EMMI Rapid Reaction Task Force GSI, 18-22 July 2016

Microscopic Models of Energy Loss and transport coefficients: The Nantes Approach

Pol B Gossiaux, M. Nahrgang, J. Aichelin, K. Werner

Motivation and context

- Most of the interesting HF observables so far: located at intermediate p_T (≈3 GeV-50 GeV)
- Intermediate p_T : hope that pQCD (or pQCD inspired models) apply (as compared to low p_T)
- \triangleright Intermediate pT: mass effect still present and thus hope to learn something more as compared to large p_T

Approach pursued in our models... Unfortunately too many of them

=> Need for falsification (more observables; IQCD): Azimuthal correlations₂?

Cross sections

Starting from Combridge (79) as a basis:

However, t-channel is IR divergent => modelS

Naïve regulating of IR divergence:

$$\frac{1}{t} \to \frac{1}{t - \mu^2}$$

With $\mu(T)$ or $\mu(t)$

OBE model, NOT pQCD at finite T!!!

Models A/B: 2 customary choices

$$\mu^{2}(T) = m_{D}^{2} = 4\pi\alpha_{s}(1+3/6)xT^{2}$$

$$\alpha_{s}(Q^{2}) \rightarrow \begin{cases} 0.3 \text{ (mod A)} \\ \alpha_{s}(2\pi T) \text{ (mod B) } (\approx 0.3) \end{cases}$$

$$(Svetitsky: 0.5; equil time of 1fm/c)!!!$$

$$\frac{dE_{coll}(c)}{dx} \qquad T(\text{MeV}) \setminus p(\text{GeV/c}) \qquad 10 \qquad 20$$

$$\frac{dE_{coll}(c)}{dx} \qquad 200 \qquad 0.18 \qquad 0.27$$

$$400 \qquad 0.35 \qquad 0.54$$

... of the order of a few %!

Educated: Calibrating on HTL... permits to fix the effective mass μ

Heavy fermion Energy loss in a relativistic plasma

Braaten - Yuan scheme

Relying on the smallness of the coupling constant

$$\frac{1}{M} << r \in \frac{1}{T} << \frac{1}{q^*} << r_D \approx \frac{1}{e^T} << \lambda \approx \frac{1}{e^2 T}$$

Heavy fermion of mass M probes the medium via virtual fermion of momentum *q*

Region I: $q > q^*$: hard; close collisions; individual; incoherent.

Region II: *q*<q*: soft; far collisions; collective; coherent; macroscopic.

Braaten-Thoma:

(Peshier – Peigné)

Low |t|: large distances

collective modes

$$G_{\mu\nu}(Q) = \frac{-\delta_{\mu 0}\delta_{\nu 0}}{q^2 + \Pi_{00}} + \frac{\delta_{ij} - \hat{q}_i\hat{q}_j}{q^2 - \omega^2 + \Pi_{T}}$$

$$\frac{dE_{soft}}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{t^*}}{m_D / \sqrt{3}} \right) + \dots$$

SUM:
$$\frac{dE}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{ET}}{m_D/\sqrt{3}} \right)$$
 [Indep. of |t*| ! (provided g²T²<< |t*| << T²)

HTL: convergent kinetic (matching 2 regions)

 $|t^*|$ Large |t|: close coll.

$$\frac{dE_{hard}}{dx} = \frac{2}{3} \alpha m_D^2 \ln \left(\frac{\sqrt{ET}}{\sqrt{t^*}} \right) + \dots$$

In QGP: $g^2T^2 > T^2$!!!

Our solution: Introduce a semi-hard propagator --1/ $(t-v^2)$ -- for $|t|>|t^*|$ to attenuate the discontinuities at t^* in BT approach.

Prescription: v^2 in the semi-hard prop. is *chosen* such that the resulting E loss is maximally $|t^*|$ -independent.

This allows a matching at a natural value of $|t^*| \approx T...$ Not an increase wrt Braaten-Thoma

Model C: optimal μ^2

THEN: Optimal choice of μ in our OBE model: $\frac{dE}{dx}$ (GeV/fm)

$$\frac{\alpha_{\rm s}(2\pi T)}{t - \mu^2} \qquad \mu^2(T) = \kappa \, m_{\rm D}^2(T)$$
With $\kappa \approx 0.15$

with
$$m_D^2 = 4\pi\alpha_s(2\pi T)(1+3/6)xT^2$$

 $\frac{dE_{coll}(c)}{dx}$... factor 2 increase w.r.t. mod B (not enough to explain R_{AA})

