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ABSTRACT In this paper, we propose a general framework to estimate short-time spectral amplitudes
(STSA) of speech signals in noise by joint speech detection and estimation to remove or reduce background
noise, without increasing signal distortion. The approach is motivated by the fact that speech signals have
sparse time-frequency representations and can reasonably be assumed not to be present in every time-
frequency bin of the time-frequency domain. By combining parametric detection and estimation theories,
the main idea is to take into consideration speech presence and absence in each time-frequency bin to
improve the performance of Bayesian estimators. In this respect, for three Bayesian estimators, optimal
Neyman-Pearson detectors are derived to decide on the absence or presence of speech in each given time-
frequency bin. Decisions returned by such detectors are then used to improve the initial estimates. The
resulting estimations have been assessed in two scenarios, namely, with and without reference noise power
spectrum. The objective tests confirm the relevance of these approaches, both in terms of speech quality and
intelligibility.

INDEX TERMS Unsupervised speech enhancement, parametric method, joint detection and estimation,
Bayesian estimator, minimum mean square error (MMSE).

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
In speech enhancement, one of the most important tasks is the
removal or reduction of background noise from a noisy signal
y[n] = s[n] + x[n], where s and x are respectively the clean
signal and independent noise in the time domain and n ∈
{0, 1, . . . ,T − 1} is the sampling time index. The observed
signal is frequently segmented, windowed and transformed
into the time-frequency domain. Then, the clean signal coef-
ficients are usually retrieved by applying an enhancement
algorithm to the noisy observations in this domain.

Despite good results obtained by machine learning
approaches (see [1]–[3] for deep neural network or [4], [5]
for dictionary-based methods), there is still room for unsu-
pervised techniques, especially in applications where large
enough databases are hardly available for all the types
of noise and speech signals that can actually be encoun-
tered [6], [7]. This is the case in assisted listening for
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hearing aids, cochlear implants and voice communication
applications.

In such applications, unsupervised techniques are expected
to fulfill the following criteria, without resorting to any prior
training, either for noise or for the signal of interest. Any such
methods should achieve a good trade-off between intelligibil-
ity and quality. It should be robust to various stationary and
non-stationary types of noise. Its complexity should be low
so as to limit computational cost in real-time applications.

In this respect, many speech estimators, either paramet-
ric or non-parametric, have been designed over the last
decades and have become standard. By parametric estima-
tion, we mean a method assuming a prior model for the signal
distribution, which makes it possible to resort to standard
Bayesian and likelihood theory. In non-parametric inference,
the signal distribution is unknown. In this paper we focus on
parametric methods.

B. STATE-OF-THE-ART
Optimal Bayesian estimator algorithms aimed at remov-
ing or reducing background noise are frequently used in
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speech enhancement. By assuming a statistical distribution
for the signal of interest and the observation in the time-
frequency domain, the estimator of the short-time spectral
amplitude (STSA) is obtained by minimizing the statistical
expectation of a cost function that measures the difference
between the true amplitude and its estimate. These optimal
estimators perform better than most unsupervised methods
including the spectral-subtractive algorithms, the Wiener fil-
tering and the subspace approach [8].

The first original optimal Bayesian STSA estimator was
proposed in [9], where the cost function is the square error
between the clean signal and its STSA estimate. A general
STSA estimator was developed in [10], where the cost
function of this method is defined by the square error of
the β power amplitude. Based on the properties of audi-
tory systems, a number of STSA Bayesian estimators are
also derived by defining the cost function as the percep-
tual distortion metric [11], [12]. Taking advantage of the
β-power and the auditory approaches, a weighted estima-
tor is proposed in [13]. Similarly, instead of the Gaussian
assumption as in the above methods, some Bayesian esti-
mators are calculated or approximated by supposing the
super-Gaussian or generalized Gamma distribution for the
STSA [14]–[19].

Nevertheless, these algorithms implicitly suppose that
speech is present in all time-frequency bins, which may
degrade their performance. Hence, studies take into account
speech presence uncertainty to estimate STSA for improving
speech quality [20]–[22]. In those approaches, the gain func-
tion is simply multiplied by the speech presence probability,
which inducesmuchmore noise attenuation. The speech pres-
ence probability is calculated by using the a priori probability
of speech presence, which is assumed to be fixed or to vary
with time and frequency [23], [24].

Since most algorithms do not improve speech intelli-
gibility [25], recent research has tried to combine detec-
tion and estimation, as in the binary masking approach
where, to improve speech intelligibility, spectral amplitudes
in some time-frequency bins are retained, whereas others
are discarded [26]. The gain function of these methods is
defined as a generalized binary masking function. In this
respect, since non-parametric approaches provide gain in
intelligibility [25] and Bayesian approaches bring gain in
speech quality [27], the authors in [28] propose a non-
parametric joint detection/estimation approach combined
with a Bayesian estimator. The non-parametric joint detec-
tion/estimation enhances speech intelligibility, whereas the
Bayesian estimation improves speech quality by retrieving
speech information in small coefficients returned by the non-
parametric gain function.

In [29], the authors propose a Bayesian approach for
both the detection and the estimation of speech in noise,
without resorting to a logarithmic cost aimed at reflecting
psycho-physics properties of the auditory system. Neverthe-
less, their theoretical framework requires the introduction of

several parameters, among which the a priori probability of
speech presence. It can thus be wondered whether a Neyman-
Pearson test combined with a speech Bayesian estimation
could not, at least, perform as well as the method exposed
in [29]. Such a combination would avoid any prior on the
speech probability of presence since, by construction, the
Neyman-Pearson test would not require such knowledge.
A preliminary answer to this question is proposed in [30].
By exploiting [31, Theorem 1] to derive a detector that feeds
an estimator based on a non-continuous gain function, this
solution is a continuation and extension of [26].

C. CONTRIBUTIONS
Instead of having a prior structure for the estimator as in [30],
the present paper addresses the problem of deriving both
the detector and the estimator from a given estimation risk.
We restrict our attention to the single-channel case. In a
nutshell, we exploit [31, Theorem 2] to derive a theoretical
framework for joint detection/estimation of speech signals in
noise, where the detection is performed by aNeyman-Pearson
test and the denoising by a Bayesian estimator. In contrast
to [30], the derivation requires no prior knowledge on the esti-
mator. We investigate three Bayesian estimation risks chosen
according to the underlying binary hypothesis testing prob-
lems. The resulting framework yields three different and opti-
mal joint detection-estimation algorithms that are assessed
experimentally. The framework involves no psycho-physics
and the resulting algorithms induce no performance loss in
intelligibility and quality, and even bring some improvement
in comparison to [29] and [30], with a reduced number of
parameters.

Within the theoretical framework outlined above, we fur-
ther consider two types of binary hypothesis testing models
are considered and the Bayesian estimation is performed
by assigning an estimation cost to each correct and each
erroneous decision. The first model is the well-known strict
binary speech presence and absence model, where it is
assumed that a given time-frequency bin pertains to either
noise only or to the sum of speech and noise. In the second
model, we assume that speech is always present with variable
energies in each time-frequency bin. Specifically, we suppose
that, under the null hypothesis, the observed signal is com-
posed of noise and negligible speech while, in the alternative
hypothesis, the observed signal is the sum of noise and speech
of actual interest.

