAS-SAC with k = 8
reaches the lower bound from SNR = 10 dB. However, for
64×64, we observe aminimumgap of 0.3 dB compared to the
lower bound. These results can be explained by the channel
hardening phenomenon.
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FIGURE 8. BER performance of FAS-SAC detection for N = 64, n = 64
and QPSK.

FIGURE 9. BER performance of FAS-SAC detection for N = 64, n = 64
and 16-QAM.

FIGURE 10. BER performance of FAS-SAC detection for N = n = 64,
N = n = 128 and QPSK.

3) FREQUENCY SELECTIVE LARGE-SCALE MIMO CHANNEL
In this section, we consider the frequency-selective large-
scale MIMO channel where L multipaths interfere at every

FIGURE 11. BER performance of FAS-SAC detection for N = n = 64 and
QPSK. Frequency-selective channel.

channel use. The output of the frequency selective channel at
time t is then written as:

y(t) =
L−1∑
l=0

H lx(t − l)+ ζ , (19)

where H l repesents the realization of the frequency selective
channel of the l th path. In order to decode the symbol vector,
we consider the whole frame and we propose a joint detection
problem. The received vector is formulated as:

yT1 = (INT ⊗ [HT
0 . . .H

T
L−1])

T x+ ζ , (20)

where T1 = T + L − 1, yT1 = [yT (1), yT (2), . . . , yT (T1)]T ,
x = [xT (1), xT (2), . . . , xT (T )]T and ζ = [ζ T (1), ζ T (2),
. . . , ζ T (T1)]T are the concatenation of all received vectors,
transmitted vectors and noise vectors respectively.

In Fig. 11, we consider a 64 × 64 MIMO system
using QPSK with T = 15. We compare the FAS-SAC
algorithm performance for different multipath frequency-
selective channels. We observe a performance loss when the
number of mutipaths increases. However this degradation can
be limited when considering a coded case and exploiting the
diversity of frequency-selective channel.

4) EFFECT OF SPATIAL CORRELATION IN LARGE-SCALE
MIMO SYSTEMS
In practice, some spatial correlation exists due to the antenna
array geometry and the propagation conditions, which makes
the i.i.d. model inadequate. This spatial correlation can affect
the rank of the large-scale MIMO channel matrix resulting in
degraded channel capacity.

In this section, we consider a spatially-correlated MIMO
channel and we investigate the performance of the FAS-SAC
detector. We adopt the Kronecker product model [29], where
the complex large-scaleMIMO channel matrix can be written
as:

H = R1/2
r H0R

1/2
t (21)
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TABLE 1. Computational cost with the interior point method.

FIGURE 12. BER performance of FAS-SAC detection for N = n = 128 and
QPSK. Spatially-correlated channel.

where Rr and Rt are the receive antennas and transmit anten-
nas correlation matrices respectively, defined as in [30], [31]
Rt = Rr = (ρi,j) and ρi,j = J0(1 2π

λ
d(i, j)) in which d(i, j) is

the distance between antennas i and j, 1 is the angle spread,
λ is the wavelength, and J0(x) is the Bessel function of the
zero-th order.H0 represents an i.i.d. Rayleigh fading channel
matrix. In this model, the fading statistics of the receive and
transmit sides are assumed to be independent. Let us mention
that this model does not take into account the scattering
environment between the transmit and receive sides.

In Fig. 12, we show the effect of channel correlation in
FAS-SAC algorithm.We consider a 128×128MIMO system
using QPSK modulation, with the distance between antenna
elements fixed to 0.4λ. We assess the performance of i.i.d
fading and spatially correlated fading.When theMIMOchan-
nel is correlated, we observe a degradation of the error rate
due to the rank reduction of MIMO channel matrix. However
the slope of the curve keeps as steep as in the i.i.d. case.
To limit the correlation impact, we can increase the receive
antennas or introduce a forward error correcting code.