T(MeV) \p(GeV/c)	10	20
200	0.36 (0.18)	0.49 (0.27)
400	0.70 (0.35)	0.98 (0.54)

Convergence with "pQCD" at high T

Refined: running coupling constant

Motivation: Even a fast parton with the largest momentum P will undergo collisions with moderate q exchange and large $\alpha_s(Q^2)$. The running aspect of the coupling constant has been "forgotten/neglected" in most of approaches

Open question: long range behaviour and renormalisation at finite temperature

A Peshier: α_s not fixed at the right scale

Running of α_s (Peshier 06) in collisional E loss

with
$$\Phi \int_{t_1}^{t_2} dt \, \frac{d\sigma_{js}}{dt} \, \omega = \frac{\pi C_{js} \alpha^2}{-k} \int_{t_1}^{t_2} \frac{dt}{t} = \frac{\pi C_{js} \alpha^2}{k} \ln \frac{t_1}{t_2} \quad \text{and} \quad \alpha_{\rm S}(2\pi T)$$

Doing it more cautiously

 $\mathbf{2}$

 T / T_c

1

4

"In fact, σ with running coupling ... an order of magnitude larger than expected from the widely used expression $\sigma_{\alpha, fix} \propto \alpha^2(Q^2T)/\mu^2$. Thus, the present approach gives a consistent and simple explanation of phenomenologically inferred large cross sections found in transport models."

running α_s

IR safe. The detailed form very close to $Q^2 = 0$ is not important does not contribute to the energy loss

Large values for intermediate momentum-transfer => larger cross section

Of course, still a lot of uncertainties in the choice of this essential quantity !!!

μ-local-model: medium effects at finite T in t-channel

Drag coefficient A (d/dt)

μ -local-model: Eff. Running α_s vs 1QCD

Finite T

Differential cross sections

Large enhancement of both cross sections at small and intermediate |t|

Little change at large |t|

μ -local-model: Eff. Running vs fixed α_s

Conclusions:

- Good agreement with PP for large T and large P
- Running α_s is more than a cranking of BT (different shapes and T-dependences)

Running α_s : some Energy-Loss values

$dE_{\scriptscriptstyle coll}(c/b)$			
dx			

T(MeV) \p(GeV/c)	10	20
200	1 / 0.65	1.2 / 0.9
400	2.1 / 1.4	2.4 / 2

≈ 10 % of HQ energy

Transp. Coef ...

... of expected magnitude to reproduce the data (we "explain" the transp. Coeff. in a rather parameter free approach).

Several issues

1. Non perturbative aspects (beyond Born). Usually in convergent kinetic:

Ladders necessary at short distance (large force)

Several issues

Several issues

3. How to deal with the genuinely NP part?

Transport coefficients (1)

Only the elastic contribution

Transport coefficients (2)

Transport coefficients (3)

Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

For too large p_T , L^2 terms dominate => transport coefficients are not the relevant objects

Transport coefficients (4)

Gathering all rescaled models (various prescriptions for μ and α_s):

AdS/CFT too large to reproduce experimental data ?! Against the conclusion of Akamatsu et al (?)

(E-loss plays a dominant role, but not the only parameter)

Diapositive 25

comparer avec hirano et al qui parviendraient à reproduire le RAA Administrateur; 19/07/2009 A16

The Monte Carlo @ Heavy Quark Generator

No force on HQ before thermalization of QGP (0.6 fm/c)

The Monte Carlo @ Heavy Quark Generator

Recently: coupling to EPOS2 (3) instead of KH

The Monte Carlo @ Heavy Quark Generator

Deviation from Einstein relation with native coefficients

$$|\mathcal{M}_{\text{grazing}}(s, t, \mu; \nu)|^2 = \frac{(s - m^2)^2 \mu^{4(\nu - 1)}}{(\mu^2 - t)^{2\nu}}$$

2 corrections prescriptions:

• VHR:
$$B_L^{\text{therm VHR}}(p) = E_p T A/p$$

• Gossiaux (historical) $\frac{B_L^{\mathrm{therm}}(p)}{B_T^{\mathrm{therm}}(p)} = \left(\frac{B_L(p)}{B_T(p)}\right)^{\rho}$ $\beta = 0.25$.

