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A B S T R A C T

In the last decades, large datasets of fundus photographs have been collected in diabetic
retinopathy (DR) screening networks. Through deep learning, these datasets were used
to train automatic detectors for DR and a few other frequent pathologies, with the goal
to automate screening. One challenge limits the adoption of such systems so far: au-
tomatic detectors ignore rare conditions that ophthalmologists currently detect, such as
papilledema or anterior ischemic optic neuropathy. The reason is that standard deep
learning requires too many examples of these conditions. However, this limitation can
be addressed with few-shot learning, a machine learning paradigm where a classifier
has to generalize to a new category not seen in training, given only a few examples
of this category. This paper presents a new few-shot learning framework that extends
convolutional neural networks (CNNs), trained for frequent conditions, with an unsu-
pervised probabilistic model for rare condition detection. It is based on the observation
that CNNs often perceive photographs containing the same anomalies as similar, even
though these CNNs were trained to detect unrelated conditions. This observation was
based on the t-SNE visualization tool, which we decided to incorporate in our proba-
bilistic model. Experiments on a dataset of 164,660 screening examinations from the
OPHDIAT screening network show that 37 conditions, out of 41, can be detected with
an area under the ROC curve (AUC) greater than 0.8 (average AUC: 0.938). In partic-
ular, this framework significantly outperforms other frameworks for detecting rare con-
ditions, including multitask learning, transfer learning and Siamese networks, another
few-shot learning solution. We expect these richer predictions to trigger the adoption of
automated eye pathology screening, which will revolutionize clinical practice in oph-
thalmology.

c© 2019 Elsevier B. V. All rights reserved.

1. Introduction

According to the World Health Organization, 285 million
people are visually impaired worldwide, but the preventable
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causes represent 80% of the total burden (Pascolini and Mari-
otti, 2012). Early detection and management of ocular patholo-
gies is one major strategy to prevent vision impairment. With
the recent success of deep learning, many automatic screening
systems based on fundus photography were proposed recently.
Diabetic retinopathy (DR) was historically the first pathology
targeted by those systems (Gulshan et al., 2016; Abràmoff et al.,
2016; Quellec et al., 2017; Raju et al., 2017; Gargeya and Leng,
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2017; Quellec et al., 2019; Nielsen et al., 2019). The reason
is that large datasets of images have been collected within DR
screening programs for diabetic patients over the past decades
(Massin et al., 2008; Cuadros and Bresnick, 2009): those im-
ages were interpreted by human readers, which allows effi-
cient training of supervised deep learning classifiers. Automatic
screening systems were also proposed for glaucoma (Li et al.,
2018; Shibata et al., 2018; Christopher et al., 2018; Phan et al.,
2019; Ahn et al., 2019; Diaz-Pinto et al., 2019) and age-related
macular degeneration (AMD) (Matsuba et al., 2018; Pead et al.,
2019), the other two major sight-threatening pathologies in de-
veloped countries. Other pathologies such as retinopathy of
prematurity (Wang et al., 2018) have also been targeted. A few
studies also addressed multiple pathology screening (Keel et al.,
2018; Choi et al., 2017). Ting et al. (2017) thus proposed to
detect AMD and glaucoma, in addition to DR, in DR screening
images. The motivation is that diabetic patients, targeted by DR
screening programs, may also suffer from AMD or glaucoma:
ophthalmologists may not be willing to replace their interpre-
tations with automatic interpretations if other sight-threatening
pathologies are ignored.

In this study, we propose to go one step further and detect all
conditions annotated by human readers in DR screening reports.
In the OPHDIAT screening program (Massin et al., 2008), for
instance, this represents 41 conditions. Targeting those condi-
tions has become possible because more than 160,000 screen-
ing examinations (> 760,000 images) have been performed so
far. Yet some of these conditions are still very rare and appear
in less than ten screening reports: this impacts the type of ma-
chine learning (ML) strategy to employ. In particular, training
a regular deep learning model for each of these conditions is
prohibitive, even through transfer learning (Cheplygina, 2019).
Targeting 41 conditions is a big leap compared to the state of
the art. Choi et al. (2017) focused on the classification of 10
pathologies, but not in a screening context: the goal was to dif-
ferentiate pathologies, not to detect them in a large population.
Fauw et al. (2018) mention that they target 53 “key diagnoses”
in optical coherence tomography, but these diagnoses are not
listed and the detection performance not reported: the main
goal was to propose automatic referral decisions. We expect
this additional information to facilitate the adoption of auto-
matic screening.

This paper presents the ML solution we propose to address
the challenge of detecting rare conditions. The genesis of this
framework was the use of t-distributed stochastic neighbor em-
bedding (t-SNE) (van der Maaten and Hinton, 2008) to visual-
ize what convolutional neural networks (CNNs), trained to de-
tect DR on the OPHDIAT dataset (Quellec et al., 2019), have
learnt. We observed that many conditions unrelated to DR
were clustered in feature space, even though the models were
only trained to detect DR. This suggests that CNNs are per-
forming differential diagnosis to detect DR. We hypothesized
that CNNs trained to detect several frequent conditions simul-
taneously could improve this phenomenon further. Therefore,
in the proposed framework, a standard deep learning classi-
fier is trained to detect frequent conditions and simple proba-
bilistic models are derived from these deep learning models to

detect rare conditions. As such, this framework solves a few-
shot learning problem, a ML paradigm where a classifier must
generalize to a new category not seen in training, given only a
few examples of this category (Wang et al., 2019). One speci-
ficity of this framework is that probabilistic models rely on stan-
dard classification CNNs and on t-SNE. It combines ideas from
transfer learning and multitask learning, while outperforming
each of these frameworks individually, as demonstrated in this
paper.

The paper is organized as follows. Related ML frameworks
are presented in Section 2. The proposed framework is de-
scribed in Section 3. Experiments in the OPHDIAT dataset are
reported in Section 4. We end up with a discussion and conclu-
sions in Section 5.

