
HAL Id: hal-02456880
https://imt-atlantique.hal.science/hal-02456880v1

Submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attack-tolerant Unequal Probability Sampling Methods
over Sliding Window for Distributed Streams

Yann Busnel, Yves Tillé

To cite this version:
Yann Busnel, Yves Tillé. Attack-tolerant Unequal Probability Sampling Methods over Sliding Window
for Distributed Streams. ICCDA 2020 : 4th International Conference on Compute and Data Analysis,
Mar 2020, San Jose, United States. pp.72-78, �10.1145/3388142.3388162�. �hal-02456880�

https://imt-atlantique.hal.science/hal-02456880v1
https://hal.archives-ouvertes.fr


Attack-tolerant Unequal Probability Sampling Methods

over Sliding Window for Distributed Streams

Yann Busnel Yves Tillé
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Abstract

Distributed systems increasingly require the processing of
large amounts of data, for metrology, safety or security pur-
poses. The online processing of these large data streams
requires the development of algorithms to efficiently calcu-
late parameters. If elegant solutions have been proposed
recently, their approximation is commonly calculated from
the inception of the data stream. In a distributed execution
context, it would be preferable to collect information only
on the recent past (for resource saving or relevancy of most
recent information). We therefore consider here the sliding
window model.

In this article, we propose a family of new sampling
techniques that take into account both the sliding window
model and the presence of a malicious adversary. Wayne
Fuller proposed in 1970 a very ingenious method of sam-
pling with unequal inclusion probabilities. After doing jus-
tice to this precursor paper and proposing a fast and sim-
ple implementation of it, we completely generalize Fuller’s
method in order to enable the use of a tuning parameter
of spreading. The analytical results of these techniques
show the excellent performance of the generalized pivotal
approach. This generalization makes the sampling method
less predictable and seems appropriate to be protected from
malicious attacks when sampling from a stream.

Keywords: Sampling algorithm, Sliding window, Byzan-
tine adversarial, Brewer method, Pivotal method.

1 Introduction and related works

In very large distributed network management systems, it
is often critical to collect global data given the very large
number of participants. This can be modeled by a set of
nodes, each observing a data stream. These nodes must
therefore collaborate to continuously evaluate a given func-
tion on the global distributed stream. For example, current
network management tools analyze the input streams of
a set of routers to detect malicious sources or to extract
user behavior [2, 21]. The main objective is to evaluate
these functions at the lowest cost in terms of space used on
each node, as well as update and query time. The prob-

lem of extracting relevant information from a (distributed)
data stream(s) is similar to the problem of identifying pat-
terns that do not conform to the expected behaviour. This
theme has been a very productive field of research in re-
cent decades. For example, depending on the specificities
of the domain and the type of aberrations considered, differ-
ent methods have been designed: classification, grouping,
nearest neighbour, spectral statistics and information the-
ory. An interesting state of the art on these techniques,
describing their advantages and disadvantages, is proposed
by [10]. A common feature of these techniques is their high
complexity in terms of space and computation cost, as they
are based on algorithms with open memory, which require
complete knowledge and access to the analyzed data.

Relying on algorithms of this type is not feasible in a
context of real-time information extraction, with very low
storage and processing capacity. However, two main ap-
proaches exist for real-time processing of massive, poten-
tially distributed data streams.

The first approach is to process all the data in the stream
on the fly, and to keep only summaries, or aggregates, lo-
cally, in which only essential information about the data is
kept [10]. This approach extracts statistics on processed
data streams, with bounded error probabilities, without as-
suming any constraint on the order in which the data is
received on the nodes (i.e., the data order could be ma-
nipulated by an omnipotent opponent [4]). Most existing
research using this approach has focused on calculating sta-
tistical functions or measurements with a given ε error, us-
ing a poly-logarithmic memory amount in the size of the
stream and domain of the incoming data. These functions
estimate, for example, the number of distinct data present
in a given stream [23], frequency moments [1], the most fre-
quent elements [11, 28], entropy of a stream [9], flood attack
detection [30], the correlation between several streams [3]
or the relative entropy between a biased stream and a uni-
form stream [2, 5]. Unfortunately, these estimates are based
on summaries that involve a significant loss of information,
with sometimes drastic overestimation (as in the case of the
Count-Min Sketch [14]).

