
HAL Id: hal-02451022
https://imt-atlantique.hal.science/hal-02451022

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FileShare: A Blockchain and IPFS framework for Secure
File Sharing and Data Provenance

Shreya Khatal, Jayant Rane, Dhiren Patel, Pearl Patel, Yann Busnel

To cite this version:
Shreya Khatal, Jayant Rane, Dhiren Patel, Pearl Patel, Yann Busnel. FileShare: A Blockchain and
IPFS framework for Secure File Sharing and Data Provenance. ICMLCI 2019 : International Con-
ference on Machine Learning and Computational Intelligence, Dec 2019, Bhubaneswar, Kantabada,
India. �10.1007/978-981-15-5243-4_79�. �hal-02451022�

https://imt-atlantique.hal.science/hal-02451022
https://hal.archives-ouvertes.fr

FileShare: A Blockchain and IPFS framework for Secure
File Sharing and Data Provenance

Shreya Khatal1, Jayant Rane1, Dhiren Patel1, Pearl Patel2, Yann Busnel3

1 Veermata Jijabai Technological Institute, Mumbai, India
2 Vidyalankar Institute of Technlogy, Mumbai, India

3 IMT Atlantique, Rennes, France
khatalshreya@gmail.com, jayantrane811@gmail.com, dhiren29p@gmail.com,

pearl207@gmail.com, yann.busnel@imt-atlantique.fr

Abstract. In this paper, we introduce FileShare - a secure decentralized applica-
tion framework for sharing files and data provenance. It overcomes the integrity
and ownership issues in the existing solutions for file sharing and data prove-
nance. In proposed framework, a Decentralized Application (dApp) on top of
Ethereum is responsible for user registration and for provenance purposes.
Ethereum smart contract is used to govern, manage, and provide traceability and
visibility into the history of the shared content from its origin to the latest version.
It employs IPFS, a distributed file system, as its data storage layer, avoiding the
pitfalls of centralized storage solutions. The proposed framework utilizes an in-
built editor to view and modify files. The files will be stored in an encrypted form
on IPFS and can only be accessed in the FileShare text editor. Modify and share
operations performed on shared files are recorded separately to the blockchain,
ensuring high integrity, resiliency, and transparency.

Keywords: Data Provenance, Blockchain, IPFS, Ethereum smart contract, Shar-
ing file, Ownership

1 Introduction

Blockchain is seen as a distributed ledger that can be accessed globally by anyone to
verify stored data with high integrity, resilience, credibility, and traceability. Distrib-
uted ledger technology can be used to write smart contracts which are self-executing
contracts, and can be replicated, shared and supervised by a network of computers that
run on blockchain. Smart contracts avoid middleman by automatically defining and
enforcing rules and obligations made by the parties in the ledger. Blockchain, however
is an expensive medium for data storage. For efficient storage of digital content, we can
use InterPlanetary File System (IPFS) which is a peer-to-peer hypermedia protocol and
distributed file system. Since IPFS is distributed, it has no single point of failure.

This paper presents a framework where digital content is shared in a secure, tam-
perproof environment and achieves provenance of read, modify and share operations
on data. Our application is based on IPFS and smart contracts of Ethereum blockchain.
Blockchain technology is utilized for access control of digital content and storage of
provenance data. The proposed FileShare application ensures that the digital content

mailto:khatalshreya@gmail.com
mailto:pearl207@gmail.com

2

would only be accessible in the application and will not be available in the end-users’
operating system.

Rest of the paper is organized as follows: Section 2 briefly explains underlying con-
cepts and summarizes related work. Section 3 describes the proposed application’s
workflow. Section 4 discusses validation and analysis of FileShare application. Section
5 concludes the paper.

2 Background and Related Work

Morgan [1] presents the idea of using blockchain technology to prove the existence of
a document using the timestamping concept. The legitimacy of the document can be
verified, but this system is not focused about the authority of the owner on his/her doc-
ument. IPFS [2] is the distributed and versioned file system which can connect many
computing nodes with the same system of files and manage them by tracking their ver-
sions over time. Rajalakshmi et al [3] propose a model of academic research record
keeping with access control methods. Nizamuddin et al [4] propose a solution that is
based on using IPFS and smart contracts of Ethereum blockchain. Both of the papers
mentioned above do not restrict duplication and piracy of the shared content as once
the document is downloaded, it can be replicated and any other user can claim the own-
ership. Further any changes made to the document in users operating system in offline
mode are not logged and hence ownership as well as originality is threatened.