2. Related Machine Learning Frameworks

A well-known solution for dealing with data scarcity is trans-
fer learning (Cheplygina, 2019). In transfer learning, an initial
classification model is trained on a large dataset, such as Ima-
geNet (1.2 million images)1, to perform unrelated tasks. Then,
this model is fine-tuned on the dataset of interest, to detect a
target condition. The idea is that parts of the feature extraction
process, such as edge detection, are common to many computer
vision tasks and can therefore be reused, with or without mod-
ifications. This approach has become the leading strategy in
medical image analysis (Litjens et al., 2017). Another solution
to this problem is multitask learning (Caruana, 1997). The dif-
ference with transfer learning is that one learns to address mul-
tiple tasks simultaneously rather than sequentially. In multitask
learning, auxiliary tasks are usually chosen because training la-
bels are abundant or not needed, unlike the target task (Zhang
et al., 2014; Mordan et al., 2018). Multitask learning can thus
be used to train a unique detector for multiple (both rare and
frequent) conditions (Guendel et al., 2019): detecting frequent
conditions can be regarded as an auxiliary task, for the main
task of detecting rare conditions.

A more recent solution to this problem is one-shot learn-
ing (Fei-Fei et al., 2006) or more generally few-shot learning
(Wang et al., 2019). In one-shot or few-shot learning, a clas-
sifier must generalize to a new category not seen in training,
given only one or a few examples of this category. In the con-
text of deep learning, one increasingly popular solution is to
design a neural network accepting two images as inputs and de-
ciding whether or not these images belong to the same category.
Such networks include Siamese networks (Koch et al., 2015;
Shyam et al., 2017), matching networks (Vinyals et al., 2016)
or relation networks (Sung et al., 2018). Another solution to
this problem is to design a simple probabilistic model for the
new category: this model operates in an image feature space
derived from the initial training (Fei-Fei et al., 2006). Fei-Fei
et al. (2006) applied this strategy to local features from the pre-
deep-learning era. Snell et al. (2017) applied this strategy to an
image feature space derived from matching networks (Vinyals

1http://www.image-net.org
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et al., 2016). This strategy was also applied in this paper. How-
ever, we propose that the image feature space derives from usual
(single-image) classification CNNs. Therefore, we can take full
advantage of the large literature on classification CNNs. We can
also take advantage of pre-trained models available for these
CNNs. As explained hereafter, the key to the proposed solution
is the use of t-SNE in the design of an image feature space.

3. Proposed Few-Shot Learning Framework

The proposed framework, illustrated in Fig. 1, can be summa-
rized as follows. A multitask detector for frequent conditions is
trained first (see Section 3.2). Next, a probabilistic detection
model is defined for each rare condition (see Sections 3.3 to
3.6). Then, predictions can be inferred for new images: predic-
tions are computed for both frequent and rare conditions (see
Section 3.7).

3.1. Notations
LetD denote an image dataset where the presence or absence

of N conditions has been annotated by one or multiple human
readers for each image I ∈ D. Let (cn)n=1..N denote these con-
ditions. Let yI,n ∈ {0, 1} denote a label indicating the presence
(yI,n = 1) or absence (yI,n = 0) of condition cn in image I ac-
cording to experts. Let fn denote the frequency (the raw count)
of condition cn in dataset D: fn =

∑
I∈D yI,n. Conditions are

sorted by decreasing frequency order: fn′ ≤ fn,∀n′ ≥ n.
We assume that dataset D was divided into a learning (or

training) subset DL, used for deep learning, a validation subset
DV , and a test subsetDT . These datasets are mutually exclusive
(DL∩DV = DL∩DT = DV∩DT = ∅,DL∪DV∪DT = D). We
also define a subset of “reference images”DR, whose definition
will vary depending on whether the algorithm is being validated
or tested (see Section 4.6).

All processing steps described hereafter are performed on
preprocessed images (see Section 4.4): for simplicity, I de-
notes the preprocessed image in the following sections. Various
spaces are defined hereafter to compute presence probabilities
for rare conditions: those notations are summarized in Fig. 2.

3.2. Deep Learning for Frequent Condition Detection
The first step is to define a deep learning model for recogniz-

ing the M ≤ N most frequent conditions. This model relies on a
convolutional neural network (CNN). This CNN is defined as a
multilabel classifier; it is trained to minimize the following cost
function L:
L = −

∑
n≤M

∑
I∈DL

yI,n logσ(xI,n) + (1 − yI,n) log(1 − σ(xI,n))

σ(x) =
1

1 + e−x

,

(1)
where xI,n ∈ R denotes the output of the model for image I and
condition cn, n ≤ M. Through the logistic function σ, this out-
put is converted into a probability pM

I,n = σ(xI,n) ∈ [0, 1] (sim-
ply noted pI,n in the absence of ambiguity). σ was selected as
activation function since patients can have multiple conditions
simultaneously, which is properly modeled by multiple logistic

functions. We note that training this initial classification model,
defined for frequent conditions, is a multitask learning prob-
lem (see Section 2): the proposed framework extends multitask
learning to rare conditions as described hereafter.

3.3. Feature Space Definition
Since a unique CNN is defined to detect the M most frequent

conditions, the penultimate layer of this CNN is very general:
it extracts all features required to detect M conditions. We use
the output of this layer to define a feature space in which the
remaining N − M conditions will be detected. Let S denote
this feature space and γI the projection of a given image I in
this space (see Fig. 2). The number of neurons in the penul-
timate layer of a classification CNN is generally high, for in-
stance 2,049 for Inception-v3 (Szegedy et al., 2016) or 1,537
for inception-v4 (Szegedy et al., 2017): let P denote the dimen-
sion of this space (P = 2,049 or 1,537 for instance).

To address the curse of dimensionality, dimension reduc-
tion is performed afterwards. For this purpose, we propose
the use of t-SNE, a nonlinear technique for embedding high-
dimensional data in a low-dimensional space suited for visu-
alization: typically a 2-D or 3-D space (van der Maaten and
Hinton, 2008). In t-SNE, dimension reduction is unsupervised,
but it is data-driven: it relies on theDR reference subset.