As can easily foreseen, the main difference between the
two models is that the former will lead to a solution where
no amplitude estimate is provided when the null hypothesis
(i.e the absence of speech) is accepted, whereas the latter will
always introduce a rough estimate of the speech amplitude,
even when the null hypothesis (i.e speech of little interest
is present) is accepted. It can therefore be expected that
introducing some estimate, even when speech signals may
have small amplitudes, makes it possible to improve speech
intelligibility without affecting speech quality too much.
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D. PAPER ORGANIZATION
The remainder of this article is organized as follows.
Section II presents notation and assumptions about speech
and noise. In Section III, the joint detection and estimation
theory for speech enhancement is presented in its generality.
Based on this, the generalized binary STSA combined estima-
tor in the strict speech presence and absence model is derived
in Section IV. Similarly, Section V addresses the second type
of binarymodel where speech signal is supposed to be present
with two different amplitude levels. Then, in Section VI,
experimental results conducted on both synthetic and real-
world noise emphasizes the gain brought by our methods.
Finally, Section VII concludes this article.

II. SIGNAL MODEL IN THE TIME-FREQUENCY DOMAIN
AFTER SHORT TIME FREQUENCY TRANSFORM (STFT)
As most methods in the literature, this article considers
observations in the time-frequency domain after short time
Fourier transform (STFT). The corrupted speech in the
time-frequency domain is hereafter denoted by Y [m, k] =
S[m, k]+ X [m, k], where m and k denote the time frame and
frequency-bin indices, respectively, and S[m, k] and X [m, k]
denote the STFT coefficients of the clean speech signal and
noise, correspondingly. These STFT coefficients within the
same time-frequency bin are assumed to have complex Gaus-
sian distributions with zero-mean and to be uncorrelated [9].
For convenience, the m and k indices will be omitted in
the sequel unless for clarification. In this respect, we often
write Y , S and X instead of Y [m, k], S[m, k] and X [m, k],
respectively. Estimates are pointed by a wide hat symbol: e.g.
ψ̂ is an estimate of ψ . In the sequel, random variables will
be in capital letter, whereas their realizations will be denoted
by lowercase letters. The complex noisy coefficients in polar
form are written asAY e8Y = ASe8S+AXe8X , where {AY ,AS ,
AX } and {8Y , 8S , 8X } are the amplitudes and phases of the
observed signal, clean speech and noise respectively. Since
the clean speech and noise STFT coefficients are supposed to
be uncorrelated and centered within a given time-frequency
bin, we have E(A2Y ) = σ 2

S + σ
2
X where σ 2

S = E(A2S ), σ
2
X =

E(A2X ) and E is the expectation. The a priori signal-to-noise
ratio (SNR) ξ and the a posteriori SNR γ are defined as
follows

ξ = σ 2
S /σ

2
X and γ = A2Y /σ

2
X . (1)

For the sake of simplicity, we simply denote the clean speech
amplitude AS by A.

III. JOINT DETECTION AND ESTIMATION APPROACH:
GENERAL FRAMEWORK
In order to take into account the presence and absence of
speech, the general framework involves a two-state model,
specified by two hypotheses H0 and H1 for the absence
and presence of speech signal, respectively. Specifically, H0
models the case where speech is absent or present with lit-
tle interest, whereas hypothesis H1 models the case where
speech is present. Under each hypothesis Hi (i = 0, 1),

Y is supposed to follow a probability density function (pdf)
denoted by fY (y;Hi). The foregoing is summarized as:

H0 : Y ∼ fY (y;H0)

H1 : Y ∼ fY (y;H1), (2)

Given the observation Y , the decision D takes its value in
{0, 1} and thus returns the index of the so-called accepted
hypothesis. In the sequel, for i, j ∈ {0, 1}, our convention is
to use index i to designate the index of true hypothesis and
to use index j to designate the outcome of D (index of the
accepted hypothesis). In this respect, we use the following
conventional notation:
• Ai denotes the clean speech amplitude under
hypothesis Hi;

• Âj denotes the speech amplitude estimate when the deci-
sion is D = j;

• ai designates a realization of the random variable Ai;
• âj designates a realization of the random variable Âj;

TABLE 1. Cost functions based on the two-state model.

Following the Bayesian framework, we define four cost
functions cji for i, j ∈ {0, 1}. These cost functions are shown
in Table 1, where each cost function is defined in [0,∞) ×
[0,∞) and valued in [0,∞). In the sequel, we focus on non-
randomized decisions, that is, decisions D for which exists a
function or test δ defined on C and valued in {0, 1} such that
D = δ(Y ). Therefore, the weighted cost function under Hi
can be defined by setting:

Ci (̂A1, Â0,Ai)=c1i (̂A1,Ai) δ(Y )+c0i (̂A0,Ai) (1− δ(Y )). (3)

Below, as often, the estimates Âj of the true amplitude when
j ∈ {0, 1} are sought in the form Âj = ψj(Y ) whereψ0, ψ1 are
functions defined on C and valued in [0,∞). The Bayesian
risk under hypothesis Hi with i ∈ {0, 1} can be defined as :

Ri (ψ1, ψ0, δ) = Ei
[
Ci (̂A1, Â0,Ai)

]
, (4)

whereEi denotes the statistical expectation underHi. We then
follow [31] by calculating the maps ψ∗1 , ψ

∗

0 and the test δ∗

such that (ψ∗1 , ψ
∗

0 , δ
∗) is a solution to the following con-

strained optimization problem:

(ψ∗1 , ψ
∗

0 , δ
∗) = argmin

ψ1,ψ0,δ

R1 (ψ1, ψ0, δ)

subject to R0 (ψ1, ψ0, δ) ≤ α. (5)

where α is the level of the test and is chosen in (0, 1). By so
proceeding, we control the cost of erroneously estimating
the signal amplitude under H0, namely, when the signal is
absent or present with low energy and there is no real need
to estimate it accurately. So, we can be satisfied by upper-
bounding the estimation cost under H0. Of course, the upper-
bound must be fixed to a small value α, which allows for
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a trade-off between speech quality and intelligibility. In con-
trast, under H1, the speech signal must be estimated as accu-
rately as possible. In this case, we want to minimize the
estimation cost.

According to [31, Theorem 2], there exists a solution
(ψ∗1 , ψ

∗

0 , δ
∗) to (5). To present this solution, we need to

introduce the conditional risks

rji(y;ψj) = Ei
[
cji(ψj(Y ),Ai)|Y = y

]
=

∫
R
cji(ψj(y), ai) fAi|Y=y(ai;Hi) dai , (6)

where fAi,Y (ai, y;Hi) is the joint pdf of Ai and Y under
hypothesis Hi. The solution (ψ∗1 , ψ

∗

0 , δ
∗) then obtains as

follows. To begin with, for any y ∈ C,

ψ∗j (y) = argmin
ψj

Dj(y;ψj), j ∈ {0, 1} (7)

when ψj ranges in the set of all functions defined on C, and
valued in [0,∞) and where:

Dj(y;ψj)= fY (y;H1)rj1(y;ψj)+τ fY (y;H0)rj0(y;ψj). (8)

In (8), τ is a Lagrange factor whose calculation is performed
at the same time we compute the test δ∗ as follows. Specifi-
cally, δ∗ is defined for all y ∈ C as:

δ∗(y) =

{
1 if p01(y) ≥ τp10(y)
0 otherwise

(9)

with

pji(y) = fY (y;Hi)
(
rji(y;ψ∗j )− rii(y;ψ

∗
i )
)
. (10)

The Lagrange factor τ is determined by solving

R0
(
ψ∗1 , ψ

∗

0 , δ
∗
)
= α. (11)

On the basis of the foregoing (see (7) and (9)), the general
strategy is thus specified by the following three steps:

Step #1 (Prior estimation): Compute the close forms,
if any, for the solutions ψ∗0 and ψ∗1 to (7). These close forms
depend on τ .