On the other hand, the second consists in regularly sam-
pling the stream, making it possible to limit the amount of
data stored in memory [1, 24, 25, 26]. This method allows
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to calculate exactly functions on these samples. However,
the reliability of this calculation, in comparison with the ex-
act result calculated on the entire stream, depends strongly
on the volume of data that has been sampled, and the po-
sition of this data on the stream. Worse still, an opponent
could easily take advantage of the sampling policy to hide
his attacks among the unsampled packets, or thereby pre-
vent his “malicious” packets from being correlated. The
primary objective of this article is to further take these two
characteristics into account by using methods from survey
theory.

In addition, the majority of current solutions offer sam-
pling methods over the entire stream. The use of these
techniques, for example in network monitoring, requires
the selection of samples from recent data only. Carrying
the well-known sampling solutions in a sliding window is
often complex or even impossible given the very nature of
the sampling process. In addition, classical methods do not
necessarily take into account the dispersion of the sampled
elements in the current window. Indeed, without stratifi-
cation, the samples can be spread too evenly, or conversely
concentrated in certain parts of the input stream. Adver-
saries could take advantage of this knowledge to place their
samples in such a way as to bias the overall sampling. The
emergence of the pivotal method in survey theory suggests
a relevant solution to these problems.

In a manuscript paper written in French, Deville [17] pro-
posed an unequal probability sampling method that we refer
to as the “Deville systematic method”. The method is also
described in detail in Tillé [31, pp. 128-130]. Another un-
equal probability sampling procedure is the pivotal method
proposed by Deville and Tillé [18] in the framework of the
splitting method [see also 31, pp. 106–08]. When the piv-
otal method is applied according to the order of the units,
it is usually called “sequential pivotal method” or “ordered
pivotal method”. In a relatively technical paper, Chauvet
[12] showed that the ordered pivotal method and Deville’s
systematic method are two algorithms that implement the
same sampling design, which is certainly not obvious when
comparing the two methods.

Fuller [20] proposed a method where one unit is sampled
in each stratum but with random strata boundaries. The
method is developed for equal and unequal probability sam-
pling. Fuller’s method is no other than Deville’s Systematic
method with random strata boundaries.

2 Contributions and plan of the pa-
per

Our main contributions are the following. We first pro-
pose a very simple implementation of Fuller’s method by
means of the pivotal method. Next we generalize the piv-
otal and the Fuller methods. A tuning parameter is in-
troduced that enables to choose the spreading of the sam-
ple. A large family of methods is then defined for the cases
where the variable of interest is autocorrelated. In brief,
these methods make it possible to achieve the objectives of
well-spread sampling, with computational complexity and

minimal memory cost, while respecting the constraints of
the aforementioned model.

In addition, to be able to theoretically study the impact
of opponents on the algorithms proposed in the literature, it
is possible to use different models from the distributed sys-
tems community. For example, as Anceaume et al. in [7],
we consider the presence of an opponent adaptive, who tries
to avoid the smooth running of the algorithm by distribut-
ing his data judiciously among the different streams. It is
thus able to insert as much information as necessary to in-
crease or reduce the accuracy of an algorithm, in relation
to the current state of the system, or to reorder the streams
as it sees fit. However, generally, it is considered that any
algorithm run by any correct node is public knowledge to
avoid some kind of security by obscurity.

3 System model

We consider a set S of ` nodes S1, . . . , S` such that each
node Si receives a large sequence σSi

of data items or
units. We assume that streams σS1 , . . . , σS`

do not nec-
essarily have the same size, i.e., some of the items present
in one stream do not necessarily appear in others or their
occurrence number may differ from one stream to another
one. We also suppose that node Si (1 ≤ i ≤ `) does not
know the length of its input stream. Items arrive regularly
and quickly, and due to memory constraints (i.e., nodes
can locally store only a small amount of information with
respect to the size of their input stream and perform simple
operations on them), need to be processed sequentially and
in an online manner. Nodes cannot communicate among
each other. On the other hand, there exists a specific node,
called the coordinator in the following, with which each
node may communicate [15]. We assume that communica-
tion is instantaneous. We refer the reader to [29] for a de-
tailed description of data streaming models and algorithms.
Note that in the some contexts such as IoT or edge com-
puting, it may not be reasonable to rely on a central entity.
We could extend our distributed solution to a fully decen-
tralized version by organizing sites in such a way that each
one could locally aggregate the information provided by its
neighbours, as done in [6].