3.4. t-distributed Stochastic Neighbor Embedding (t-SNE)
In t-SNE, some high-dimensional input vectors (πI)I∈DR are

mapped to low-dimensional output vectors (τI)I∈DR in such a
way that similar input vectors are mapped to nearby output vec-
tors and dissimilar input vectors are mapped to distant output
vectors. First, t-SNE defines the conditional probability pJ|I

that sample I picks sample J as a neighbor. It assumes that
neighbors are picked in proportion to their probability density
under a Gaussian centered at πI :

pJ|I =
Γ
(
πI−πJ

hI

)
∑

K∈DR\{I} Γ
(
πI−πK

hI

) , (2)

where Γ is a Gaussian kernel and hI is a sample-specific band-
width:

Γ(x) =
1
√

2π
e−

1
2 x2

. (3)

Let PI = (pJ|I)J∈DR denote the conditional distribution thus
defined. Bandwidths are set in such a way that the perplexity
ρ(PI) of PI , interpreted by van der Maaten and Hinton (2008)
as a smooth measure of the effective number of neighbors of πI ,
equals a predefined perplexity ρ̄:

ρ(PI) = 2
−

∑
J∈DR

pJ|I log2 pJ|I

. (4)

Similar conditional distributions QI = (qJ|I)J∈DR are defined for
output vectors (τI)I∈DR , using a constant bandwidth h = 1/

√
2.

These output vectors can thus be found by minimizing the sum
C of Kullback-Leibler divergences between conditional distri-
butions PI and QI , I ∈ DR, using a gradient descent:

C =
∑
I∈DR

∑
J∈DR

pJ|I log
pJ|I

qJ|I
. (5)
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Rare condition detector

input preprocessed 
image

1. deep learning for frequent 
condition detection

Frequent condition detector

3. probability 
function 

estimation

2. feature space 
definition

CNN

feature space probability function

predictions for rare conditions
predictions for frequent 

conditions

Fig. 1: Proposed pipeline (learning and inference). To initiate the learning phase, a CNN is trained to detect frequent conditions in preprocessed images (1.). This
CNN is then used to build detectors for rare conditions. In that purpose, a feature space is designed: features derive from the output of selected neurons of the CNN
(2.). Next, a probabilistic model is trained for each rare condition in this feature space (3.). The inference phase is similar: preprocessed images are processed by the
CNN, and a prediction is made for both frequent and rare conditions. Predictions for frequent conditions simply are the CNN outputs. Predictions for rare condition
are further inferred by the probabilistic models.

Space image space 𝒮 𝒮′ 𝒮′′ 0,1

Dimension 299 × 299 𝑃 (>1000) 𝑃′ (=50) 𝑃′′ (=2) 1

Reference 
sample 

(𝐼 ∈ 𝒟𝑅)
𝐼 𝛾𝐼 𝜋𝐼 𝜏𝐼 𝑞𝐼,𝑛

Test sample   
(𝐼 ∈ 𝒟𝑇)

𝐼 𝛾𝐼 𝜋𝐼  𝑞𝐼,𝑛

CNN inference 
(Section 3.3)

CNN inference

PCA learning 
& projection 
(Section 3.5)

PCA projection

t-SNE learning 
& projection 
(Section 3.5)

Probability 
function 

estimation 
(Section 3.6)

k-NN regression 
(Section 3.7)

differentiable processing graph 𝐺 (Section 3.7)

presence probability 
for condition 𝑐𝑛

preprocessed image

INFERENCE 
PIPELINE

LEARNING 
PIPELINE

Fig. 2: Detailed pipeline for rare condition detection. This figure summarizes the intermediate steps for detecting a rare condition in images, as well as the associated
notations. Two different pipelines are presented. The first pipeline is applied to reference images for learning a presence probability function (learning pipeline).
The second pipeline is applied to test images for inferring presence probabilities (inference pipeline). Section 4 explains how the value of each dimension was
determined.

3.5. Feature Space Dimension Reduction

Following van der Maaten and Hinton (2008)’s recommen-
dation, a two-step procedure was in fact adopted for dimension
reduction (see Fig. 2):

• A first reduction step relies on principal component anal-
ysis (PCA), which transforms the initial feature space S
into a new P′-dimensional feature space S′. Let πI denote
the projection of image I into S′: this will be the high-
dimensional input vector of Section 3.4.

• In a second step, t-SNE itself transforms S′ into a P′′-
dimensional feature space S′′. Let τI denote the projec-
tion of image I into S′′: this is the low-dimensional output
vector of Section 3.4.

As explained by van der Maaten and Hinton (2008), the use
of PCA speeds up computation of pairwise distances between
input vectors and it suppresses some noise without severely dis-
torting the inter-sample distances.

3.6. Probability Function Estimation

As mentioned in the introduction, we observed that the t-SNE
algorithm generates a feature space S′′ allowing very good sep-
aration of the various (cn)n=1..N conditions, even though it is un-
supervised. This observation is leveraged to define a probabilis-
tic condition detection model in S′′ space. For that purpose, a
density probability function Fn is first defined in S′′ for each
condition cn, n ≤ N. Probability density functions Fn are also
defined for the absence of each condition. These estimations
are performed in the DR reference subset; training images are
discarded in case the CNN has overfitted the training data. Den-
sity estimations rely on the Parzen-Rosenblatt method (Parzen,
1962), using the Gaussian kernel Γ of Equation (3). For each
location τ ∈ S′′:

Fn(τ) =
1∑

I∈DR
yI,n

∑
I∈DR

Γ

(
τ − τI

hn

)
Fn(τ) =

1∑
I∈DR

[1 − yI,n]

∑
I∈DR

Γ

(
τ − τI

hn

) . (6)
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For each density function, one parameter needs to be set: the
hn or hn bandwidth, which controls the smoothness of the esti-
mated function. This parameter is set in an unsupervised fash-
ion, according to Scott’s criterion (Scott, 1992):

hn =

∑
I∈DR

yI,n

−
1

P′′+4

, hn =

∑
I∈DR

[1 − yI,n]

−
1

P′′+4

. (7)

Finally, based on these two probability density functions, Fn

and Fn, the probability qM
I,n that image I contains condition cn

(simply noted qI,n in the absence of ambiguity) is defined as
follows (see Fig. 2):

qI,n =
Fn(τI)

Fn(τI) + Fn(τI)
. (8)

A strong similarity can be noted between Equation (2) of t-SNE
and Equations (6) and (8) of probability function estimation:
the main difference is the change of emphasis from sample-level
in t-SNE to class-level in probability function estimation.