C. COMPLEXITY ANALYSIS
In this section, we compare the complexity of the proposed
iterative algorithms over the FAS and MMSE-SIC. Inner
iteration refers to the iterations involved in the interior point
method. Table 1 summarizes the complexity order of different
algorithms. We observe that the FAS-SAC for k = 2 and

k > 2 represents an additional complexity over the original
algorithm due to the added number of iterations which is fixed
and independent of the system dimensions. The whole com-
plexity is dominated by the complexity of the first iteration.
Nevertheless, we get the same order of complexity O(N 3)
for FAS and its iterative FAS-SAC versions. The complexity
of the LAS algorithm is dominated by three operations [9].
The first one is the computation of the initial solution which
can be found by MMSE algorithms and induces a complexity
order of O(N 3) to the matrix inversion. The second one is
the calculation of HTH which represents also a complexity
order of O(N 3). However, the final one which is the search
operation requires a complexity order of aboutO(N 2). There-
fore, the total complexity is about O(N 3)+O(N 2) dominated
by the two first steps. The RTS represents the same order
of complexity as LAS algorithm with an extra complexity
due to the implemented escape strategy [10]. To conclude,
we can mention that the LAS and RTS represent the same
order of complexity as the proposed FAS algorithm with its
iterative versions FAS-SAC with an extra complexity due to
their iterative process.

IV. PROPOSED TURBO DETECTION SCHEME
In this section, we focus on FEC-coded large-scale MIMO
systems. Our goal is the design of an iterative receiver consist-
ing of a detector based on the FAS algorithm and a soft-input
soft-output FEC decoder. The best iterative receiver of the
state-of-the-art includes a soft-input soft-output maximum-
likelihood detection. It provides the FEC decoder with log-
likelihood ratios (LLR) whose computation involves the con-
sideration of all possible transmitted sequences, which makes
its practical use limited to low-order modulations and low-
dimensional systems. In this section, we first propose to use
the FAS detection to reduce the set involved in the compu-
tation of log-likelihood ratios. Although decreased, the com-
putation cost of the resulting receiver keeps high in the case
of high-order modulations. We then design a second iterative
receiver, whose detection uses an optimized regularization of
the FAS criterion. Compared to the first proposed scheme,
the complexity of the second one is significantly lower at the
cost of a contained performance loss.

A. ITERATIVE RECEIVER PRINCIPLE AND NOTATIONS
Let us first mention the assumptions regarding the transmitter.
The binary stream is considered to be FEC-encoded, then

21750 VOLUME 8, 2020



Z. Hajji et al.: Iterative Receivers for Large-Scale MIMO Systems With Finite-Alphabet Simplicity-Based Detection

FIGURE 13. FAS-ML iterative receiver scheme.

randomly interleaved before being converted into QAM sym-
bols and passed through a serial-to-parallel converter.

Let m = log2(p) and let c be the coded and interleaved
binary information sequence of length L. Let also ψ be the
binary-to-symbol conversion defined by:

ψ : [ckm ckm+1 . . . c(k+1)m−1] ∈ {0, 1}m 7→ xk ∈ F (22)

and c(j) = ψ−1(αj).
The receiver structure is depicted in Fig. 13.
3dec
in and3dec

out stand for the soft FEC input and output LLR
respectively. Both proposed iterative schemes differ from the
detection box definition. We denote by 3det

in and 3det
out the

detection input and output respectively. 3det
in is defined as

the interleaving of the difference between 3dec
out and 3dec

in
(extrinsic information).

B. FAS MAXIMUM LIKELIHOOD LIKE ITERATIVE RECEIVER
(FAS-ML)
Usual turbo-detection schemes are based on a ML detection
followed by a decoder [32]. In such a scheme the detection
output 3det

out is defined as follows:

3det
out (k)=log

(
Pr(ck = 1|y)

Pr(ck = 0|y)

)

= log

(∑
x∈X k,+1

f (y|x)Pr
(
x|3det

in

)∑
x∈X k,−1

f (y|x)Pr
(
x|3det

in

))

= log


∑

x∈X k,+1
exp

(
−
||y−Hx||2

2σ 2

)
exp

(
c̃
(
3det
in

)T
2

)
∑

x∈X k,−1
exp

(
−
||y−Hx||2

2σ 2

)
exp

(
c̃
(
3det
in

)T
2

)


≈ max
x∈X k,+1

(
c̃
(
3det
in

)T
2

−
||y−Hx||2

2σ 2

)

− max
x∈X k,−1

(
c̃
(
3det
in

)T
2

−
||y−Hx||2

2σ 2

)
,

where c̃ = 2c − 1 and X k,ε corresponds to the set of
sequences x such that ck = ε.