4 The pivotal method

Let’s consider a U population of size N , representing all the
information that can be exchanged within the S network,
in which we want to select a sample of fixed size n with
unequal inclusion probabilities 0 < πk < 1, k ∈ U, such
that

∑
k∈U πk = n. The pivotal method is particularly sim-

ple and consists of picking at each step two units (denoted
by i and j) in the population. Their inclusion probabili-
ties (πi, πj) are randomly transformed to (π̃i, π̃j) using the
following randomization:

(π̃i, π̃j) =


(min(1, πi + πj),max(πi + πj − 1, 0))

with probability q
(min(πi + πj , 1),max(0, πi + πj − 1))

with probability 1− q,
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with

q =
min(1, πi + πj)− πj

2 min(1, πi + πj)− πi − πj
.

The validity of the method is based upon the fact that the
expectation of this pair corresponds to the inclusion prob-
abilities, i.e., E(π̃i, π̃j) = (πi, πj) and π̃i + π̃j = πi + πj .
This ensures that the inclusion probabilities are satisfied
and that the sum of the components of the vector is always
equal to n.

This elementary step can be repeated on couples of units
containing values that are not equal to 0 or 1. Since at
each step, a component is set to 0 or 1, in N − 1 steps at
most, the sample is selected. The ordered pivotal method
simply consists in taking the units according to their order
in the vector of inclusion probabilities, which is built on
the fly according to the incoming stream. So the first step
is applied on units (1, 2). The unit that conserves a non-
integer value is then confronted to unit 3 and so on.

If the sum of the inclusion probabilities is not an integer,
the pivotal method ends up with a vector whose compo-
nents are all integer except for one that is equal to the frac-
tional part of the sum of the inclusion probabilities. This
result is given for instance by the UPpivotal function of
the R sampling package, which was proposed by the au-
thors [27]. The pivotal method is a particular case of the
cube method [19] with only one balancing variable that is
equal to the inclusion probabilities. The ordered pivotal
method is the particular case of the fast implementation of
the cube method proposed by Chauvet and Tillé [13].

5 Implementation of Fuller’s
method

In Fuller’s method as in Deville’s systematic method, the
main ideas consist of constructing strata and selecting one
unit in each stratum. The main problem is that it is al-
most always impossible to construct strata in which the
sums of the inclusion probabilities are equal to 1. In Dev-
ille’s method, one first computes the cumulated inclusion
probabilities

Vk =

k∑
i=1

πk with V0 = 0, and VN = n.

The strata are the intervals [0, 1], [1, 2], . . . [n− 1, n]. A unit
k, such that the interval [Vk−1, Vk] contains an integer, is
called a boundary unit, because it belongs to two consec-
utive strata. The main difficulty of Deville’s systematic
method consists of avoiding selecting twice the boundary
units. Drawing probabilities must be recomputed in each
stratum in function of the selection in the previous stratum.
The algorithm and the procedure of updating the drawing
probabilities are described in detail in Tillé [31, p.130].

Fuller’s method is exactly the same as Deville’s system-
atic sampling except for the computation of the bounds
of the strata. In Deville systematic sampling, the bounds
are the integer numbers 0, 1, 2, . . . , n. In Fuller’s method,

1l ibrary ( sampling )
2UPfuller<−function (pi ,EPS=0.00000001)
3{
4u=runif ( 1 ) ;
5s=UPpivotal (c (u , pi ) ) ;
6s [which(abs ( s−u)<EPS)]= s [ 1 ] ;
7s [−1]
8}

Listing 1: Implementation of Fuller’s method

the first bound is randomly selected using a uniform ran-
dom variable u in [0,1]. The bounds of the strata are thus
0, u, u+ 1, u+ 2, . . . , n− 1 + u, n. Fuller’s method has one
more stratum, but the algorithm begins by deciding ran-
domly if a unit is selected in stratum [0, u] or in [n−1+u, n],
which is equivalent to considering that these two intervals
form a single stratum.