3.7. Detecting Rare Conditions in one Image
One challenge arises once we need to process a new image:

Equation (8) is only theoretical. Indeed, the S′ → S′′ projec-
tion based on t-SNE cannot be written in closed form. It is only
defined for the development samples (i.e. ∀I ∈ DR), but it does
not allow projection of new samples in the output S′′ feature
space. This limitation does not apply to the projection from the
image space to space S (CNN) or from space S to space S′

(PCA).
In order to bypass this lack of expression, the following

pipeline is proposed to determine the probability that condition
cn is present in a new image I ∈ DT (see Fig. 2):

1. I is processed by the CNN and the output γI of the penul-
timate layer are computed (see Sections 3.2 and 3.3).

2. The PCA-based S → S′ projection is applied to obtain πI

(see Section 3.5).
3. A K-nearest neighbor regression is performed to ap-

proximate qI,n. The search for the K nearest neighbors
(Vk)k=1..K is performed in S′. The reference samples are
the (〈πJ , qJ,n〉)J∈DR couples, where the qJ,n values are com-
puted exactly through Equation (8). The approximate pre-
diction q̂I,n is given by:

q̂I,n =
1

K∑
k=1

1
‖πI − πVk‖

K∑
k=1

qVk ,n

‖πI − πVk‖
. (9)

The q̂I,n prediction is a weighted arithmetic mean of exact pre-
dictions qVk ,n, computed for the neighbors Vk of I in S′: the
weight assigned to Vk is inversely proportional to the distance
between I and Vk in S′.

Note that the above pipeline for test images is differentiable,
provided that the K nearest neighbors of I are considered con-
stant. It can thus be implemented as a differentiable processing
graph G (see Fig. 2), stacking the following operations:

1. the CNN up to the penultimate layer,

2. the PCA-based S → S′ linear projection,
3. and the regression of Equation (9).

This property allows heatmap generation (see Section 4.9)
and may also allow fine-tuning of CNN weights.

In summary, the probability that a condition cn is present in
any image I can be estimated using Equation (9). If n ≤ M, two
probabilities of presence can be used: either q̂M

I,n or pM
I,n (see

Section 3.2).

4. Experiments in the OPHDIAT Dataset

We have presented a probabilistic framework for detecting
rare conditions in images. This framework is now applied to
DR screening in images from the OPHDIAT network.

4.1. The OPHDIAT Dataset

The OPHDIAT network consists of 40 screening centers lo-
cated in 22 diabetic wards of hospitals, 15 primary health-
care centers and 3 prisons in the Ile-de-France area (Massin
et al., 2008). Each center is equipped with one of the follow-
ing 45◦ digital non-mydriatic cameras: Canon CR-DGI or CR2
(Tokyo, Japan), Topcon TRC-NW6 or TR-NW400 (Rotterdam,
The Netherlands). Two photographs were taken per eye, one
centered on the posterior pole and the other on the optic disc,
and transmitted to the central server for interpretation and stor-
age. From 2004 to the end of 2017, a total of 164,660 screening
procedures were performed and 763,848 images were collected.

4.2. Ground Truth Annotations

Each screening exam was analyzed by one of the seven
certified ophthalmologists of the OPHDIAT Reading Center,
through a web interface, in order to generate a structured report
(Massin et al., 2008). This structured report includes the grad-
ing of diabetic retinopathy (DR) in each eye. It also indicates
the presence or suspicion of presence of a few other pathologies
in each eye. In addition to the structured report, the ophthalmol-
ogist also indicated his or her findings in free-form text. For the
purpose of this study, these reports were analyzed by a retina
specialist and 41 conditions were identified (N = 41 — see Fig.
3). Ground truth annotations were obtained for each eye by
combining structured information and manually-extracted tex-
tual information. Next, annotations were assigned to images
thanks to our laterality identification algorithm (Quellec et al.,
2019): this algorithm assigns a label, ‘left eye’ or ‘right eye’,
to each image using an ensemble of CNNs. One limitation of
this approach is that ophthalmologists may not have written all
their findings. To ensure that “normal images” are indeed non-
pathological, normal images were visually inspected and im-
ages containing anomalies were discarded: a total of 16,955
normal images, out of 18,000 inspected images, were included.
A total of 115,159 images were included in datasetD.
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referable DR glaucoma cataract AMD drusen DME HR

laser scars arteriosclerosis tortuous vessels degenerative BRVO epiretinal nevi
myopia membrane

retinal atrophy myelinated RPE alterations optic disc pallor synchisis tilted optic disc CRVO
nerve fibers

chorioretinitis dystrophy retinis chorioretinal dilated veins angioid streaks papilledema
pigmentosa atrophy

macular hole embolus MIDD coloboma shunt AION bear track
dystrophy

pseudovitelli- pigmentary prethrombosis hyaloid asteroid telangiectasia
form dystrophy migration remnant hyalosis

Fig. 3: Examples of images from each targeted condition. For improved visualization, the preprocessed images (see Section 4.4) are reported. DR: diabetic
retinopathy; AMD: age-related macular degeneration; DME: diabetic macular edema; HR: hypertensive retinopathy; BRVO: branch retinal vein occlusion; RPE:
retinal pigment epithelium; CRVO: central retinal vein occlusion; MIDD: maternally inherited diabetes and deafness; AION: anterior ischemic optic neuropathy.