The complexity of such a detection increases exponentially
withM and N . Therefore we propose to reduce the complex-
ity by substituting a limited-size subset4k,ε forX k,ε . For that
purpose, we first run the FAS detection once and make a hard
decision on its output x̂. We denote by x̃detout this hard decision
output. Then we define the subset 4 such that it includes
x̃detout and sequences x which differ by one element from x̃detout .
To limit the size of 4, we only take neighbors of x̃detout . More
precisely, if x̃detout and x differ from their i-th element, then x i is
an adjacent symbol of x̃detout,i in F. After the initialization step
during which the FAS detection is carried out, an iterative
process is applied alternating from a ML-like detection and
a FEC decoder. The ML-like detection computes 3det

out from
3det
in and y as follows:

3det
out (k) ≈ max

x∈4k,+1

(
c̃
(
3det
in

)T
2

−
||y−Hx||2

2σ 2

)

− max
x∈4k,−1

(
c̃
(
3det
in

)T
2

−
||y−Hx||2

2σ 2

)
(23)

In the remaining of the paper, we refer to the resulting iter-
ative receiver as FAS-ML. In the case of uniform square
constellations and except for M = 4, each symbol has at
most three neighbors, and thus the complexity of FAS-ML
only depends on the length of c.

C. FAS MEAN ABSOLUTE ERROR-BASED ITERATIVE
RECEIVER (FAS-MAE)
To further reduce the receiver complexity, we propose a sec-
ond receiver whose detection is based on a regularization of
the FAS criterion. The receiver structure is detailed in Fig. 14.
Compared to [33], two major differences can be highlighted.
First, the FEC output is directly exploited without any pre-
processing in order to preserve the information. Secondly,
the regularization parameter is optimized and an analytical
expression is given.

1) NEW DETECTION CRITERION DESIGN
The first modification compared to [33] is the use of the
Mean Absolute Error (MAE) computed from conditional
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FIGURE 14. FAS-MAE iterative receiver scheme.

probabilities Pr(xk = αj|3
det
in ). We denote this error by

ε(x̂, x|3det
in ) and we define it by

ε(x̂, x|3det
in ) =

p∑
j=1

PTj |r− d j|, (24)

where P j = [Pr(x1 = αj|3
det
in ),Pr(x2 =

αj|3
det
in ), . . . ,Pr(x2N = αj|3

det
in )]T and d j =

1N ⊗
[
αj−αp
α1−αp

;
α1−αj
α1−αp

]
. Using 3det

in provided by the FEC

decoder, we compute Pr
(
xk = αj|3

det
in

)
as follows:

Pr
(
xk = αj|3

det
in

)
=

∏
0≤i≤m−1
c(j)=ψ−1(αj)

Pr
(
ckm+i = c(j)i |3

det
in

)
,

with Pr
(
ckm+i = c(j)i |3

det
in

)
=

exp (ui,jvk,i)
exp (vk,i)+exp (−vk,i)

, ui,j =

2c(j)i − 1 and vk,i =
3det
in (km+i)

2 .
The MAE is introduced as a regularization term in the FAS

criterion to define the following optimization problem:

arg min
B1r=12N ,r≥0.

||y−HBαr||2 + γ

p∑
j=1

PTj |r− d j|, (25)

where γ is a positive weight less than 1. In the remaining
of the paper, the resulting iterative receiver is referred to as
FAS-MAE. On one hand, the regularization term ε(x̂, x|3det

in )
is integrated to penalize the minimization criterion in order
to ensure that the detection output remains near the decoder
output. On the other hand, γ enables to regulate the contribu-
tion of the extrinsic information provided by the FEC decoder
and to question the FEC decision reliability if necessary. The
goal is also to ensure that the resulted vector r is sparse.
We mention that its sparsity must to be imposed to take into
account the probabilities delivered by the decoder.

2) OPTIMIZATION OF THE REGULARIZATION PARAMETER
The performance of the proposed FAS-MAE detector highly
depends on the choice of the regularization parameter.
However, its optimization is difficult. It depends on many
parameters among which the SNR value and the level of
Pr(xk = αj|3

det
in ) (either close to their bounds 0, 1 or not).