Smart contracts provide an easy way to access the Ethereum blockchain written in a
high-level coding language called Solidity [5]. To develop Ethereum smart contracts,
Remix IDE [6] can be used, which is a browser-based IDE. Another one is the Truffle
framework [7], which supports built-in smart contract compilation, linking, deployment
and binary management. In order to run Ethereum decentralized apps in the browser
itself, without running a full node, MetaMask [8] can be used. The above tools can be
combined for an effective Ethereum decentralized application development.

Data provenance is very critical as it provides the history of the origins of all changes
to a data object, list of components that have either forwarded or processed the object
and users who have viewed and/or modified the object. Hasan et al [9] proposed
SPROVE that protects provenance data confidentiality and integrity using encryption
and digital signature. However, SPROVE does not possess provenance data querying
capability. Ko and Will [10] proposed Progger which is a kernel-level logging tool
which can provide log tamper-evidence at the expense of user privacy. Liang et al’s
[11] proposal ProvChain is a distributed, cloud-based data provenance architecture,
which creates tamper-proof record of events by embedding the provenance records into
the blockchain as transactions. All of the above methods have no restriction on piracy
and hence possess a breach to integrity.

3 Proposed Application’s Workflow

Figure 1 shows components of the proposed architecture. Users first register to the
FileShare application. The registration details of the user are added to the Ethereum

3

blockchain by the application. After creation of the file in the application’s inbuilt text
editor, user decides if the file has to be made shared or public. If the file is supposed to
be shared, the file owner provides the public key of recipients with whom the file has
to be shared with.

Fig. 1. Components of Proposed Architecture

The application then deploys a smart contract which stores the file metadata. It then
encrypts the document and adds to IPFS in an encrypted format. In order to access the
files, users are required to use the file sharing application editor as the file would be
decrypted only in the application editor. The application uses the file smart contract to
access the file metadata, fetches the file from IPFS, decrypts the file and opens in the
inbuilt editor. In order to collect provenance data, we log call to functions of smart
contracts as file operations performed in the editor. After an operation is performed, the
record is generated, which will be uploaded to the blockchain network and stored in the
provenance blockchain.

The framework proposed here can be divided into four main phases: User Registra-
tion and Authentication, File creation and storage, File retrieval, Provenance data col-
lection and storage.

3.1 User Registration and Authentication:

Users are required to register to the system in order to have a unique identity. We pro-
pose to create a smart contract for every user, which will act as a unique identity for
them. ‘AllUsersMetadata’ is a smart contract which acts as a factory to generates a
smart contract for every user after their registration. During the registration process,
user provides registration key in the form of a string as an input to the application.
Using this registration key and current timestamp, application generates public-private
key pair using ECDSA algorithm Now, AllUsersMetadata deploys a smart contract of
the registered user and obtains address of the deployed smart contract. The deployed
user’s smart contract contains user’s metadata which includes user’s public key, regis-
tration key, an array of information details regarding the files which have been shared
with the user.

4

Fig. 2. FileShare system interaction for user registration and authentication

AllUsersMetadata also contains a mapping of every registered users public key to
the address of their deployed smart contract. After the deployment of the user’s smart
contract, the received deployed address of the user’s smart contract is added to the map-
ping in AllUsersMetadata smart contract. Public key generated during the registration
process will be used by file owner while specifying recipient to whom the file must be
shared with. While registration key and private key will be used to validate the user
authenticity during the login process of the FileShare application.