Chauvet [12] showed that Deville’s systematic method
and the ordered pivotal method exactly implement the sam-
ple sampling design. Fuller’s method can also be imple-
mented by the pivotal method provided that a random start
is used (cf. Listing 1). Suppose that we have a vector of in-
clusion probabilities which sum up to an integer. First we
randomly create a phantom unit whose inclusion probabil-
ity π0 is a uniform random variable in [0,1] (line 3). Next
the ordered pivotal method is applied on this population of
size N + 1 (line 4). Since the sum of the inclusion probabil-
ities is equal to n+ π0, the random pivotal method returns
a vector whose components are all equal to 0 or 1 except
for one (denoted by j) that is equal to π0. Finally, unit
j is selected if the phantom unit has been selected and is
not selected otherwise. The phantom unit is then removed
from the sample. If the phantom unit remains with the
non-integer value, it is simply removed from the sample.
The code of Listing 1 gives the R implementation that is
particularly simple.

6 Generalization of the Pivotal
and Fuller’s method

6.1 Main idea

The pivotal method and the Fuller method can be gener-
alized. In place of confronting two units, one can consider
three or more units. Suppose that r consecutive units are
considered at each step. These units can be randomly trans-
formed in such a way that one of them is transformed into
a 0 or a 1. This transformation can be done by several pro-
cedure. We propose three possible methods to transform
the subsets.

6.2 Brewer’s method

Brewer [8] proposed a very interesting unequal probability
method. Tillé [31, pp. 112-114] reformulate the method as
a particular case of the splitting method. For the general-
ization of the pivotal method, the method must be extended
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1brewer<−function (pi )
2{
3N=length (pi ) ; n=sum(pi ) ;
4a=pi ∗(n−pi )/ (min(1 ,n)−pi ) ;
5i=which( (cumsum(a/sum(a))− runif (1))>0 ) [ 1 ] ;
6pim=pi ∗(n−min(1 ,n ) ) / (n−pi [ i ] ) ;
7pim [ i ]=min(1 ,n ) ;
8pim
9}

Listing 2: Implementation of Brewer’s method

to the case where the sum of the inclusion probabilities is
non-integer.

The basic step of the Brewer method can be expressed as
follows:

• Select an integer number (say `) between 1 and N with
probabilities (cf. lines 4 and 5 of Listing 2):

αj =

(∑
i∈U

πi(n− πi)
min(1, n)− πi

)−1
πj(n− πj)

min(1, n)− πj
, j ∈ U.

• Change the vector of inclusion probabilities, for all k ∈
U , into (cf. lines 6 and 7 of Listing 2):

π`k =


πk(n−min(n, 1))

n− π`
if k 6= `

min(n, 1) if k = `.

The method is valid because 0 ≤ π`k ≤ 1 for all ` ∈ U, k ∈
U, ∑

k∈U

π`k = n, ` ∈ U, and
∑
`∈U

α`π
`
k = πk, k ∈ U.

The short R code of Listing 2 gives an implementation.
Brewer’s method has however a drawback when it is used

to generalize the pivotal method. When n =
∑
k∈U πk < 1,

then all the π`k are null except one that is equal to n. There
are then null joint inclusion probabilities. For this reason
we propose to use the complementary Brewer method.

6.3 Complementary Brewer method

A complementary sampling design pc(s) of a sampling de-
sign p(s) is defined as follows:

pc(s) = p(U\s), s ⊂ U.

The complementary of the Brewer method can be derived
directly from the previous section. The basic step of the
complementary Brewer method will thus transform one
component in a zero at each step.

• Select an integer number (say `) between 1 and N with
probabilities (cf. lines 4 and 5 of Listing 3):

αj =

(∑
i∈U

(1− πi)(N − n− 1 + πi)

min(1, N − n)− 1 + πi

)−1

× (1− πj)(N − n− 1 + πj)

min(1, N − n)− 1 + πj
, j ∈ U.