According to the proposed optimization criterion, the algo-
rithm convergence is optimum when the cost function tends
to 0, that is to say when the following condition is satisfied:

||y−HBαr||2∑p
j=1 P

T
j |r− d j|

≈ γ. (26)

The analytical determination of γ from (26) is not possible
as it requires the analytical distribution of the FEC output,
which is not available. We propose two ways to optimize γ .
The first one is empirical and uses pilot symbols. The second
one gives an analytical expression for γ . In the simulations,
the first one will be used as a benchmark for the second one
and we will refer to it as FAS-MAE (genie).

The first optimization requires a pilot sequence x̂pilot . Pilot
symbols are usually inserted within the data frame to help
synchronization and parameter estimation. Their position as
well as their value are perfectly known at the receiver. Assum-
ing the transmission of the pilot sequence, we perform only
one iteration (both detection and decoding) and we compute
||y−HBαr||2∑p
j=1 P

T
j |r− d j|

by considering the true values of r and the

value of P j delivered by the decoder. We then fix γ to the
following ratio

γ1 =
σ 2
ζ∑p

j=1 P
T
j |r̂pilot − d j|

. (27)

Previous optimizationmethod suffers from two drawbacks.
First, it requires the use of pilots, yielding spectral efficiency
loss and secondly, a detection step followed by a decod-
ing step is carried out. The second method overcomes both
of them by providing an analytical expression for γ . The
problem criterion in (25) defines an `1-norm penalized least
squares estimator similar to the one studied in [34]. Then,
the second term of regularization in (25) can be seen as a
weighted `1 term and we propose to fix γ as developed
in [34]. It depends on the noise variance and on the system
dimensions:

γ2 = σζ

√
logN
n

. (28)
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3) DEFINITION OF THE DECODER INPUT
In this part, we focus on the information exchange from the
detector to the decoder. Contrary to FAS-ML, we will use
the statistical distribution of the FAS detection established
in [14].

Using the detector output x̂detout, the symbol to binary con-
verter (SBC) computes the log likelihood ratio on the i-th bit
associated to the k-th symbol (3det

out(km + i)) which can be
defined as:

3det
out (km+ i)

= log

(∑
αj∈Fi,1

fx̂k |xk=αj (x̂
det
out,k )Pr(xk = αj|3

det
in ))∑

αj∈Fi,0
fx̂k |xk=αj (x̂

det
out,k )Pr(xk = αj|3

det
in ))

)

with Fi,ε = {α ∈ F|c = ψ−1(α), ci = ε}.
We mention that we proved that the expression of σx̂ given
by (6) keeps valid throughout the iterative process based on
an empirical study.
fx̂k |xk=αj is given by (4). In [33] we used a Gaussian

approximation combined with the LogSumExp approxima-
tion [35] to avoid saturation precision problems of the floating
point, especially for high SNR and after some iterations.
Doing so, we degrade the information available for the
symbol decisions which equal the alphabet bounds. In this
paper, we overcome the problem by proposing a new
approximation that takes into account the hard decisions
available at the FAS-MAE output and which we previ-
ously denoted x̃detout,k . This LLR approximation is given
by:

3det
out (km+ i) ≈ max

αj∈Fi,1

(
−
(x̂detout,k − αj)

2

2σ 2
x̂

+ ui,jvk,i

)

− max
αj∈Fi,0

(
−
(x̂detout,k − αj)

2

2σ 2
x̂

)+ ui,jvk,i

)
,

if x̃detout,k /∈ {α1, αp}

3det
out (km+ i) ≈ log

∑
αj∈Fi,1

(
Q

(
αj − α1

σx̂

)
exp (ui,jvk,i)

)

− log
∑
αj∈Fi,0

(
Q

(
αj − α1

σx̂

)
exp (ui,jvk,i)

)
,

if x̃detout,k = α1

3det
out (km+ i) ≈ log

∑
αj∈Fi,1

(
Q

(
αp − αj

σx̂

)
exp (ui,jvk,i)

)

− log
∑
αj∈Fi,0

(
Q

(
αp − αj

σx̂

)
exp (ui,jvk,i)

)
,

if x̃detout,k = αp.