For authentication, user will provide registration, public as well as their private key
as an input to the FileShare application. Initially, registration key will get encrypted
using private key, and generated string will be the ‘EncryptedRegistrationKey’. Using
the received public key as an input, user’s smart contract deployed address will be
fetched from the AllUsersMetadata’s mapping. As the user’s smart contract is fetched
from the obtained address, to validate the user, the application will send the Encrypt-
edRegistrationKey to validation function of the user’s smart contract. Now the Encrypt-
edRegistrationKey will be decrypted using public key of the user, and if resulting string
is same as registration key of the user’s smart contract, then user will be validated oth-
erwise the authentication would fail.
3.2 File creation and storage:

Owner creates a file in FileShare application editor and requests for sharing this file on
the FileShare application. FileShare now creates a random key, to encrypt the file using
AES-256 symmetric encryption technique. This random key will be ‘Secret Key’ for
given file which will only reside in owner’s FileShare application. FileShare encrypts
the file with the SecretKey. This encrypted file is added to the IPFS network. IPFS
network returns hash of the uploaded file. As shown in figure 3, we propose to create a
smart contract for every deployed file on IPFS. ‘AllFilesMetadata’ smart contract acts
as a factory to generate smart contract for every file shared on the application. File’s
smart contract contains metadata which includes filename, IPFS address of the en-
crypted file and owner’s public key. After deployment of the smart contract, FileShare

5

application will receive deployed file smart contract’s address. Now, Owner can specify
following types of access control for the specified file.

Fig. 3. FileShare system interaction for sharing files

Shared: In this access control, the owner can share the file to other users by using
the public key of the user, they want to share the file with. After giving this public key
to the FileShare application as an input, the application will encrypt ‘SecretKey’ of the
file with ‘Public Key’ of the user with whom the file has to be shared with to create an
‘EncryptionKey’. This is asymmetric encryption, whereas ‘EncryptionKey’ can only
be decrypted by the user who has corresponding Private Key. Smart contract of the file,
for shared mode contains a mapping of the receiver user’s public key to the Encryp-
tionKey of the file. This mapping will be added to the shared file’s smart contract. All-
FilesMetadata will access AllUsersMetadata to obtain deployed address of receiver’s
user smart contract. The shared files smart contract address will be added to the re-
ceiver’s user smart contract. Thus, the receiver user smart contract will contain an array
of deployed address of all the files which are shared with them.

Public: In this access control, the owner can share the file to every user who is reg-
istered on the FileShare application. Owner will specify the SecretKey in the file’s
smart contract. Also, owner will send their public key along with deployed file smart
contract’s address, to the AllFilesMetadata smart contract.

After these specifications are set to file’s smart contract, other users will be able to
access it if they are authorized of the FileShare application.

6

3.3 File retrieval:

Fig. 4. FileShare system interaction for accessing files

On the FileShare application interface, after giving user’s logging details such as reg-
istration key, public key and private key, application will retrieve user’s deployed smart
contract using AllUsersMetadata smart contract as shown in figure 4. If user is vali-
dated, then FileShare application will now access the user’s smart contract using the
AllUsersMetadata. The user smart contract contains the address of deployed smart con-
tracts of all files shared with them. These files will appear on the application interface
as ‘Shared with me’. Application interface will also retrieve all files which are publicly
shared using AllFilesMetadata smart contract. Following mechanism are performed for
the proposed access control types:

Shared: Using the file’s deployed smart contract address, FileShare application will
retrieve key available in the mapping of publicKeyToEncryptedKey using user’s own
public key. Received key will then be decrypted by user’s private key in the application,
and generated key will be used to decrypt the accessed files by the FileShare applica-
tion.

Public: Using file deployed smart contract address, FileShare application will re-
quest decryption key of file from corresponding file’s smart contract deployed on
blockchain. This key will be internally sent to the application and FileShare will decrypt
the file and open in the application editor.

File accessed will be available to read for a session where session time would be a
defined parameter. Also, file can be modified in FileShare application, which will be
redeployed in application along with original owner’s public key attached to it. The

7

uploaded content can only be accessed by using the application editor. The content
cannot be downloaded nor be copied to clipboard of operating system, from the editor.

3.4 Provenance data collection and storage

Every time a user performs operations such as read, sharing files, it needs decryption
key of the file. This key is available only in corresponding deployed smart contract.
Whenever user request this key, smart contract logs these events in blockchain. The
provenance data will contain the unique id of the user who has accessed the content,
corresponding file’s deployed smart contract address, time of access and type of oper-
ation accessed by user. For publishing data records to blockchain network, we adopt
Chainpoint standard [12].