1complementary .brewer<−function (pi )
2{
3N=length (pi ) ; n=sum(pi ) ;
4a=(1−pi )∗ (N−n−1+pi )/ (min(1 ,N−n) −1+pi ) ;
5i=which( (cumsum(a/sum(a))− runif (1))>0 ) [ 1 ] ;
6pim=1−(1−pi )∗ (N−n−min(1 ,N−n ) ) / (N−n−(1−pi [ i ] ) ) ;
7pim [ i ]=1−min(1 ,N−n ) ;
8pim
9}

Listing 3: Implementation of Complementary Brewer’s
method

• Change the vector of inclusion probabilities into (cf.
lines 6 and 7 of Listing 2):

π`k =


1− (1− πk)(N − n−min(N − n, 1))

N − n− 1 + π`
if k 6= `

1−min(1, N − n) if k = `,

for all k ∈ U.
Again, the method is valid because

0 ≤ π`k ≤ 1 for all ` ∈ U, k ∈ U,∑
k∈U

π`k = n, ` ∈ U, and
∑
`∈U

α`π
`
k = πk, k ∈ U.

The short R code of Listing 3 gives an implementation.

6.4 Random direction method

Another method consists of generating a random vector of
size N with null mean. The code of Listing 4 gives an
implementation of this method.

For instance, N standardized random variables v1, . . . , vn
are generated and next are centered (line 4):

uk = vi −
1

N

∑
i∈U

vi.

Next, one searches the maximum value λ1 and the minimum
value λ2 that satisfy

0 ≤ πk + λ1uk ≤ 1 and 0 ≤ πk + λ2uk ≤ 1 for all k ∈ U.

This is computed between lines 5 and 7.
Finally, the vector of πk is replaced by

πnewk =

{
πk + λ1uk with probability − λ2

λ1−λ2

πk + λ2uk with probability λ1

λ1−λ2

(cf. lines 8–11).
As in sections above, the method is also valid because

E(πnewk ) = πk and 0 ≤ πnewk ≤ 1 for all k ∈ U .

6.5 General algorithm: multivotal method
and generalized Fuller method

The three methods described in the previous sections trans-
form randomly one of the components of the vector into a
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1random . direction<−function (pi )
2{
3N=length (pi ) ;
4u=rnorm(N) ; u=u−mean(u ) ;
5v=c((1−pi )/u,−pi/u ) ;
6l1=min(v [v>0 ] ) ;
7l2=max(v [v<0 ] ) ;
8i f ( runif (1)<(− l2 /( l1−l2 ) ) )
9pi+l1 ∗u
10else
11pi+l2 ∗u
12}

Listing 4: Implementation of the Random direction method

1UPmultivotal<−
2function (pi , r=2,method=1,EPS=0.0000000001)
3{
4i f (method==1)
5F<−function (pi ) random . direction (pi )
6else i f (method ==2)
7F<−function (pi ) brewer (pi )
8else
9F<−function (pi ) complementary .brewer (pi )
10a=which(pi<(1−EPS) & pi>(0+EPS) )
11while ( length (a)>=r ) {
12pi [ a [ 1 : r ] ]=F(pi [ a [ 1 : r ] ] ) ;
13a=which(pi<(1−EPS) & pi>(0+EPS) )
14}
15while ( length (a)>1) {
16pi [ a]=F(pi [ a ] ) ;
17a=which(pi<(1−EPS) & pi>(0+EPS) )
18}
19pi
20}

Listing 5: Implementation of the Multivotal method

0 or a 1. When these methods are applied on a vector of
size 2, they are all equal to the pivotal method.

Now, the pivotal method can be generalized. At the first
step, the first r ≥ 2 units are selected. On this subset of
r units, one of the three methods (Brewer, Complementary
Brewer or Random direction) is applied on this subset. One
of the components of this subset is transformed into a 0 or
a 1. Next, the units that are not integer of this subset are
completed by the following units of the stream in order to
constitute again a subset of r units. Again, one of the three
methods is applied and so on.

Listing 5 propose an implementation of this method.
Lines 4 to 9 choose the method applied. Line 10 select non
integer units from the stream, then Lines 11 to 14 apply
the aforementioned method to transform one unit either in
0 or 1, one after the other. Finally, when less than r units
remain non integer, the chosen method finalize the tranfor-
mation (lines 15–18).