Performance were significantly improved thanks to this
new approximation as will be shown in Section IV-D dedi-
cated to simulations.

FIGURE 15. Comparison of FAS-based iterative receivers with N = n = 64
and coded 16-QAM.

D. SIMULATION RESULTS
In this section, we study the performance of the proposed
FAS-ML and FAS-MAE iterative schemes. We also com-
pare them to the Turbo-MMSE detector and to the iterative
receiver introduced in [33].

The convolutional code (CC) polynomials in octal are
(13, 15) with a code rate equal to 0.5. The decoder uses the
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [36].

We will observe that as established in [14], FAS detection
is perfectly adapted to underdetermined systems provided the
recovery success condition is satisfied.

1) COMPARISON OF FAS-MAE TO FAS-SSE
FAS-MAE is an enhanced version of the receiver proposed
in [33], which will be referred to as FAS-SSE for soft symbol
error in the simulations. In [33], the detection criterion is

arg min
B1r=12N ,r≥0.

||y−HBαr||2 + γ ||Bαr− x̂
det
in ||2 (29)

with soft symbol decision x̂detin computed as

x̂detin,k =
∑
αj∈F

αjPr
(
xk = αj|3

det
in

)
, (30)

and γ chosen empirically. Performance of FAS-MAE with
γ2 and FAS-SSE with empirically optimized γ are compared
in Fig. 15 and Fig. 16 for N = 64, n = 64, 50 and 16-QAM.
We observe the efficiency of both the new criterion and the
optimization of γ as FAS-MAE outperforms FAS-SSE (gains
of roughly 1.0 and 0.8 at BER= 10−3 for n = 50 and n = 64
respectively). The gain slowly increases as SNR gets higher.

We now consider MIMO systems with N = 64,L = 256,
QPSKmodulation and n = 64, 50 and 40 in Fig. 17, 18 and 19
respectively. We have plotted the BER measured at the FEC
decoder output after 6 iterations for FAS-ML, FAS-MAE and
Turbo-MMSE receivers.

2) OPTIMIZATION OF THE REGULARIZATION PARAMETER γ
(FIG. 17, 18 AND 19)
We observe that proposed FAS-MAE (genie) and FAS-MAE
perform the same, which supports the choice of the analytical
expression (27) used to fix the penalization parameter.
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FIGURE 16. Comparison of FAS-based iterative receivers with N = 64,
n = 50 and coded 16-QAM.

FIGURE 17. Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with
N = 64, n = 64 and coded QPSK.

FIGURE 18. Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with
N = 64, n = 50 and coded QPSK.

3) COMPARISON OF FAS-MAE TO FAS-ML
To compare FAS-MAE to FAS-ML, let us study the influence
of the modulation order. We remind that in order to reduce the
candidate subset, given a position in x̃, FAS-ML considers
all candidates in the case of QPSK while it limits itself to
adjacent neighbours in the case of higher order modulations.
The consequence is that FAS-ML outperforms FAS-MAE
in the case of QPSK while it achieves lower performance
in the case of 16-QAM. Whereas the gain of FAS-ML over

FIGURE 19. Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with
N = 64, n = 40 and coded QPSK.

FIGURE 20. Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with
coded QPSK.

FAS-MAE varies between 0.2 and 0.5 dB at BER = 10−4

depending on n for QPSK, we observe a degradation of
FAS-ML over FAS-MAE of about 2 dB and 2.6 dB at
BER = 10−4 for n = 64 and n = 50 respectively.

4) COMPARISON OF FAS-MAE AND TURBO-MMSE (FIG. 17,
18 AND 19)
In all cases, FAS-ML and FAS-MAE outperform the Turbo-
MMSE detection. The gain is all the higher as the system is
underdetermined. The gain of FAS-MAE over Turbo-MMSE
equals about 1.25 dB for n = 64, 1.5 dB for n = 50 and 2dB
for n = 40 at BER 10−4.

Fig.20 gathers all configurations for the three receivers
(FAS-MAE, FAS,ML, Turbo-MMSE). We observe that they
achieve similar diversity orders and differ from coding gains.