4.3. Concordance of Annotations

To ensure the efficacy and safety of the OPHDIAT program,
quality insurance procedures were set up (Massin et al., 2008).
Before starting the grading task, all screeners underwent a train-
ing program provided by two senior ophthalmologists. Then,
interpretive accuracy was verified on a monthly basis: every
month, 5% of the photographs were selected and automati-
cally merged with new patient data for a double interpretation.
In terms of DR diagnosis, interpretations were concordant for
96.85% of the photographs on average (Quellec et al., 2019). In
case of disagreement, one of the senior ophthalmologists makes
the final interpretations.

Concordance of annotations was not evaluated for all forty
other conditions individually: some conditions are so rare that
it would require double interpretation on a very large subset
of the OPHDIAT dataset. Instead, we evaluated concordance
of normal versus pathological retina identification on a subset
of images from 5,000 patients. Those images were selected
randomly among patients without DR, according to the OPH-
DIAT reader. Those images were interpreted again by another
retina specialist. Annotations were concordant for 4,509 pa-
tients (90.18%).
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(a) (b)

(c) (d)

Fig. 4: Fundus photograph preprocessing. Original images (a) and (c) are trans-
formed into (b) and (d).
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Inception-3 0.966 0.963 0.935 0.924 0.920 0.921
Inception-4 0.960 0.930 0.926 0.931 0.927
ResNet-50 0.912 0.924 0.925 0.916
ResNet-101 0.916 0.919 0.918
ResNet-152 0.890 0.895
NASNet-A 0.882

Table 1: Average classification scores (AUC) in the test subset for frequent
conditions (n ≤ M0 = 11) using various CNN architectures. Scores for sin-
gle CNNs are in the diagonal; scores for CNN pairs are above. Architectures
selected in the validation subset are in bold.

4.4. Image Preprocessing
Because fundus photographs were acquired with various

cameras, the size and appearance of images were normalized
to allow device-independent analysis. For size normalization,
a square region of interest was defined around the camera’s
field of view; this region of interest was then resized to 299×
299 pixels. For appearance normalization, illumination varia-
tions throughout and across images were attenuated. This step
was performed in the YCrCb color space. In this color space,
components Cr and Cb contain chrominance information: these
components were left unchanged. Component Y represents lu-
minance: this channel was normalized to compensate for illu-
mination variations. For that purpose, the image background
was estimated using a Gaussian kernel with a large kernel size
(standard deviation: 5 pixels). Next, this background image
was subtracted from the Y channel. Finally, the obtained image
was converted to an RGB image.

We used a similar model for diabetic retinopathy (DR)
screening, except that each channel in the RGB color space was
normalized independently, as described above for the Y channel
(Quellec et al., 2017). Although suitable for DR screening, that
representation proved inefficient to detect pigmentation condi-
tions in particular.

4.5. Performance Assessment

Because a patient may suffer from several conditions simulta-
neously, a variable number of conditions may be visible in each
image: zero, one or more (up to 41). So the problem we are
addressing is a multilabel classification problem. This is equiv-
alent to 41 independent binary classification problems: one per
condition. For each condition cn, classification performance
was defined as the area under the ROC (Receiver-Operating
Characteristic) curve, noted AUC: the binary label used for a
given image I is yI,n (see Section 3.1).

4.6. Learning, Validation and Testing

In the presence of numerous and highly unbalanced condi-
tions, dividing the dataset into learning, validation and test sub-
sets is critical. The following strategy was proposed to 1) dis-
tribute the data between subsets, 2) train and validate the models
and 3) test the selected models; one model is selected per condi-
tion based on validation scores. The proposed data distribution
strategy, described hereafter, ensures that two images from the
same patient were assigned to the same subset (either DL, DV

orDT ).
For the purpose of training CNNs, a “balanced” dataset

BM was created in such a way that, ideally, all frequent con-
ditions were equally represented. For each condition c ∈
{cM , cM−1, ..., c2, c1}, images with condition c were selected at
random until all images containing c had been selected or until
the number of selected images with condition c reached 1,500.
Images containing rare conditions were excluded from this se-
lection. 5,000 normal images were also selected at random. The
size of these balanced datasets ranges from 17,205 images (for
B11) to 21,973 images (for B41).

The learning subset DL was populated by 80% of BM . The
validation subset DV was populated by 10% of BM plus 20%
of D \ BM . The test subset DT was populated by 10% of BM

plus 80% of D \ BM . Taking validation and test images from
BM ensures that all conditions cn, n ≤ M, can be validated
and tested. Both BM and D \ BM were split at random, while
ensuring that the distribution of conditions is similar in each
fold. As an illustration, the distribution of conditions in each
subset is given in Table 2 for M = 17.

The usual validation and testing strategy was followed for
strongly-supervised CNN-based detectors (providing the pI,n

predictions of section 3.2). However, validating and testing the
detectors (providing the q̂I,n predictions of section 3.7) is more
challenging: ideally, we would need a fourth independent sub-
set DR of reference images. In order to maximize the size of
the testing, validation and reference subsets, which is particu-
larly critical for rare conditions, a different solution was used
instead. First, validation relied on a 10-fold cross-validation
strategy: for each fold, probability functions were built using
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condition (cn) D BM DL DV DT