Finally Fuller’s method can be generalized by using the
same trick of the phantom unit used for the pivotal method.
Listing 6 proposes an implementation in R language. Line 4
uses the aforementioned trick, as line 6 applies the Multiv-

1UPgeneralized . ful ler<−
2function (pi , r=2,method=1,EPS=0.0000000001)
3{
4EPS=0.00000001;
5u=runif ( 1 ) ;
6s=UPmultivotal (c (u , pi ) , r ,method ,EPS) ;
7s [which(abs ( s−u)<EPS)]= s [ 1 ] ;
8s [−1]
9}

Listing 6: Implementation of the Generalized Fuller’s
method

otal method on this modified vector.

7 Simulations

In order to simulate the behavior of these methods on
data streams, an artificial population of size N = 200
has been generated with heteroscedasticity and auto-
correlation. First an auto-correlated variable has been cre-
ated by εk = 0.9 εk +uk where ε1 and uk(k = 2, . . . , N) are
independent standardized normal random variables. Next
the xk are independent Gamma variables with shape 5, rate
= 0.25. The interest variables are yk = xk(4+εk). The sam-
ple size is set to n = 50 and the inclusion probabilities are
proportional to xk.

A set of 200,000 simulations is run to approximate the
variances of the different methods. Then, to evaluate the
quality of each sample provided by these methods, the
Hájek estimators are next computed [22]:

Ŷ =

∑
k∈U

ykak
πk∑

k∈U
ak
πk

,

where ak = 1 if k is selected in the sample and 0 otherwise.
We consider the variance of the Hájek estimator for the

random pivotal method as the baseline of our comparisons.
This variance is equal to 39.14376 (100%). The variance of
the pivotal method equals 25.09 (64.07%), that is 64.07%
of the variance of the random pivotal method. More inter-
estingly, for the Fuller method, the variance equals 26.67
(68.13%).

Table 1 contains the ratios of variances of Ŷ for the other
method and different values of r with respect to the ran-
dom pivotal method. When r = 2, all the methods reduce
to the pivotal or the Fuller method. Unsurprisingly, when
r increases, the variance increases. Figure 1 illustrates the
results presented in Table 1. Moreover the “Brewer” meth-
ods are a little more accurate. This is probably due to the
fact that the probabilities are more likely to be set to zero
during the algorithm. The Brewer methods are thus more
repulsive.

Figures 2 and 3 contain examples (with N = 20, n = 7
and equal inclusion probabilities) where πk`/(πkπ`) is plot-
ted in function of |k − `| for different values of r. This
corresponds to the normalized second order probabilities
(divided by the first order probabilities). The larger r, the
more πk`/(πkπ`) are equal. Thus, if r increases, the joint
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Table 1: Variances of the Hájek estimators for the different sampling designs over 200,000 simulations.
Results are given for the multivotal method (Mult.) and Generalized (G.) Fuller method with the three possibilities:
Random direction, Brewer, and Complementary (Comp.) Brewer method.

Random direction Brewer Compl. Brewer
r Mult. G. Fuller Mult. G. Fuller Mult. G. Fuller

2 63.65 68.13 63.89 67.89 63.88 68.11
3 70.82 71.42 67.37 68.53 67.15 70.96
4 74.47 74.70 69.94 69.97 73.22 73.72
5 77.30 77.20 70.32 68.76 75.95 77.38
6 79.51 80.12 73.73 73.79 77.21 78.32
7 82.79 82.10 72.03 71.99 82.09 80.75
8 84.01 83.35 76.63 75.26 82.56 81.87
9 85.35 85.66 77.96 75.66 84.89 84.11
10 86.56 86.59 80.42 79.79 86.71 85.30
11 88.27 88.11 80.36 80.10 84.83 83.77
12 89.44 88.98 76.01 75.06 88.98 87.76
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Figure 1: Variances of the Hájek estimators for the different
sampling designs over 200,000 simulations.
Results are given for the multivotal method (Mult.) and
Generalized (G.) Fuller method with the three possibilities:
Random direction, Brewer, and Complementary (Comp.)
Brewer method.

inclusion probabilities tends to a situation of independence,
which is the less predictable situation. In other words, if
these probabilities are constant, it means that selecting one
unit does not provide information on selecting the next.
This property is particularly interesting in the presence of
a powerful adversary. Indeed, the latter will not be able to
take advantage of the knowledge of the last sampled items
to place his own malicious items knowingly.