4 Validation and Analysis of FileShare application

Implementation details:

Fig. 5. FileShare Application Architecture

Figure 5 gives an overview of the FileShare application architecture. The Ethereum’s
Testnet Ropsten blockchain is used to store the user details as well as the audit logs.
IPFS to get free hosting forever in a decentralized platform. React.js with webpack is
used for the front end. Solidity 0.4.11 is used for developing Smart Contracts. web3.js
is used to interact with Ethereum node, using a HTTP connection. We used Metamask
to use the final application like the end user would. As our solution doesn't store any
unencrypted data on blockchain, it is not prone to Ethereum blockchain hacks. The
FileShare application achieves the following five objectives:

1. No duplication of shared files: As any shared file may it be in public or private
mode can only be decrypted using the FileShare application, it cannot be down-
loaded in any end users operating system. Thus, no copies of the file exist.

2. Real time data provenance: The audit logs obtained include user information and
the operations performed on the file may it be view, modify or share and is then
added to the blockchain network making it tamper-proof.

3. Tamper-proof Environment: Data provenance record is collected and then pub-
lished to the blockchain network which protects the provenance records.

8

4. End to End traceability: Users can access the provenance data to know the owner
of the file, number of people who viewed the file and the edit operations on the file.
Thus, no ownership problem occurs.

5. Provenance Data Validation: Data provenance record is published globally on the
blockchain network. Thus, provenance data is validated by the blockchain nodes.

5 Conclusion

The FileShare application provides a secure, tamper proof model for sharing files in a
distributed file system. The provenance data can be used to obtain analytical infor-
mation. The file owners who made the file public can obtain analytical information
about the number of people who viewed the file. The private file owners can keep ac-
cessing the modification operations performed by the users with whom the file has been
shared. The owner of the files can be traced easily avoiding the ownership problems.
Further, as the provenance data is stored in the blockchain, it creates an immutable
record, and any malicious modifications to the provenance data can be prevented.

References

1. P. Morgan, “Using Blockchain Technology to Prove Existence of a Document”, last ac-
cessed 2018/2/20.

2. Benet, J. (2014). IPFS-content addressed, versioned, P2P filesystem. arXiv preprint
arXiv:1407.3561.

3. Rajalakshmi, A. & Lakshmy, K.V. & Amritha, P.P.. (2018). A blockchain and IPFS based
framework for secure Research record keeping. International Journal of Pure and Applied
Mathematics. 119. 1437-1442.

4. Nizamuddin, Nishara & Hasan, Haya & Salah, Khaled. (2018). IPFS-Blockchain-Based Au-
thenticity of Online Publications. 10.1007/978-3-319-94478-4_14.

5. Solidity — Solidity 0.4.23 documentation. (2018). Solidity.readthedocs.io. [Online]. Avail-
able: http://solidity.readthedocs.io/en/v0.4.23/.

6. Remix - Solidity IDE. (2018). Remix.ethereum.org. [Online]. Available: https://re-
mix.ethereum.org/.

7. Truffle Suite - Your Ethereum Swiss Army Knife. (2018). Truffle Suite. [Online]. Availa-
ble:http://truffleframework.com/.

8. MetaMask. (2018). Metamask.io. [Online]. Available:https://metamask.io/.
9. R. Hasan, R. Sion, and M. Winslett, “Sprov 2.0: A highlyconfigurable platform-independent

library for secure provenance,” ACM, CCS, Chicago, IL, USA, 2009.
10. R. K. Ko and M. A. Will, “Progger: An efficient, tamperevident kernel-space logger for

cloud data provenance tracking,” in 2014 IEEE 7th International Conference on Cloud Com-
puting. IEEE, 2014, pp. 881–889.

11. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., &Njilla, L. (2017, May). Provchain:
A blockchain-based data provenance architecture in cloud environment with enhanced pri-
vacy and availability. In Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (pp. 468-477).IEEE Press.

12. “Chainpoint: A scalable protocol for anchoring data in the blockchain and generating block-
chain receipts,” http://www.chainpoint.org/. last accessed 2019/11/08

http://solidity.readthedocs.io/en/v0.4.23/
https://remix.ethereum.org/
https://remix.ethereum.org/
http://www.chainpoint.org/

	1 Introduction
	2 Background and Related Work
	3 Proposed Application’s Workflow
	3.1 User Registration and Authentication:
	3.2 File creation and storage:
	3.3 File retrieval:
	3.4 Provenance data collection and storage

	4 Validation and Analysis of FileShare application
	5 Conclusion
	References