normal images 16955 5000 3992 2890 10073
referable DR 65560 3036 2406 12819 50335
glaucoma 10624 1500 1176 1992 7456
cataract 3540 1502 1253 546 1741
AMD 3173 1637 1336 442 1395
drusen 3164 1502 1179 511 1474
DME 3024 1471 1168 463 1393
HR 3018 1502 1184 453 1381
laser scars 1450 1018 796 204 450
arteriosclerosis 1235 802 629 161 445
tortuous vessels 1222 1060 830 161 231
degenerative myopia 1209 1086 859 145 205
BRVO 752 532 429 117 206
epiretinal membrane 674 557 447 78 149
nevi 628 557 466 55 107
retinal atrophy 546 433 340 67 139
myelinated nerve fibers 531 472 372 62 97
RPE alterations 508 446 370 50 88
optic disc pallor 455 0 0 91 364
synchisis 366 0 0 73 293
tilted optic disc 334 0 0 67 267
CRVO 297 0 0 59 238
chorioretinitis 294 0 0 59 235
dystrophy 217 0 0 43 174
retinis pigmentosa 183 0 0 37 146
chorioretinal atrophy 182 0 0 36 146
dilated veins 165 0 0 33 132
angioid streaks 145 0 0 29 116
papilledema 99 0 0 20 79
macular hole 78 0 0 16 62
embolus 74 0 0 15 59
MIDD 70 0 0 14 56
coloboma 52 0 0 11 41
shunt 51 0 0 10 41
AION 43 0 0 9 34
bear track dystrophy 42 0 0 8 34
pseudovitelliform 29 0 0 6 23dystrophy
pigmentary migration 28 0 0 6 22
prethrombosis 28 0 0 5 23
hyaloid remnant 16 0 0 4 12
asteroid hyalosis 15 0 0 3 12
telangiectasia 15 0 0 3 12

Table 2: Frequency of each condition in the full dataset (D), in the “balanced”
dataset (BM), and in the learning, validation and testing subsets (DL, DV and
DT , respectively), when M = 17 conditions are considered frequent.

90% ofDV as reference images (DR), and q̂I,n predictions were
computed for the remaining 10%. Similarly, a 10-fold cross-
testing strategy was followed: for each fold, probability func-
tions were built usingDV plus 90% ofDT as reference images,
and q̂I,n predictions were computed for the remaining 10% of
DT . In both cross-validation and cross-testing, images from the
same patient were all assigned to the same fold, to avoid evalu-
ation biases. Finally, in both cross-validation and cross-testing,
a single ROC curve was built for cn by joining all the q̂I,n pre-
dictions, computed in all ten folds, together with the associated
yI,n target labels.

4.7. Parameter Selection

The choice of M frequent conditions is arbitrary. In initial
experiments, we set M = M0 = 11: M0 was chosen such that
fn ≥ 1000, ∀n ≤ M0. The following CNN architectures were
investigated: Inception-v3 (Szegedy et al., 2016), Inception-v4
(Szegedy et al., 2017), ResNet-50, ResNet-101 and ResNet-152
(He et al., 2016), and NASNet-A (Zoph et al., 2018). These
CNNs were pre-trained on the public ImageNet dataset and
fine-tuned on theDL learning subset. The TF-slim image classi-
fication library was used.2 The combination of two CNNs was
also investigated: in that case, their penultimate layers were
concatenated to define the initial S feature space. An exper-
iment involving the M0 = 11 most frequent conditions was
performed to select the most promising architectures. Aver-
age AUC scores for the M0 most frequent conditions on the
DV validation subset are reported in Table 1 for each archi-
tecture. This experiment reveals that three architectures lead
to particularly good classification performance: Inception-v3,
Inception-v4 and “Inception-v3 + Inception-v4”. We only con-
sidered those three architectures in subsequent experiments.

Two important parameters also had to be set:

• the dimension P′′ of the reduced feature space generated
by t-SNE (for visualization, P′′ is generally set to 2 or 3,
but higher values can be used),

• the number K of neighbors to approximate the q̂I,n predic-
tions in Equation (9).

These parameters were chosen to maximize classification per-
formance on the validation subset using M = M0. The optimal
parameter values were: P′′ = 2 and K = 3. Other dimension
reduction parameters were set to commonly used values: the
number of dimensions after PCA was set to P′ = 50 (see Sec-
tion 3.5) and perplexity in t-SNE was set to ρ̄ = 30 (see Section
3.4).3 The influence of these four parameters on classification
performance is illustrated in Fig. 5 for one CNN. As an illustra-
tion, the probability density functions obtained for that CNN,
with the selected parameter values, are shown in Fig. 6.

In subsequent experiments, multiple values for M were in-
vestigated. We varied M from M0 = 11 to N = 41 by steps

2https://github.com/tensorflow/models/tree/master/

research/slim
3https://scikit-learn.org/stable/modules/generated/

sklearn.manifold.TSNE.html
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of 6 conditions: M ∈ {11, 17, 23, 29, 35, 41}. A different value
for M and a different CNN architecture were selected for each
condition: the combinations maximizing the AUC on the DV

validation subset were selected.

4.8. Detection Performance
The ROC analysis of the proposed solution on the test sub-

set is reported in Fig. 7. The influence of condition frequency
on the area under the ROC curve (AUC) is illustrated in Fig.
8. In both figures, a different model is used for each condition:
the one maximizing the AUC on the validation subset. We ob-
serve that detection performance is poorly correlated with the
frequency of a condition.

Because a different model was trained for each condition,
computation times can be an issue. Therefore, we studied how
fast a test image can be processed. Computation times were
measured on a desktop computer with one Intel Xeon E5-1650
v2 Hexa-core 3.50 GHz CPU and one Nvidia GeForce GTX
1070 GPU. On average, running the 41 models on a single im-
age takes 52 seconds without the GPU and 5.3 seconds using
the GPU.

4.9. Heatmap Generation
To understand what a detector looks for in a given image I,

we can measure how much each pixel Ixy contributes to its pre-
diction: the result is a heatmap the size of I showing the de-
tected structures. A solution was proposed in the case where
the predictions rely on pM

I,n (Quellec et al., 2017). That solution
extends sensitivity analysis (Simonyan et al., 2014): the idea is
to compute the gradient of the model predictions with respect
to each input pixel, using the backpropagation algorithm. When
predictions rely on q̂M

I,n, the backpropagation algorithm can also
be used: it is applied to the differentiable processing graph G of
Section 3.7. The contribution ξxyc of each pixel Ixy, for condi-
tion c, is determined as follows:

ξxyc =

∣∣∣∣∣∣∂G(m ◦ I, c)
∂mxy

∣∣∣∣∣∣ , (10)

where m denotes a matrix the size of I filled with ones, and ◦
denotes the Hadamard product. Heatmap examples for condi-
tions unknown to the CNNs (i.e. for rare conditions) are given
in Fig. 9.