Step #2 (Decision) : Take the decision via (9). The param-
eter τ is determined at this stage by solving (11).
Step #3 (Final estimation) : Estimate the amplitude by

Âj = ψ∗j (Y ) where j = δ
∗(Y ).

In the next sections, we apply these three steps to different
cost functions cji. In each case, we specify the probability
density function (pdf) involved in (2). We then choose the
cost functions cji with respect to the possible decisions and
hypotheses.

IV. STRICT PRESENCE/ABSENCE JOINT ESTIMATOR
In this section, the noisy speech signal is modeled as:

H0 ( speech is absent) : Y = X

H1 ( speech is present) : Y = S + X , (12)

where H0 and H1 are the null and alternative hypotheses
denoting speech presence and speech absence in the given

TABLE 2. Cost functions based on the strict presence/absence model.

time-frequency bin, respectively. The two-state model (12) is
henceforth called the strict model (SM) because, in contrast
to the models in Section V, the two hypotheses H0 and H1
it involves do not cover the case of transient speech signals
with feeble amplitudes of poor interest for the denoising.
Accordingly, the solution (ψ∗1 , ψ

∗

0 , δ
∗) to (5) is hereafter

denoted by (ψSM
1 , ψSM

0 , δSM).
We make a complex Gaussian assumption for the pdf of Y

under each hypothesis Hi, i ∈ {0, 1}:

fY (y;H0) =
1

πσ 2
X

exp

(
−
|y|2

σ 2
X

)
, (13)

fY (y;H1) =
1

πσ 2
X (1+ ξ )

exp

(
−

|y|2

σ 2
X (1+ ξ )

)
. (14)

We propose the cost functions defined in Table 2. In coher-
ence with (12), the cost functions c00 and c01 are chosen to
force the STSA estimate to 0 when H0 is accepted. When
the alternative hypothesis is true and accepted, it is natural
to consider a quadratic cost. Now, according to (3) and (4),
and since we choose c00 = 0, the Bayesian risk under H0 is
R0 (ψ1, ψ0, δ) = E0

[
c10 (̂A1,A0)δ(Y )

]
. On the other hand,

E0 [δ(Y )] is the false alarm probability of test δ. Therefore,
it turns out that choosing a constant function c10 makes it
possible to cancel the impact of a false alarm on the STSA
estimate under H0 and to get a risk proportional to the false
alarm probability of δ. In this section, we choose c10 = 1.

These choices for the cost functions make the approach
similar to ideal binary masking [32] in the sense that, when
the decision is that noise only is present, the estimated ampli-
tude is set to 0. However, when the presence of speech is
accepted, the joint detection/estimation approach provides a
Bayesian estimate, in contrast to ideal binary masking that
merely keeps the observed noisy amplitude.

Note that if we choose cii = 0 and cji = 1 for i 6= j,
the optimization problem (5) is a binary hypothesis testing
problem whose solution is provided by the Neyman-Pearson
lemma.

Step #1: Prior estimation
It follows from Table 2, (6) and (8) that, given ψ0, ψ1 :

C→ [0,∞) and y ∈ C,

D0(y;ψ0) = fY (y;H1)
∫
a21 fA1|Y=y(a1;H1) da1. (15)

and

D1(y;ψ1) = fY (y;H1)
∫
(ψ1(y)− a1)2fA1|Y=y(a1;H1) da1

+τ fY (y;H0)
∫
fA0|Y=y(a0;H0) da0. (16)
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Since the right-hand side (rhs) in (15) does not depend on
ψ0, it follows that ψSM

0 can be any function of C into [0,∞).
However, to force to 0 the STSA when H0 is accepted,
we hereafter chooseψSM

0 = 0.With this choice, the estimated
STSA under H0 is:

Â0 = 0.

Since the minimization of D1(y;ψ1) does not depend
on fY (y;H0), a solution ψSM

1 to Eq. (7) is a function that
minimizes

fY (y;H1)
∫
(ψ1(y)− a1)2 fA1|Y=y(a1;H1)da1.

Developing the integral leads to a second-order equation in
ψ1(y). The minimum of this second-order equation is found
to be:

ψSM
1 (y) =

∫
∞

0
a1fA1|Y=y(a1;H1) da1.

A close form for ψSM
1 (y) is given by [9, Eq. (7)]:

ψSM
1 (y) = G(ξ, γ )|y|, (17)

with

G(ξ, γ ) =
√
πν

2γ
e−ν/2

[
(1+ ν)I0

(ν
2

)
+ νI1

(ν
2

)]
,

ν =
γ ξ

1+ ξ
(18)

and where I0(·) and I1(·) are the modified Bessel functions of
zero and first order, respectively. The gain (18) is a function
of two variables: the a priori SNR ξ and the a posteriori
SNR γ . As mentioned in [9], for high a posteriori SNR, this
gain function is close to the Wiener gain function. In addi-
tion, the a posteriori SNR is directly given by the observed
amplitude AY . In contrast, the a priori SNR is unknown.
This variable ξ can be estimated via the decision directed
approach [9]:

ξ [m, k]=$
â21[m− 1, k]

σ 2
X [m− 1, k]

+(1−$ )max ((γ [m, k]− 1), 0) ,

(19)

where 0 < $ < 1 is the smoothing parameter and
Â1[m − 1, k] is the estimated STSA at the previous frame.
Thus, the STSA estimate under hypothesis H1 is obtained as:

Â1 = G(ξ, γ )AY .

Step #2: Decision
According to (6), Table 2 and the results of the preceding

section, we calculate the conditional expectations rji(y;ψSM
j ),

before injecting them into (10) and calculating the test (9).
Under H0, we first have r00(y;ψSM

0 ) = 0 and

r10(y;ψSM
1 ) =

∫
fA0|Y=y(a0;H0) da0 = 1 (20)

Now, under H1, we obtain:

r01(y;ψSM
0 ) =

∫
∞

0
a21fA1|Y=y(a1;H1)da1. (21)

and, similarly:

r11(y;ψSM
1 ) =

∫
∞

0
(ψSM

1 (y)− a1)2fA1|Y=y(a1;H1) da1. (22)

Expanding the square in the rhs of (22), we now get:

r11(y;ψSM
1 ) = r01(y;ψSM

0 )−
(
ψSM
1 (y)

)2
Therefore, in the strict presence/absence model considered

in this section for STSA estimation, the decision (9) becomes:

δSM(y) =

{
1 if DSM(y) ≥ τSM

0 otherwise.
(23)

where

τSM = −σ 2
Xλ(ξ, γ )G(ξ, γ )

2 log(α) (24)

is calculated by solving (11) in Appendix A and

DSM(y) = λ(ξ, γ )
(
ψSM
1 (y)

)2
, (25)

where, according to Eqs. (13) and (14):

λ(ξ, γ ) =
fY (y;H1)
fY (y;H0)

=
exp(ν)
1+ ξ

. (26)

Step #3: Final estimation (SM-STSA)
In short, for each time-frequency bin, the proposed joint

method estimates first the speech STSA by using the
Bayesian estimator. Then, the detector is based on this esti-
mate to detect the presence or absence of speech at each bin.
If speech is absent, the SM-STSA joint estimator sets the
speech STSA to 0. The STSA estimate thus returned by
SM-STSA can be written as a binary masking:

Â = GSM(ξ, γ )AY . (27)

The gain function GSM(ξ, γ ) is:

GSM(ξ, γ )=

{
G(ξ, γ ) if DSM(y) ≥ τSM

0 otherwise,
(28)

where the threshold τSM is determined to guarantee a proba-
bility of false alarm (PFA) equal to α (see Appendix A).
According to the equations above and after some easy

simplifications, the algorithm can be summarized as follows:

V. UNCERTAIN PRESENCE/ABSENCE JOINT ESTIMATORS
The proposed above method based on strict presence/absence
hypotheses may introduce musical noise since the estima-
tor can randomly generate isolated peaks in the time fre-
quency domain. To overcome this issue, we proceed as
in [33] by assuming that, under hypothesis H0, speech is
present with small amplitude. Under the alternative hypothe-
sis H1, the noisy signal remains the sum of speech and noise.
Therefore, with these hypotheses, the two-state model is

H0 : Y = S0 + X ,

H1 : Y = S1 + X , (29)

VOLUME 8, 2020 15699



V.-K. Mai et al.: Optimal Bayesian Speech Enhancement by Parametric Joint Detection and Estimation

Algorithm 1 SM-STSA

1: Input: Y = AY e8Y , σX , PFA = α, ξ and γ (cf. Eq. (1))

Step #1: Prior estimation

2: Compute ν = γ ξ/(1+ ξ )
3: Compute

G(ξ, γ )=
√
πν

2γ
e−ν/2

[
(1+ ν)I0

(ν
2

)
+ νI1

(ν
2

)]

Step #2: Decision

4: Compute τSM = −σ 2
X log(α)

Step #3: Final estimation

5: Calculate

ÂS=

{
G(ξ, γ )AY if A2Y ≥ τ

SM

0 otherwise,

6: Output: Ŝ = ÂS e8Y .

where the speech signal S is either S0 or S1, depending on
the true hypothesis. Clearly, S0 is key to distinguish between
the two models summarized by (12) and (29). Therefore,
we suppose that S0 =

√
βX where β (0 < β � 1) is a

constant spectral floor parameter [34], which is empirically
chosen. Under these assumptions, the conditional pdfs are
now:

fY (y;H0) =
1

πσ 2
X (1+ β)

exp

(
−

|y|2

σ 2
X (1+ β)

)
(30)

fY (y;H1) =
1

πσ 2
X (1+ ξ )

exp

(
−

|y|2

σ 2
X (1+ ξ )

)
(31)

The main difference between the two pdfs above is that,
under hypothesis H0, the a priori SNR β is identical for all
frequency bins since β is fixed once for all, whereas, under
hypothesis H1, the a priori SNR ξ = ξ [m, k] varies in time
and frequency.

The standard likelihood ratio3(ξ, γ ) is directly computed
by using (30) and (31) and equals:

3(ξ, γ ) =
fY (y;H1)
fY (y;H0)

=
1+ β
1+ ξ

exp
(

γ (ξ − β)
(1+ β)(1+ ξ )

)
. (32)

A. INDEPENDENT STSA JOINT ESTIMATOR
In this section, we consider the same standard quadratic cost
function for the four different decision cases. This cost is
defined as:

cji(a, b) = (a− b)2 . (33)

Therefore, the cost functions are those of Table 3.

TABLE 3. Cost functions based on the uncertain presence/absence model
for independent STSA joint estimation.

Step #1: Prior estimation
Given ψj : C → [0,∞) and y ∈ C, Table 3 induces that

Dj(y;ψ1) can be rewritten as:

Dj(y;ψj) = fY (y;H1)
∫
(ψj(y)− a1)2fA1|Y=y(a1;H1)da1

+ τ fY (y;H0)
∫
(ψj(y)− a0)2fA0|Y=y(a0;H0)da0

We have a convex function of ψj(y) and by derivation with
respect toψj(y), some routine algebra shows that the function
ψ∗j that minimizes Dj(y;ψ) does not depend on j and equals

ψ∗j (y) = ψ
IUM(y) = GIUM(ξ, γ )|y|, (34)

where

GIUM(ξ, γ ) =
3(ξ, γ )G(ξ, γ )+ τ G(β, γ )

3(ξ, γ )+ τ
. (35)

In the equation above, G(ξ, γ ) is defined by (18) and τ can
be any non-negative real value. According to Appendix B-A,
we however choose

τ = τ IUM = 3(ξ,−(1+ β) log(α)). (36)

In the notation above, IUM means ‘‘Independent’’ estimator
in the ‘‘Uncertain Model’’.

Step #2: Decision
According to (6) and Table 3,

rji(y;ψ IUM) =
∫
R

(
ψ IUM(y)− ai

)2
fAi|Y=y(ai;Hi) dai.

It follows from the foregoing equality and (10) that p10 =
p01 = 0. Therefore, the presence of speech is always
accepted, which is coherent with the model (29).

Step #3: Final estimation (IUM-STSA)
Since the presence of speech is always accepted, the esti-

mated STSA is always:

Â1 = ψ IUM(Y ) = GIUM(ξ, γ )AY , (37)

where the gain function GIUM(ξ, γ ) is given by (35) and
(36). Because we get the same STSA estimator under each
hypothesis, we call it independent uncertain model STSA
joint estimator (IUM-STSA).

B. JOINT STSA ESTIMATOR
For further taking the role of the presence and absence of
speech into account, we consider the cost functions of Table 4.

Specifically, unlike Subsection V-A, the cost functions
penalize both the estimation and the detection errors.
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Algorithm 2 IUM-STSA

1: Input: Y = AY e8Y , ξ , γ , PFA = α, spectral floor = β,
ξ and γ (cf. Eq. (1))

Step #1: Prior estimation

2: Compute 3(ξ, γ ) = 1+β
1+ξ exp

(
γ (ξ−β)

(1+β)(1+ξ )

)
3: Compute τ = 3(ξ,−(1+ β) log(α))
4: Compute

G(ξ, γ )=
√
πν

2γ
e−ν/2

[
(1+ ν)I0

(ν
2

)
+νI1

(ν
2

)]
5: GIUM(ξ, γ ) = 3(ξ,γ )G(ξ,γ )+τG(β,γ )

3(ξ,γ )+τ

Step #2: Decision

The presence of speech is always accepted,

Step #3: Final estimation

6: Compute ÂS = GIUM(ξ, γ )AY
7: Output: Ŝ = ÂS e8Y .

TABLE 4. Cost functions based on the uncertain presence/absence model
for joint estimation.

For instance, in case of a missed detection, the cost is the
square of the true amplitude.