Evolution in a finite T stationnary medium (infinite)

Both tuned FP ok,... Native FP has less RAA (more longitudinal fluctuations dating from Einstein violation)

Induced Energy Loss

Generalized Gunion-Bertsch (NO COHERENCE) for finite HQ mass, dynamical light partons

$$\omega \frac{d^3 \sigma_{\text{rad}}^{x \ll 1}}{d\omega d^2 k_{\perp} dq_{\perp}^2} = \frac{N_c \alpha_s}{\pi^2} (1 - x) \times \frac{J_{\text{QCD}}^2}{\omega^2} \times \frac{d \sigma_{\text{el}}^{Qq}}{dq_{\perp}^2}$$

Dominates as small x as one "just" has to scatter off the virtual gluon k'

$$\frac{J_{\text{QCD}}^2}{\omega^2} = \left(\frac{\vec{k}_\perp}{k_\perp^2 + x^2 M^2 + (1-x)m_g^2} - \frac{\vec{k}_\perp - \vec{q}_\perp}{\left(\vec{k}_\perp - \vec{q}_\perp\right)^2 + x_\perp^2 M^2 + (1-x)m_g^2}\right)^2$$
 Sluon thermal mass ~2T (phenomenological; Quark mass

Gluon thermal mass ~2T (phenomenological; not in BDMPS)

> Both cures the collinear divergences and influence the radiation spectra (dead cone effect)

Incoherent Induced Energy Loss

... & finite energy!

Gousset, Gossiaux & Aichelin, Phys. Rev. D 89, 074018 (2014)

Finite energy lead to strong reduction of the radiative energy loss at intermediate p_T

Formation time for a single coll.

 $t_f \approx \frac{2(1-x)\omega}{(\vec{k}_{\perp} - \vec{q}_{\perp})^2 + x^2M^2 + (1-x)m_g^2}$

At 0 deflection:

$$l_{f,\text{sing}} \approx \frac{2x(1-x)E}{m_g^2 + x^2M^2}$$

For x<x_{cr}=m_g/M, basically no mass effect in gluon radiation

For $x>x_{cr}=m_g/M$, gluons radiated from heavy quarks are resolved in less time then those \leftarrow light quarks and gluon => radiation process less affected by coherence effects in multiple scattering

Dominant region for quenching

Dominant region for average E loss

A first criteria

Comparing the formation time (on a single scatterer) with the mean free path:

Coherence effect for HQ gluon radiation :

Maybe not completely foolish to neglect coherence effect in a first round for HQ.

(will provide at least a maximal value for the quenching)

Our basic ingredients for HQ energy loss

Coherent Induced Radiative

Formation time picture: for $I_{f,mult} > \lambda$, gluon is radiated coherently on a distance $I_{f,mult}$

Model: all N_{coh} scatterers act as a single effective one with probability $p_{Ncoh}(Q_{\perp})$ obtained by convoluting individual probability of kicks

$$\frac{d^2 I_{\text{eff}}}{dz \, d\omega} \sim \frac{\alpha_s}{N_{\text{coh}} \tilde{\lambda}} \ln \left(1 + \frac{N_{\text{coh}} \mu^2}{3 \left(m_g^2 + x^2 M^2 + \sqrt{\omega \hat{q}} \right)} \right)$$

[arXiv:1209.0844] (Hard Probes 2012)

Monte Carlo Implementation (rad)

I) For each collision with a given q_{\perp} , we define the conditional probability of radiation:

$$r(q_{\perp}) := \frac{\int_{\bar{0}}^{+\infty} \frac{d^2 \sigma_{\text{rad}}}{d\omega dq_{\perp}^2} d\omega}{\frac{d\sigma_{\text{el}}^{Qq}}{dq_{\perp}^2}}$$

In practice, ω_{min} =5% E to avoid IR catastrophy

II) For each collision with a given invariant mass squared s, we define the conditional *total* probability of radiation:

$$\tilde{r}(s) = \frac{\sigma_{\text{rad}}}{\sigma_{\text{el}}} \approx \frac{\int_{-|t|_{\text{max}}}^{0} r(\sqrt{-t}) \frac{d\sigma_{\text{el}}^{Qq}(t)}{dt} dt}{\int_{-|t|_{\text{max}}}^{0} \frac{d\sigma_{\text{el}}^{Qq}(t)}{dt} dt}$$

Probes the elastic cross section at larger values of t => less sensitive to α_{eff} at small t-values

Threshold for radiation

HQ Lectures Nantes

Monte Carlo Implementation (rad)

III) For a given HQ energy E, we sample the entrance channel according to the thermal distribution of light quarks and gluons and $\sigma_{\rm el}(s)$ and accept according to the conditional probability $\tilde{r}(s)$

IV) We sample "downwards" q_{\perp} , ω and then k_{\perp}

Hard shocks with |t|>25% s are rejected (not treated properly in our formalism)

V) $P^+ \rightarrow (1-x) P^+$ and transverse kick of \mathbf{q}_{\perp} - \mathbf{k}_{\perp} .

VI) Reject if out of phase-space