4.10. Comparison with Other Machine Learning Frameworks
The proposed framework is now compared with competing

ML frameworks, namely Siamese networks (Koch et al., 2015),
a popular few-shot learning algorithm, transfer learning and
multitask learning. The same CNN architectures (Inception-v3,
Inception-v4 and “Inception-v3 + Inception-v4”) were consid-
ered in all experiments.

In the reference few-shot learning algorithm, the similarity
between two images I and J was defined using Siamese net-
works (Koch et al., 2015). For a fair comparison, the basis net-
work inside the Siamese networks was replaced by one of the
three selected CNN architectures. The outputs of the penulti-
mate CNN layer, i.e. the γI and γJ vectors, were used to com-
pute the similarity between I and J. This similarity is defined as

a logistic regression of the absolute difference between γI and
γJ (Koch et al., 2015). For training the Siamese networks, I and
J were considered to match if at least one condition was present
in both images. To detect cn in a test image, the average simi-
larity to validation images containing condition cn was used: it
proved more efficient than considering the maximal similarity
(Koch et al., 2015).

For transfer learning, CNNs were trained for the M0 = 11
most frequent conditions. Then, these CNNs were fine-tuned
to detect each of the remaining 30 conditions individually. For
multitask learning, CNNs were trained to detect the 41 condi-
tions altogether.

Results are reported in Table 3. Statistical comparisons be-
tween frameworks were performed using repeated measures
ANOVA, using the MedCalc Statistical Software version 19.0.6
(MedCalc Software bvba, Ostend, Belgium). Results are re-
ported in Table 4.

5. Discussion and Conclusions

We have presented a new few-shot learning framework for
detecting rare conditions in medical images using deep learn-
ing. This framework takes advantage of many annotations
available for more frequent conditions in a large image dataset.
This framework was successfully applied to the detection of 41
conditions in fundus photographs from the OPHDIAT diabetic
retinopathy (DR) screening program.

This framework takes advantage of an interesting behavior
of convolutional neural networks (CNNs): CNNs tend to clus-
ter similar images in feature space, a phenomenon exploited
in content-based image retrieval systems for instance (Tolias
et al., 2016). In our context, we observed that conditions un-
known to the CNNs are also clustered in feature space (see
Fig. 6). A probabilistic framework, based on the t-SNE rep-
resentation, was thus proposed to take advantage of this ob-
servation. Detection results are very good: an average area
under the ROC curve (AUC) of 0.9380 was obtained (see Ta-
ble 3). Detection performance is also good if we consider the
rarest conditions alone: the average AUC only drops to 0.9260
when the 30 rarest pathologies are considered (see Table 3).
More generally, we observed in Fig. 8 that detection perfor-
mance is poorly correlated with the frequency of a condition:
r2 = 0.0231 (or r2 = 0.1672 using a logarithmic scale for
frequency). Prior to the study, we established that a detector
would be considered useful should the AUC exceed 0.8: that
cutoff was reached for 37 conditions out of 41. In retrospect,
eight conditions stand out as being particularly difficult to de-
tect automatically: shunt, angioid streaks, embolus, telangiec-
tasia, prethrombosis, bear track dystrophy, arteriosclerosis and
dilated veins (see Fig. 8). Among these conditions, ophthal-
mologists consider that one is particularly difficult to detect in
fundus photographs, namely telangiectasia, and three are asso-
ciated with a poor reproducibility, namely embolus, arterioscle-
rosis and dilated veins. However, the other four are considered
easy to detect. One reason for this poor automatic detection
may be inadequate image preprocessing (too low image reso-
lution after resizing, inadequate color normalization, etc.). An-
other explanation may be a too large difference with frequent
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Fig. 5: Classification performance on the test subset for one CNN as a function of the main algorithm parameters: a) the dimension P′ of the feature space generated
by PCA, b) the dimension P′′ of the feature space generated by t-SNE, c) perplexity ρ̄ in t-SNE and d) the number K of neighbors used to computed the q̂I,n
predictions. Each subfigure reports the average AUC on the test subset, as a function of the investigated parameter. The non-investigated parameters are set to the
selected value (P′ = 50, P′′ = 2, ρ̄ = 30, K = 3). We also evaluated a scenario where no PCA preprocessing is performed (∼ P′ = ∞): in that case, k-NN regression
is performed in S during inference on test images (see Fig. 2); an average AUC of 0.9015 was obtained. The CNN used in all these experiments is Inception-v3,
trained when M = 17 conditions are considered frequent (see Fig. 6).

conditions, which would explain that no discriminatory features
are extracted by the CNNs.

In terms of computation times, the proposed framework is
comparable with standard strongly-supervised CNNs: besides
CNN inference, processing a test image simply involves a linear
projection in PCA space (S′) and a K-nearest neighbor search
in that space. On average, detecting all conditions in one image
without GPU takes 52 seconds. This is similar to computa-
tion times reported for commercial systems detecting diabetic
retinopathy alone.4 Besides, this process can be parallelized
easily in a cloud-based solution. Using a single CNN for all
conditions is possible but not recommended, as performance is
lower: for instance, AUC = 0.905 for Inception-v3 and M = 17
(see Fig. 5). Training times are not impacted much either: it
only takes a few additional minutes compared to CNN training
alone. PCA helps reducing computation times during training
and inference, as t-SNE (during training) and k-NN regression
(during inference) are performed in a lower-dimensional space.
It also increases performance (see Fig. 5), possibly by address-
ing the curse of dimensionality in k-NN regression.