Step #1: Prior estimation
Similar to the above subsection, given ψ0, ψ1 : C →

[0,∞) and y ∈ C, Table 4 induces that:

D1(y;ψ1) = fY (y;H1)
∫
(ψ1(y)− a1)2 fA1|Y=y(a1;H1)da1

+τ fY (y;H0)
∫
a20 fA0|Y=y(a0;H0)da0 (38)

D0(y;ψ0) = fY (y;H1)
∫
a21fA1|Y=y(a1;H1)da1

+ τ fY (y;H0)
∫
(ψ0(y)− a0)2fA0|Y=y(a0;H0)da0

(39)

By derivationwith respect toψj(y) of eachDj(y;ψj), the func-
tion ψ∗j (y) that minimizes Dj(y;ψj) is the function ψ JUM

j
defined by:

ψ JUM
j (y) =

∫
∞

0
ajfAj|Y=y(aj;Hj)daj = G(θj, γ )|y|. (40)

where θ1 = ξ as in the standard gain function G(ξ, γ )
whereas θ0 = β. The notation JUM means ‘‘Joint’’ estima-
tion in the ‘‘Uncertain Model’’. According to the foregoing,
the estimated Âi is given:

Âj = ψ JUM
j (Y ) = G(θj, γ )AY , (41)

Step #2: Decision
According to (6) and Table 4, the Bayesian risk rji for j 6= i

is given by:

rji(y;ψ JUM
j ) =

∫
∞

0
a2i fAi|Y=y(ai;Hi)dai (42)

Moreover, the Bayesian risk rii is computed by using (6) and
(40) and equals:

rii(y;ψ JUM
i ) =

∫
∞

0

(
ψ JUM
i (y)− ai

)2
fAi|Y=y(ai;Hi)dai

= rji(y;ψ JUM
j )−

(
ψ JUM
i (y)

)2
, (43)

with j 6= i. Injecting (43) and (32) into (9), we obtain the
decision rule as:

δJUM(y) =

{
1 if DJUM(y) ≥ τ JUM

0 otherwise
(44)

where DJUM is given by:

DJUM(y) = 3(ξ, γ )

(
ψ JUM
1 (y)

ψ JUM
0 (y)

)2

. (45)

and τ JUM can be estimated as detailed in Appendix B-B.
Step #3: Final estimation (JUM-STSA)
The gain function of the JUM-STSA estimator deriving

from the foregoing is written as

GJUM(ξ, γ ) =

{
G(ξ, γ ) if DJUM(y) ≥ τ JUM,
G(β, γ ) otherwise,

(46)

FIGURE 1. Attenuation curves of all joint detection/estimations in
comparison with the standard MMSE-STSA method at a piori SNR level
ξ = 5dB. The detector thresholds were calculated with α = 0.05 and
β = −25 dB.

VI. EXPERIMENTAL RESULTS
1) PURPOSE
We have proposed three different methods, namely,
SM-STSA, IUM-STSA and JUM-STSA. These methods rely
on different estimation cost functions and different models for
speech absence and presence. For instance, the gain functions
of all the methods described above are displayed in Figure 1.
Compared to the standardMMSE-STSAmethod [9], the joint
estimators seemingly provide more impact at low instanta-
neous SNR. We recall that the instantaneous SNR is defined
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Algorithm 3 JUM-STSA

1: Input: Y = AY e8Y , PFA = α, spectral floor β, ξ and γ
(cf. Eq. (1))

Step #1: Prior estimation

2: Compute ν = γ ξ/(1+ ξ )
3: Compute

G(ξ, γ )=
√
πν

2γ
e−ν/2

[
(1+ ν)I0

(ν
2

)
+νI1

(ν
2

)]
4: Compute Â0 = G(β, γ )AY and Â1 = G(ξ, γ )AY

Step #2: Decision

5: Compute 3(ξ, γ ) = 1+β
1+ξ exp

(
γ (ξ−β)

(1+β)(1+ξ )

)
6: Compute DJUM(AY ) = 3(ξ, γ )

(
Â1
Â0

)2
Step #3: Final estimation

7: Compute

ÂS=

{̂
A1 if DJUM(AY ) ≥ τ JUM

Â0 otherwise,

8: Output: Ŝ = ÂS e8Y .

by (γ − 1) [35]. This figure illustrates the fact that, when
noise or low level speech signals in noise can be detected,
the joint estimators will reduce more the background noise
than MMSE-STSA and thus, are expected to improve speech
intelligibility and quality.

It follows that the three methods are expected to perform
differently, depending on the type of noise and the crite-
rion, either objective or subjective, to assess them. Therefore,
the purpose of this section is to provide the reader with all
possible information making it possible to choose the most
appropriate method with regard to a given context and criteria
relevant to it. In this respect, we also benchmark SM-STSA,
IUM-STSA and JUM-STSA with methods drawn from the
literature.

More precisely, we experimentally assessed the contribu-
tion in speech denoising of our algorithms based on opti-
mal joint Neyman-Pearson decision and STSA Bayesian
estimation, especially in comparison to the optimal fully
Bayesian approach for speech joint detection/estimation
[29, Eqs. (20) & (23)] and hereafter termed SDE-STSA (SDE
for Simultaneous Detection and Estimation). The MMSE-
STSA was also involved in the assessment as the standard
baseline within the class of STSA Bayesian estimators with
quadratic costs.

In order to carry out a fair assessment, methods involving
psycho-physics in the definition of the Bayesian cost were
not considered. More generally, an exhaustive assessment
involving most of the numerous speech enhancement meth-
ods available from the literature — and not necessarily based

on joint detection/estimation — is beyond the scope of the
paper.

We also bench-marked our algorithms to SDE-NCG-Ab
introduced and recommended in [30]. However, we do not
display the results obtained with SDE-NCG-Ab for two rea-
sons. On the one hand, SDE-NCG-Ab performs similarly
to SDE-STSA in terms of SSNR and does not outperform
it with respect to composite criteria. On the other hand,
displaying the results obtained with SDE-NCG-Ab in addi-
tion to SM-STSA, IUM-STSA, JUM-STSA, SDE-STSA and
MMSE-STSA would be detrimental to the readiness of the
subsequent figures.

2) SPEECH AND NOISE MATERIAL
The assessment involved the whole NOIZEUS database
[8], [35]. This database involves 30 different clean speech
sentences produced by three male and three female speakers.
For each of these clean signals, the database also provides
9 noisy versions: 3 noisy signals respectively obtained by
adding three different types of quasi-stationary noise (car,
train and station) and 6 noisy signals respectively obtained
by adding six different types of non-stationary noise (airport,
exhibition, restaurant, street, modulated WGN and babble).
All these types of noise are from the AURORA database.
In addition, we corrupted the 30 clean speech sentences by
two other types on additive noise: synthetic white Gaussian
noise and 2nd-order auto-regressive (AR) noise. The tests
involved four SNR levels, namely 0, 5, 10 and 15 dB. These
SNR levels are of practical interest since, in the single-
channel case, all the methods considered in the paper fail
below 0 dB in presence of quasi- and non-stationary noises.

3) STFT PARAMETERS
In our experiments, speech signals were sampled at 8 kHz,
segmented into frames of 256 samples each, transformed by
STFTwith 50%overlappedHammingwindows. The smooth-
ing parameter $ in (19) was, as often, set to 0.98. The false
alarm probability α was fixed to 0.05 for all noise levels and
the spectral floor parameter β was set to 0.002 [35].

4) METHODOLOGY
The performance of all the methods were evaluated in two
scenarios. In the first scenario, denoising is performed by
using the reference noise power spectrum. If noise is sta-
tionary, the reference noise power spectrum is simply the
theoretical power spectrum. Otherwise, the reference noise
power spectrum of frame m in a given bin k is estimated as
in [36] by:

σ 2
X [m, k] = µσ

2
X [m− 1, k]+ (1− µ)|X [m, k]|2, (47)

where µ = 0.9. This iterative estimation is initialized by
setting σ 2

X [0, k] = |X [0, k]|
2. The purpose of this scenario is

to assess the performance of the denoising in itself, as much
as possible. In the second scenario, for all the methods,
the noise power spectrumwas estimated using the B-E-DATE
algorithm introduced in [37]. This scenario makes it possible
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FIGURE 2. Speech quality evaluation by SSNR improvement after speech denoising using STSA-based methods for stationary,
slowly-changing,speech-like and fast-changing non-stationary noise. Performance measurements of MMSE-STSA, SM-STSA, IUM-STSA, JUM-STSA and
SDE-STSA with reference noise power spectrum are represented by dashed solid lines. The solid lines correspond to the performance measurements
obtained by these same algorithms when the B-E-DATE is used to estimate the noise spectrum.

to estimate the performance loss in denoising incurred by
integrating an up-to-date noise estimator.

