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ABSTRACT 31 

Objective: To illustrate a) whether a statistical shape model (SSM) augmented with anatomical 32 

landmark set(s) performs better fitting and provides improved clinical relevance over non-33 

augmented SSM and b) which anatomical landmark set provides the best augmentation strategy 34 

for predicting the glenoid region of the scapula. Methods: Scapula SSM was built using 27 dry 35 

bone CT scans and augmented with three anatomical landmark sets (16 landmarks each) 36 

resulting in three augmented SSMs (aSSMproposed, aSSMset1, aSSMset2). The non-augmented and 37 

three augmented SSMs were then used in a non-rigid registration (regression) algorithm to fit to 38 

six external scapular shapes. The prediction error by each type of SSM was evaluated in the 39 

glenoid region for the goodness of fit (mean error, root mean square error, Hausdorff distance 40 

and Dice similarity coefficient) and for four anatomical angles (Critical shoulder angle, lateral 41 

acromion angle, glenoid inclination, glenopoar angle) . Results: Inter- and Intra-observer 42 

reliability for landmark selection was moderate to excellent (ICC>0.74). Prediction error was 43 

significantly lower for SSMnon-augmented for mean (0.9mm) and root mean square (1.15mm) 44 

distances. Dice coefficient was significantly higher (0.78) for aSSMproposed compared to all other 45 

SSM types. Prediction error for anatomical angles was lowest using the aSSMproposed for critical 46 

shoulder angle (3.4°), glenoid inclination (2.6°), and lateral acromion angle (3.2°). Conclusion 47 

and Significance: The conventional SSM robustness criteria or better goodness of fit do not 48 

guarantee improved anatomical angle accuracy which may be crucial for certain clinical 49 

applications in pre-surgical planning. This study provides insights into how SSM augmented 50 

with region-specific anatomical landmarks can provide improved clinical relevance.   51 

 52 

Keywords: iterative closest point, SSM robustness, shoulder surgery, registration  53 
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INTRODUCTION 54 

Statistical shape models (SSMs) describe an average shape distribution within a certain 55 

population [1, 2]. SSMs provide a method to quantify the shape of an object using only a limited 56 

number of parameters which then allows a three-dimensional (3D) morphometric analysis of an 57 

object using automatic shape annotation. Such annotated models then can be effectively used in 58 

computer-aided orthopedic surgeries [3-5] or in pre-surgical planning [6-8] for fitting the 59 

patient’s bone shape. Despite these facts, it is still not clear whether the use of such models has 60 

improved clinical relevance in pre-surgical planning or treatment applications [9], specifically 61 

for glenohumeral surgery planning.  62 

For glenohumeral surgical procedures, surgeons typically rely on virtual palpations or anatomical 63 

measures using medical images  [10-14]. Recently, scapula SSMs are used in pre-surgery 64 

planning to automatically determine anatomical measures of interest [15, 16]. However, SSMs 65 

can be effective only if they can improve clinically relevant measures. For the glenoid region, 66 

four anatomical angle measures are frequently associated with the clinical assessment of the 67 

shoulder pathology and frequently referred to by surgeons and clinicians. These include Critical 68 

shoulder angle (CSA) [17], Glenoid inclination [18], Lateral acromion angle [19], and 69 

Glenopolar angle [20, 21]. The classic metrics used to evaluate the computational robustness of 70 

the SSM (Specificity, generality, and compactness)  [22, 23]  do not necessarily guarantee the 71 

desired accuracy in anatomical angle measurements that are clinically relevant [24]. 72 

Furthermore, shape fitting algorithms typically use a certain set of anatomical landmarks during 73 

the fitting process without considering the clinical relevance or efficacy of using such landmarks 74 

sets. 75 
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The objective of this study was to illustrate a) whether an SSM augmented with anatomical 76 

landmarks performs better fitting and provides improved clinical relevance over non-augmented 77 

SSM and b) which anatomical landmark sets provide best augmentation strategy. For the scope 78 

of this study, two types of measures were evaluated 1) measure of the goodness of fit (three-79 

dimensional distance errors) for predicting the glenoid region of scapular bone, and 2) measure 80 

of accuracy to predict the anatomical angles associated with this region. We hypothesize that a 81 

categorical landmark selection process based on the glenoid region as a region of interest would 82 

improve the clinical relevance of the scapular SSM in terms of goodness of fit and anatomical 83 

angle predictions. Objectives of the study were achieved by comparing the use of non-augmented 84 

SSM with three augmented SSMs for illustrating improvements in the two measures. One of the 85 

three augmented SSMs was proposed earlier [6] but whether it improves the overall measures of 86 

clinical relevance in surgical planning of the glenoid region was not reported.  87 

 88 

METHODS 89 

Thirty-three dry scapulae bones were acquired from a local hospital’s anatomy department. CT 90 

scans were acquired using the SIEMENS SOMATOM Definition AS scanner (Siemens 91 

Healthcare, Forchheim, Germany) with a resolution of 0.96mm X 0.96mm X 0.6mm. A 92 

radiologist checked all the images for any signs of trauma (exclusion criteria). A scapula SSM 93 

built with a set of 27 bones using previously published IMCP-GMM (Iterative Median Closest 94 