The proposed framework was compared to other candidate
ML frameworks for detecting rare conditions: transfer learn-
ing, multitask learning and Siamese networks. First, it appears
that the proposed approach significantly outperforms standard
approaches like transfer learning and multitask learning (see
Table 4). The comparison with transfer learning is particu-
larly interesting: we show that, with similar complexity (one
CNN model per condition), the proposed approach detects rare
conditions (n > 11) significantly better. In transfer learning,
we hypothesize that good properties learnt for the detection of
frequent conditions are lost when fine-tuning for rare condi-
tions. Worse, in multitask learning, the detection of frequent
conditions, which is trained simultaneously, is negatively im-
pacted. The comparison with Siamese networks is more con-
trasted: Siamese networks outperformed the proposed solution
for four conditions. All these conditions are among the rarest
(n > M0 = 11) and three of them were poorly detected (AUC

4www.eyediagnosis.co — www.eyenuk.com

< 0.8) by the proposed solution (see Table 3). Interestingly, the
performance of Siamese networks (Koch et al., 2015) proved to
be highly independent of the frequency of a condition. How-
ever, Table 4 shows that the proposed solution significantly
outperforms Siamese networks, which have similar complex-
ity (one CNN model per condition). In summary, the proposed
solution clearly is the most relevant ML framework for the tar-
get task (see Table 4). However, Siamese networks, which also
relies on similarity analysis in CNN feature space (Koch et al.,
2015), is an interesting few-shot learning framework as well.

We believe the use of a visualization technique, namely t-
SNE, for classification is an interesting feature of the proposed
framework. In particular, we found that reducing the feature
space to two dimensions, the value generally used for visual-
ization, maximizes classification performance (see Section 4.7).
This can be explained in part by more reliable kernel density es-
timations in low-dimensional feature spaces (Scott, 1992). One
advantage is that we can conveniently browse the image dataset
in a 2-D viewer and understand how the dataset is organized by
CNNs. This could be used to show human readers similar im-
ages for decision support (Quellec et al., 2011). Although the
probabilistic model is based on the t-SNE dimension reduction
technique, which is expression-less, we designed it to be dif-
ferentiable. This property allows heatmap generation, through
sensitivity analysis (Quellec et al., 2017), for improved visual-
ization. In particular, we can see that the pathological structures
are well captured by the CNNs, even for conditions unknown to
the CNNs (see Fig. 9).

The proposed framework is mostly unsupervised, which can
be regarded as a limitation. We note, however, that it can easily
be transformed into a supervised framework. The solution is
to 1) approximate the t-SNE projection with a multilayer per-
ceptron and 2) optimize this approximation to maximize the
separation between probability density functions Fn and Fn

(Patrick and Fischer, 1969). The CNN weights can thus be op-
timized through the probabilistic model. However, the number
of degrees of freedom increases significantly, which makes the
framework less relevant for rare conditions.

This study has one undeniable limitation: each image was in-
terpreted by a single human reader (an ophthalmologist), who
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Fig. 6: Probability density functions obtained using Inception-v3 when M = 17 conditions are considered frequent. One subfigure is obtained per condition: for
each location in feature space, red (respectively blue) indicates a large (respectively low) probability density for that condition. Figures associated with the four
most frequent conditions are emphasized. A widespread probability density function (e.g. ‘embolus’) indicates that images with or without the condition could
not be separated well. Conversely, a narrow distribution (e.g. ‘degenerative myopia’) indicates good separation. Additionally, two overlapping distributions (e.g.
‘synchisis’ and ‘asteroid hyalosis’ — two types of vitreous opacities) indicates that the associated conditions could not be separated well; for convenience, subfigures
are grouped by similarity of the probability density functions. It can be noted that ‘drusen’ and ‘pseudovitelliform dystrophy’ overlap with ‘age-related macular
degeneration (AMD)’, which makes sense since these conditions are generally associated with AMD.

was not obligated to annotate all visible conditions. There-
fore, the quality of performance assessment could be improved.
However, given the large number of conditions considered in
this study, the relevance of the approach was clearly vali-

dated. Another limitation of this study is that alternatives to
building blocks of the proposed framework, like PCA, Parzen-
Rosenblatt or k-NN, were not explored.

In conclusion, we have presented the first study on the auto-
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Fig. 7: ROC curves on the test subset for each condition.

matic detection of a large number of conditions in retinal im-
ages. A simple ML framework was proposed for this purpose.
The results are highly encouraging and open new perspectives
for ocular pathology screening. In particular, the trained detec-
tors could be used to generate warnings when rare conditions
are detected, both in traditional and automatic screening sce-
narios. We believe this will favor the adoption of automatic
screening systems, which currently focus on the most frequent
pathologies and ignore all others.
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Fig. 7: Heatmap generation. Examples of images are given in the first row. From left to right, these images present an anterior ischemic optic neuropathy, a macular
hole, maternally inherited diabetes and deafness, optic disc pallor and retinal pigment epithelium (RPE) alterations. Heatmaps are given in the second row for those
conditions. Black means zero; positive values are in green. The CNN of Fig. 6 was used (Inception-v3 CNN — M = 17): with the exception of RPE alterations
(last column), those conditions are thus unknown to this CNN.
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epiretinal membrane 0.9611 0.8521 0.9162 0.9456
nevi 0.9337 0.8250 0.8035 0.6311
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myelinated nerve fibers 0.9815 0.8255 0.9462 0.9059
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Table 3: Comparison between ML frameworks in terms of AUC on the test
subset. Abbreviations are listed in the legend of Fig. 3. The best AUC for each
condition is in bold.
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proposed <0.0001 <0.0001 0.0001
Siamese networks 0.3507 0.9401
transfer learning 1.0000

∀n > 11
proposed 0.0002 <0.0001 0.0002
Siamese networks 1.0000 1.0000
transfer learning 1.0000

Table 4: Comparison between ML frameworks using repeated measures
ANOVA. Comparisons consider either all conditions or rare conditions (n >
M0 = 11). Significant differences are in bold.
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