First, speech quality and intelligibility were evaluated via
objective quality and intelligibility criteria. Speech quality
was assessed using the standard segmental SNR (SSNR)
(see Figure 2) [38, Eq. (2.22)], the Signal To Noise Ratio
Improvement (SNRI) (see Figure 3) [38, Eq. (2.30)] and the
overall speech quality criterion. SSNR values were trimmed
so as to remain within the range [−10,35 dB] and avoid
the use of a silence/speech detector [35]. The overall speech

quality was measured by the multivariate adaptive regression
spline (MARSovrl) criterion (see Figure 4) [38, Eq. (2.31)].
This metric combines the Itakura-Saito distance (IS)
[38, Eq. (2.23)] and the perceptual evaluation of speech
quality (PESQ) [39, Eq. (3)]. It has been shown to strongly
correlate with subjective assessments [39]. Speech intelligi-
bility was estimated by the short-time objective intelligibility
(STOI) criterion (see Figure 5) [38, Eqs. (2.39)]. Basically,
the STOI criterion computes the mean correlation between
the clean and the estimated speech [40]. It is known to be
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FIGURE 3. SNRI with various noise types for all STSA-based methods with and without the reference noise
power spectrum. Dashed lines correspond to measurements obtained with reference noise power spectrum.
The solid lines represent the performance measurements returned by the algorithms combined to B-E-DATE
for noise spectrum estimation.

highly correlated with intelligibility scores obtained by lis-
tening tests. We applied the logistic function [38, Eq. (2.40)],
as usual [40, Eq. (8)], to map the STOI measure to a meaning-
ful intelligibility score. The interested reader can download
the Matlab routines from [41] to compute these criteria.
Second, in complement to these objective measurements,
informal subjective tests were performed as well to assess
speech intelligibility and quality.

A. SSNR IMPROVEMENT AND SNRI
Figure 2 displays the average SSNR improvement for differ-
ent noise types and SNR levels and under the two scenarios
mentioned above. In the ideal situation where noise is Gaus-
sian and known, IUM-STSA yields the best score at all SNR
levels shown (see Figure 2a). More specifically, JUM-STSA
and SDE-STSA provide almost the same results, whereas
IUM-STSA and SM-STSA perform slightly better, with an
improvement of 0.25dB only. Compared to MMSE-STSA,
the gain of the joint estimators is from 1dB to 1.8dB. In the
more realistic case where noise power spectrum is estimated
by B-E-DATE, the SSNR improvements obtained by the
joint estimators are even closer. Their gain with respect to
MMSE-STSA is now around 1dB. Not-so-good estimates
of the noise spectrum can generate undesirable effects both
at the detection and estimation steps of a speech joint
estimator.

For AR noise and slowly-changing non-stationary (car,
train and station) noise as in Figures 2b-2e, all joint estimators
yield the same measure (SM-STSA slightly performs better)
and outperform MMSE-STSA with a gain of around 1.5dB
in the first scenario and a gain of around 1dB in the second
scenario.

For fast-changing and speech-like non-stationary (mod-
ulated, street, airport, exhibition, restaurant and babble)
noise, the joint estimators perfor similarly again, with
a slight improvement gain achieved by IUM-STSA (see
Figures 2f-2k). Globally, the gain brought by the joint esti-
mators is around 1.5dB in the first scenario and 1dB in
the second scenario in comparison to MMSE-STSA.

The second SNR-based criterion of interest is the SNRI.
The results obtained by the methods considered in this paper
are displayed in Figure 3. IUM-STSA provides the best
overall SNRI in the two scenarios. For fast-changing non-
stationary noise, the improvement obtained by the join esti-
mators with respect to MMSE-STSA (resp. SDE-STSA) is
from 6dB to 10dB (resp. 1dB to 4dB) when using B-E-DATE
and from 8dB to 16dB (resp. 1dB to 4dB) when using the
reference noise power. For stationary and slowly-changing
non-stationary noise, in comparison to MMSE-STSA (resp.
SDE-STSA) the gain is around 10dB (resp. 1dB to 4dB) when
using noise power spectrum estimated by B-E-DATE and
11.5dB (resp. 1dB to 8dB) when using the reference noise
power spectrum.

In summary, the joint estimators generally outperform
MMSE-STSA in terms of SSNR improvement and SNRI in
all situations, with an overall gain from 6dB to 10dB, which
is emphasized by label ‘‘Total’’ in Figure 3. In comparison
to SDE-STSA, IUM-STSA and JUM-STSA perform slightly
better, whereas SM-STSA provides a gain from 3dB to 5dB.

B. MARSOVL
The measurements of the composite speech quality overall
(MARSovrl) criterion are displayed in Figure 4. Consider
first stationary (white and AR) noise. In the two scenarios,
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FIGURE 4. Speech quality evaluation by MARSovrl improvement after speech denoising using STSA-based methods for stationary,
slowly-changing,speech-like and fast-changing non-stationary noise. As above, the dashed solid lines correspond to the performance measurements
with known reference noise power spectrum, whereas the solid lines display the results obtained when the noise spectrum is estimated by B-E-DATE.

at low SNR levels (0dB and 5dB), IUM-STSA and
JUM-STSA yield the same score and outperform SM-STSA,
MMSE-STSA and SDE-STSA (see Figures 4a-4b). However,
the gain is not significant. At high SNR levels, still
for the two scenarios, the proposed joint estimators out-
perform MMSE-STSA and JUM-STSA yields the best
score.

For slowly-changing non-stationary noise, yet in the two
scenarios, at low SNR levels, JUM-STSA and MMSE-STSA
yield the same measures and perform slightly better than
SM-STSA, IUM-STSA and SDE-STSA. At high SNR levels,

all joint estimators outperformMMSE-STSA, except at 10dB
for train noise when the noise power spectrum is estimated
by B-E-DATE (see Figure 4d). In this case, JUM-STSA and
IUM-STSA achieve the best results with a small gain com-
pared to SDE-STSA, whereas SM-STSA and MMSE-STSA
perform similarly.

In the case of fast-changing and speech-like non-stationary
noise, when the estimators are combined with B-E-DATE,
all the methods provide similar scores at low SNR levels,
even at 10dB, except for modulatedWGNwhere JUM-STSA
returns significantly better results. The relevance of joint
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FIGURE 5. Speech intelligibility evaluation by STOI after speech denoising using STSA-based methods for stationary, slowly-changing,speech-like and
fast-changing non-stationary noise. The legend is the same as that of Figures 2 and 4.

detection/estimation is confirmed at 15dB (see Figures 4f-4k)
only. However, when using the reference noise power spec-
trum, for 10dB and 15dB, a significant gain is yielded by
joint estimators, in comparison to MMSE-STSA for almost
all types of noise. This emphasizes that inaccurate noise esti-
mates may induce erroneous decisions. At low SNR levels,
JUM-STSA and MMSE-STSA perform slightly better than
the other methods. Note that JUM-STSA provides always the
best score in this scenario.