E. COMPLEXITY ANALYSIS
In this section, we compare the complexity of the proposed
iterative algorithms FAS-ML and FAS-MAE and we denote
by K the number of iterations. The FAS-ML is an itera-
tive algorithm based on the ML criterion whose complexity
exponentially increases with the modulation order M and
the system dimension N yielding to a complexity order
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of O(KN logM ). However, the FAS-MAE is a quadratic cri-
terion with a penalization function with a complexity order
of O(KN 3).

V. CONCLUSION
This paper focused on finite-alphabet iterative source recov-
ery for large-scale MIMO systems either uncoded or coded.
For uncoded case, we developed an iterative FAS algo-
rithm which uses shadow area constraints with an optimized
shadow area defining parameter. The simulation results
showed that the proposed FAS-SAC algorithm significantly
outperforms standard FAS and MMSE-SIC algorithms with
the same order of computational complexity. Then, for FEC-
encoded case, we introduced the FAS-ML receiver which
reduces the complexity of ML detection by restricting the
candidate subset from the FAS algorithm output. To fur-
ther reduce the receiver complexity, we proposed FAS-MAE
receiver whose detection is based on a regularization of the
FAS criterion without any preprocessing of the FEC-decoder
output and where its regularization parameter is analytically
fixed. Simulations showed that both receivers outperform
Turbo-MMSE in all cases and that FAS-MAE achieves bet-
ter results (lower error rate and less complexity load) than
FAS-ML forM -QAM withM > 4.

APPENDIX
In this appendix, we aim to prove the expression of Zη and of
Yη given in (10) and (11) respectively.

A. PROOF OF THE EXPRESSION OF Zη
Wefirst remind us about the distribution of the output detector
vector which reads:

fx̂k (x) =
1
p

p∑
`=1

(
Q

(
α` − α1

σx̂

)
δα1 (x)

+Q

(
αp − α`

σx̂

)
δαp (x)

+
1

√
2πσx̂

exp

(
−
(x − α`)2

2σ 2
x̂

)
1[α1,αp](x)

)
, (31)

with σ 2
x̂ =

2nσ 2

2n−2N ( p−1p )−1
. Let us denote by Zη the probability

that a source is decided after the first iteration, that is to say
the probability that x̂k be reliable. We assume that η is small
enough. Then,

Zη = Pr

( p⋃
i=1

|x̂k − αi| < η

)
=

p∑
i=1

Pr
(
|x̂k − αi| < η

)
=

p∑
i=1

∫
|x−αi|<η

fx̂k (x)dx

=

p∑
i=1

∫
|x−αi|<η

(
1
p

p∑
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Q

(
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σx̂

)
δα1 (x)

+
1
p
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Q

(
αp − α`

σx̂

)
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)
dx

+
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∫
|x−αi|<η

1

p
√
2πσx̂

× exp

(
−
(x − α`)2

2σ 2
x̂

)
1[α1,αp](x)dx

=
1
p

p∑
`=1

Q

(
α` − α1

σx̂

)
+

1
p

p∑
`=1

Q

(
αp − α`

σx̂

)

+

p∑
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∫
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1

p
√
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(
−
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2σ 2
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For i = 1,∫
|x−α1|<η

1
√
2πσx̂

exp

(
−
(x − α`)2

2σ 2
x̂

)
1[α1,αp](x)dx
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1
√
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dx
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1
√
π
exp(−t2)dt
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(
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)
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(
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√
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−
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Using the equality Q (−x) = 1− Q (x), we obtain

Zη = Pr

(( p⋃
i=1

|x̂k − αi| < η

))

=
1
p

( p∑
`=1

Q
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As we can define α` − αi = (`− i)1, we have,
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that is to say
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Finally, after simplifications, we obtain
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1
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B. PROOF OF THE EXPRESSION OF Yη
Let us now compute the variance of the elements ofA denoted
by Yη and defined as:

Yη = var(x̃k | k ∈ A)

= E
[
x̃2k |k ∈ A

]
− E

[
x̃k |k ∈ A

]2
. (32)

Focusing on the first term of Eq. (32) we get:
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As the distribution of x̂ is an even function and the real
constellation F = {α1, α2, . . . , αp} is symmetric with respect
to the origin, we get E

[
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]
= 0. The second term of

Eq. (32) is computed as:
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Following the same approach as for Zη we finally get:

Yη = E
[
x̃2k |k ∈ A

]
= 2

12
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p
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.
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