On both figures, one can observe that when r = 2, select-
ing the unit makes it very unlikely to select the next unit.
When r is higher, the probabilities tend to equalize. This
makes it much harder to predict what will happen next.
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Figure 2: Relative joint inclusion probabilities, over
1,000,000 simulations, for the Generalized Fuller method
with the Complementary Brewer method

8 Discussion and extensions

Wayne Fuller has been really a precursor in the sense that
he proposed a method that is more general by using ran-
dom boundaries. His paper is very technical and the im-
plementation can be simplified. Fuller’s method is however
an excellent procedure. The sample is spread by the use of
strata with random boundaries. The new implementation
enables to define a fast and sequential algorithm. The joint
inclusion probabilities are not null, which is an advantage
with respect to the use of nonrandom boundaries. A sim-
ple expression for the joint inclusion probabilities remains
to be found and seems to be really challenging. The pivotal
method can also be generalized by confronting more than
two units at each step. This generalization makes the sam-
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Figure 3: Relative joint inclusion probabilities, over
1,000,000 simulations, for the Multivotal method with the
Random direction method

pling method less predictable and could be appropriate to
be protected from malicious attacks when sampling from a
stream.

In one hand, if r equals 2 all the methods reduce to the
pivotal method. On the other hand, if r equals N , the
procedure reduces the method of Brewer, complementary
Brewer or random direction. In this last case all the units
are involved in the next step of the procedure. When r = 2,
the next step is very predictable because the next decision
will only concern two units. If r = N , nothing can predict
which units will be selected from the following N . Param-
eter r can be used to tune the design. The larger r, the
most unpredictable is the selection of the following units.
However the smaller r, the more accurate is the estimator.
Between these two values a tradeoff can be find according
to the considered problem.

In addition, all these algorithms allow to take into ac-
count the needs of sliding windows. The sliding window
model formalized by Datar et al. [16] defines the validity
period of an element, i.e., the sample will only be drawn
from the more recent N ′ << N elements among the U ele-
ments already observed. In this model, the samples arrive
continuously and expire after exactly the N ′ steps. A step
corresponds to the arrival of an element of the population,
we consider sliding windows based on counting. The chal-
lenge is to perform this calculation in the sublinear space.
When N ′ is set to the maximum value N , the sliding win-
dow model is reduced to the classic model. The additional
problem with a sliding window is that when a prefix of a
stream is summarized, we lose the time information related
to the different elements, making the exclusion of the oldest
elements non-trivial with little memory. The interest of the
methods presented above relies in the inherent stratification
of sampling. Also, it is sufficient to keep the samples taken
in the last N ′ strata to make the method reliable, efficient
and robust in a sliding window.

Finally, we propose an algorithmic adaptation that al-
lows sampling according to any of the techniques presented

above on a set of ` distributed data streams, so that the
number of bits communicated between the ` sites and the
coordinator is minimal. This amounts to the coordinator
gathering all the samples on the previous window. The
union then represents a meaningful sample of the overall
distributed stream. As mentioned earlier in Section 3, it
is possible to have a fully decentralized version of our algo-
rithm, for example by organizing nodes within a distributed
hash table (DHT) and by taking advantage of the additive
property of the samples to allow each site to collect its pat-
tern and gradually obtain a global view of the current sam-
ple. Such a possible solution appears in [6]. It should be
noted, however, that the distributed version would have a
significant impact on the cost of communication. This issue
is left open for future work.
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sité de Neuchâtel https://cran.r-project.org/

web/packages/sampling/index.html.

[28] A. Metwally, D. Agrawal, and A. El Abbadi. 2005. Effi-
cient Computation of Frequent and Top-k Elements in
Data Streams. In Proceedings of the 10th International
Conference on Database Theory (ICDT).

[29] S. Muthukrishnan. 2005. Data Streams: Algorithms
and Applications. Now Publishers Inc.

[30] O. Salem, S. Vaton, and A. Gravey. 2010. A scal-
able, efficient and informative approach for anomaly-
based intrusion detection systems: theory and prac-
tice. International Journal of Network Management
20, 5 (2010), 271–293.
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