In terms of overall speech quality, the joint estimators
outperform MMSE-STSA in almost all cases. JUM-STSA
performs generally better than IUM-STSA, SM-STSA

and SDE-STSA. It thus turns out when the null hypothesis
is accepted, providing an estimation of the speech signal
better improves speech quality than forcing the estimated
amplitude to 0.

C. STOI
Finally, the intelligibility score (IS) obtained by mapping the
STOI measure is shown in Figure 5. For 10dB and 15dB, all
the methods yield the same performance in the two scenarios.
At 5dB, the differences in performance are not really signifi-
cant. Therefore, we hereafter focus on the results at 0dB.
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For stationary (white and AR) and slowly-changing non-
stationary (car, train and station) noises, the proposed
SM-STSA, JUM-STSA and IUM-STSA give a small gain
compared to SDE-STSA and yield a better score thanMMSE-
STSA. The IS scores of these methods exceed by 5% to 10%
that of MMSE-STSA, whatever the scenario for noise spec-
trum estimation.

For the fast-changing airport and speech-like non-
stationary noises, SM-STSA, JUM-STSA and MMSE-STSA
perform equally and better than IUM-STSA and SDE-STSA
in the second scenario. In the first scenario, the joint estima-
tors (including SDE-STSA) yield the same performance and
outperform MMSE-STSA. For modulated WGN and street
noises, in the two scenarios, the gain in IS is from 4% to
7% when using SM-STSA and JUM-STSA in comparison to
MMSE-STSA (see Figures 5f-5k).

In conclusion, as in the preceding subsection, SM-STSA,
JUM-STSA and IUM-STSA yield better results thanMMSE-
STSA and slightly outperform SDE-STSA. Note however
that JUM-STSA tends to outperform the others.

D. INFORMAL SUBJECTIVE ASSESSMENT
The authors have conducted informal subjective experiments
on the same database, by involving the 5 methods consid-
ered in the paper (IUM-STSA,JUM-STSA,SM-STSA, SDE-
STSA, MMSE-STSA). In these experiments, we considered
4 types of noise (white, babble, street and train) with thus
a strong emphasis on non-stationary noise since it is the
case of main practical interest. We tested 4 SNRs (0, 5, 10,
15 dB) and evaluated the methods when the noise spectrum
is known versus the case where this spectrum is unknown
and estimated. In our subjective and informal evaluations,
we empirically assessed the intelligibility and quality of the
denoised sentences.

These experiments confirm that SM-STSA, JUM-STSA,
IUM-STSA generally outperform MMSE-STSA. By and
large, JUM-STSA, IUM-STSA, SM-STSA and SDE-STSA
perform similarly and, in some cases, SM-STSA provides
some slight improvement. In comparison withMMSE-STSA,
the gain brought by the methods proposed in this paper are
especially noticeable at low and medium SNRs. This subjec-
tive assessment is thus consistent with the attenuation curves
displayed in Figure 1 and the tendency emphasized by the
objective SNRI measurements of Section VI-A. The main
difference in performance between MMSE-STSA and the
group of methods (JUM-STSA, IUM-STSA, SM-STSA) is
that these latter, in contrast toMMSE-STSA, do not introduce
audible distortions, even for high SNRs. The loss induced
by estimating the noise spectrum remains limited, does not
modify the conclusions above and, in any case, remain imper-
ceptible for SNR ≥ 10 dB.

VII. CONCLUSION AND PROSPECTS
This paper has proposed a unified framework for speech
enhancement based on the optimal combination of Neyman-
Pearson detectors and Bayesian speech estimators of speech

in noise. The key idea is to take the presence and absence
of speech in each time-frequency bin into account so as to
improve speech quality and intelligibility in noisy environ-
ments. In contrast to the optimal Bayesian joint detection/
estimation [29], the Neyman-Pearson test performs the
detection without prior knowledge of the speech presence
probability.

Several joint estimators resulting from this combina-
tion have been derived for speech STSA estimation. When
absence of speech is decided, they force the estimate to
zero or to a small spectral floor for avoiding musical noise.
These algorithms require the false alarm probability α spec-
ified for the Neyman-Pearson test. This parameter can easily
be set empirically, once for all and without much effort, via
preliminary and limited experiments, or by simply resorting
to the value proposed in Section VI. The constant spectral
floor β needed to perform IUM-STSA and JUM-STSA can
be set on the basis of experimental results exposed in the
literature [35].

The objective performance evaluation was conducted in
two scenarios, one when the reference noise power spec-
trum is used and one when noise is estimated by an up-to-
date method. The experimental results show the relevance
of the approach. Without prior knowledge and estimation
of the speech presence probability and thus, with a reduced
number of parameters, the optimal joint estimators proposed
in this paper do not induce any performance loss and even
yield some improvement with respect to [29], [30]. Actually,
although they are not stricto sensu parameter-free, they need
one single parameter only, namely, the false alarm probabil-
ity α. We have not conducted an exhaustive analysis of the
possible range for this parameter, but a value of α = 0.05 pro-
vides a correct order ofmagnitude for it. Therefore, the results
presented in this paper, in addition to [29], [30], emphasize
the interest of joint detection/estimation in speech enhance-
ment. In a nutshell, although it is well-known that a deep
understanding of the signals under consideration leads to very
good results and even optimality by Bayesian approaches,
the Bayesian joint detection/estimation methods considered
above are generic and provide a good trade-off between per-
formance and robustness with relatively coarse models for the
speech signals and noise. In particular, these joint estimators
are of practical interest for their performance and easy tuning.
The choice between SM-STSA, IUM-STSA and JUM-STSA
can then be ruled by the type of criterion the practitioner
wishes to optimize. The informal subjective assessment is
consistent with SNRImeasurements and confirms the interest
of joint detection/estimation procedures.

At this stage, it can be wondered to what extent other
costs, such as logarithm functions, could also be considered.
Elements of answer to this question can be given along the
following lines, within a larger perspective on the prospects
opened by this work.

To begin with, the approach followed in this paper is very
generic. Although we have dealt with standard quadratic
costs on the amplitudes of the speech STFT coefficients, our
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theoretical framework in the vein of [31] can be adapted
to other time-frequency representations, such as those based
on the windowed Discrete Cosine Transform (DCT). It can
also be applied to time-scale representations after wavelet
transformations, either continuous or discrete. In this vein,
although we experimentally used standard values for the
STFT parameters, it would be desirable to study to what
extent transform parameters can be optimized with respect
to joint speech detection/estimation performance.

Because it is generic, the approach can probably be applied
to signals other than speech, the crux being to have a
reasonable statistical model for the signal and the noise
coefficients returned by the transformation. In this respect,
it may be profitable to look for probability distributions
other than Gaussian. In particular, the Gamma distribution
seems to be a good candidate for modeling speech DFT
coefficients [15].

The generic nature of the approach allows for costs other
than those considered above. In particular, as mentioned
by a reviewer, the Log-MMSE-STSA [12], aimed at tak-
ing psycho-physical properties of the auditory system into
account, improves by one dB the standard MMSE-STSA.
Therefore, according to Section VI, the joint estimators con-
sidered in this paper yield the same performance order as the
Log-MMSE-STSA. Consequently, joint detection/estimation
with costs on the speech logarithmic spectral amplitudes
(LSA) can be expected to perform better than SM-, IUM- and
JUM-STSA. A paper dedicated to this topic is in-progress.
The interested reader can however refer to [38, Chapter 4] to
note that the approach can actually be profitably extended to
quadratic costs on LSA.

APPENDIXES
APPENDIX A
STRICT MODEL
In the strict presence/absence model, the threshold τSM is
chosen by fixing the false alarm probability to a specified
value α and by solving (11), which becomes in our case
R0
(
ψSM
1 , ψSM

0 , δSM
)
= α. Since ψSM

0 = 0, it follows from
(3), (4), (17), (23) and Table 2 that:

R0

(
ψSM
1 , ψ∗0 , δ

SM
)
= E0

[
δSM(Y )

]
= P

[
DSM(Y ) > τSM

]
= P

[
A2Y > τSM/(λ(ξ, γ )G2(ξ, γ ))

]
According to the Gaussian assumption (13), the pdf of AY
under H0 is Rayleigh [35, p.212] and given by:

fAY (a;H0) =
2a

σ 2
X

exp

(
−
a2

σ 2
X

)
. (48)

By injecting this density into the value of R0(ψSM
1 ,

ψSM
0 , δSM) above, some routine algebra leads to (24).

APPENDIX B
UNCERTAIN MODEL
As a preliminary result, it follows from (30) that the pdf of
AY under H0 is given by:

fAY (a;H0) =
2a

σ 2
X (1+ β)

exp

(
−

a2

σ 2
X (1+ β)

)
. (49)

A. INDEPENDENT ESTIMATORS
With regard to (35) and by referring to the likelihood ratio
(32), the impact of τ on the gain function GIUM is described
as follows. First, when3(ξ, γ )� τ , we can approximate the
gain function by GIUM(ξ, γ ) ' G(ξ, γ ), which amounts to
considering that the speech is significantly present. Second,
when 3(ξ, γ ) � τ , the gain function is approximated by
GIUM(ξ, γ ) ' G(β, γ ), which corresponds to the case where
the observation pertains to speech with low amplitude.

The foregoing can thus be interpreted as a decision rule to
discriminate high from low speech energies. In this respect, τ
is a threshold on the likelihood ratio to make such a decision
and can therefore be calculated so as to guarantee a specified
false alarm probability α. According to (49), the false alarm
probability equals α if P [3(ξ, γ ) ≥ τ ] = α.We then derive
from (32) and the definition of γ that the foregoing equality
is equivalent to:

P
[
A2Y ≥ log

(
τ
1+ ξ
1+ β

)(
σ 2
X
(1+ β)(1+ ξ )

(ξ − β)

)]
= α

A computation similar to that carried out in Appendix A leads
to τ = 3(ξ, γ0) with γ0 = −(1+ β) log(α).

B. JOINT ESTIMATOR
As in the preceeding subsection, we must solve

R0(ψ JUM
1 , ψ JUM

0 , δJUM) = α,

where ψ JUM
1 and ψ JUM

0 are given by (40). According to (3),
(4), (41), (44) and Table 4, we have:

R0

(
ψ JUM
1 , ψ JUM

0 , δJUM
)

= E0

[
A20δ

JUM(Y )
]
+E0

[(̂
A0−A0

)2(1−δJUM(Y ))
]

= E0

[
A20δ

JUM(Y )
]
+E0

[
(G(β, γ )AY−A0)2(1−δJUM(Y ))

]
We begin by computing the second term to the rhs in the
equality above. The standard chain rule yields:

E0

[
(G(β, γ )AY − A0)2 (1− δJUM(Y ))

]
=

∫
(1−δJUM(y))E

[
(G(β, γ )|y|−A0)2 |Y = y)

]
fY (y;H0)dy

(50)

We have:

E
[(
G(β, γ )|y| − A0

)2
|Y = y)

]
=

∫
(G(β, γ )|y| − a0)2 fA0|Y=y(a0)da0 (51)

=

(
G2
0 − G

2(β, γ )
)
|y|2 (52)
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where (52) is obtained by expanding the integrand in (51),
using (40) and (41) and injecting the equality [35, Eq.(7.94)]:

E
[
A20|Y = y

]
=

β

1+ β

(
1+ νβ
γ

)
|y|2 = G2

0|y|
2, (53)

with G2
0 =

β

1+ β

(
1+ νβ
γ

)
and νβ = γβ/(1 + β). It now

follows from (53) that:

E0

[
A20δ

JUM(Y )
]
=

∫
G2
0|y|

2δJUM(y)fY (y;H0)dy (54)

According to (50), (52) and (54), we obtain:

R0(ψ JUM
1 , ψ JUM

0 , δJUM)

=

∫
δJUM(y)G2

0|y|
2fY (y;H0)dy

+

∫
(1−δJUM(y))(G2

0−G
2(β, γ ))|y|2fY (y;H0)dy (55)

This risk could be numerically calculated so as to deter-
mine τ JUM. However, we can resort to the following approx-
imations to get a close form for an estimate of this threshold.

First, G0 and G(β, γ ) are actual functions of y. However,
0 ≤ β � 1 so that G0 and G(β, γ ) both tend to 0. Therefore,
G2
0 and |G

2
0−G

2(β, γ )| can both be upper-bounded by small
constants so that we approximate:

R0(ψ JUM
0 , ψ JUM

1 , δJUM)

≈ G2
0

∫
δJUM(y)|y|2fY (y;H0)dy

+(G2
0−G

2(β, γ ))
∫
(1−δJUM(y))|y|2fY (y;H0)dy (56)

Second, it can be numerically verified that DJUM does not
decrease with |y| when β � ξ , which is the case of prac-
tical interest. As a second approximation, we consider that
the testing performed by δJUM amounts to comparing |y|
to a threshold τ ∗. Therefore, using (30), the Bayesian risk
R0(ψ JUM

0 , ψ JUM
1 , δJUM) can further be estimated by:

R̂0(ψ JUM
0 , ψ JUM

1 , δJUM)

= G0

∫
∞

τ∗

2r3

σ 2
X (1+ β)

exp

(
−

r2

σ 2
X (1+ β)

)
dr

+

(
G0 − G2(β, γ )

)∫ τ∗

0

2r3

σ 2
X (1+ β)

exp

(
−

r2

σ 2
X (1+β)

)
dr .

After a change of variable and an integration by parts, some
routine algebra leads to:

R̂0(ψ JUM
0 , ψ JUM

1 , δJUM)

= σ 2
X (1+ β)(G

2
0 − G

2(β, γ ))

+

(
G2(β, γ )τ 2∗ + σ

2
X (1+ β)

)
exp

(
−

τ 2∗

σ 2
X (1+ β)

)
.

We can seek a numerical solution τ∗(α) to

R̂0(ψ JUM
0 , ψ JUM

1 , δJUM) = ασ 2
X .

Alternatively, since G(β, γ ) ≈ 0, we suppose G2(β, γ ) = 0.
This leads to

τ∗ =

σX
√
log

(
1

α−G2
0(1+β)

)
√
(1+ β) if γ > γ0

τ∞ otherwise

(57)

with γ0 =
β(1+β)

α(1+β)−β2
. Since β is small, γ0 is itself small.

For instance, if β = 0.002 and α = 0.05, γ0 ≈ 0.04,
which corresponds to an SNR of−14dB. This means that the
first case in (57) embraces most of the situations encountered
in practice. The second case corresponds to the presence of
noise only or the presence of speech with low energy in noise.
In this case, τ∗ is fixed to a large value τ∞. The detection
threshold τ JUM(α) is then approximated by:

τ JUM(α) = DJUM(τ∗) (58)
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