Point–Gaussian Mixture Model) methodology [6, 25] was adopted in this study. This SSM will 95 

be referred to as SSMnon-augmented throughout this study. Computational robustness of the SSMnon-96 

augmented has been reported earlier through the measures of generality, specificity, and 97 
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compactness [25]. Briefly, compactness measures dimensionality reduction and reports model’s 98 

ability to use as few shape parameters as possible to cover shape variability [23]. Generality 99 

measures a model’s ability to represent unseen instances of the class of object [23]. This property 100 

highlights the capability of a model to fit to a new shape. Specificity measures the model’s 101 

ability to generate instances of the species of objects similar to those in the training set [23].  102 

    103 

Augmented SSM creation for comparisons   104 

To fulfill the objectives of the study, three augmented SSMs were created: aSSMproposed, 105 

aSSMset1, aSSMset2. To create an augmented SSM, the SSMnon-augmented was supplemented with 106 

additional set of 16 anatomical landmarks and their deformation field in the training dataset [6]. 107 

The aSSMproposed was augmented with a proposed set of 16 clinically relevant anatomical 108 

landmarks to map scapular shape [6] with previously evaluated inter- and intra-observer 109 

reliability for each landmark selection [6]. This landmark set consisted six anatomical landmarks 110 

in the glenoid cavity region and four landmarks on the acromion region (Figure 1). To illustrate 111 

the best augmentation strategy to improve fitting quality and clinical relevance, two more sets of 112 

augmented SSMs (aSSMset1 and aSSMset2) having 16 anatomical landmarks each were created 113 

(Figure 1). Specifically, aSSMset1 landmarks were selected without considering the clinical 114 

significance of their anatomical locations but covering the entire scapula shape (Figure 1). For 115 

aSSMset2, no anatomical landmarks were selected in the glenoid cavity region (as against six 116 

landmarks in the aSSMproposed and three landmarks in aSSMset1) (Figure 1).  117 

 118 

 119 

INSERT Figure 1 about here 
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Inter- and intra-observer reliability analysis for anatomical landmark selection for set1 and set2 120 

was performed on all 27 internal instances by two independent observers. For the intra-observer 121 

reproducibility evaluation, each observer repeated the landmark selection process two times per 122 

set. A time interval of 60 to 72 hours was allowed to expire between the trials while the order of 123 

instance selection was also randomized. Inter-observer reliability was defined by ICC, using a 124 

two-way mixed effects (choice of observers) analysis of variance (ANOVA) [26]. Intra-observer 125 

reproducibility was also defined by ICCs, using a two way ANOVA and considering the choice 126 

of the observer as fixed effects [26]. The standard error of measurement (SEM = SD * √(1-ICC), 127 

where SD is the standard deviation of the whole set of measures) was quantified for each set of 128 

landmark measurements. All the ICCs were obtained using Statistica (StatSoft, Inc., Paris, 129 

France). 130 

 131 

Prediction error evaluation  132 

Prediction error  was determined by fitting each of the augmented SSMs (aSSMproposed, aSSMset1, 133 

and aSSMset2) and SSMnon-augmented to six external scapulae (not used in SSM building) and 134 

comparing the predicted shape with the original shape (manually segmented from the CT scans) 135 

for fitting quality and predicting anatomical angle measures in the glenoid region. The glenoid 136 

region of the scapula was identified by cutting the scapula through its surgical neck as previously 137 

described  [27, 28]. The capability of aSSMproposed to fit to the glenoid region was compared with 138 

aSSMset1 and aSSMset2 and SSMnon-augmented. A standard deformable model fitting algorithm (non-139 

rigid iterative closest point) [29] was created in SCALISMO, an open source toolbox for creating 140 

and evaluating statistical shape algorithms [30]. The algorithm was performed in three steps: 1) 141 

Matching the mesh centroids of the mean shape of each SSM type under evaluation with each of 142 
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the external scapular shape, 2) Rigid alignment of each SSM type to each of the external scapular 143 

shapes using the set of landmarks and fifteen iterations of rigid iterative closest point algorithm 144 

[31], and 3) one-time non-rigid regression (non-rigid iterative closest point algorithm) to non-145 

rigidly deform the rigidly aligned SSM to the external shape [31, 32].    146 

Clinical relevance was individually sought in the measures of the goodness of fit and anatomical 147 

angle predictions between the original glenoid region identified in the external scapulae and its 148 

predicted counterpart. The goodness of fit was quantified using three distance measures (mean 149 

distance, root mean square (RMS) distance, maximum (Hausdorff) distance [33]) and a similarity 150 

measure (Dice coefficient). Four anatomical measures associated with glenoid region were also 151 

selected. These include 1) Critical shoulder angle [34, 35], 2) Glenoid inclination [18], 3) Lateral 152 

acromion angle [36], and 4) glenopolar angle [37]. Differences between the original scapular 153 

shape and the predicted shape for each of the measures described above were first determined for 154 

each SSM type and termed as the prediction error. Prediction error for distance measures 155 

obtained from SSMnon-augmented, aSSMset1, and aSSMset2 was compared with aSSMproposed using 156 

paired student’s T-tests. Prediction error for anatomical angle measures was qualitatively 157 

compared using absolute mean differences.  158 

RESULTS 159 

Intra-observer reproducibility and inter-observer reliability 160 

Both the observers successfully completed the reliability tests for anatomical landmark selection 161 

for both the sets (aSSMset1, aSSMset2). Moderate to excellent (ICC>0.73) intra- and inter-162 

observer reliability was found for all X, Y and Z coordinates (Annexure I - Table 1, Table 3, and 163 

Table 5). The ICC for inter-observer reliability ranged from 0.74 to 0.98 for all the coordinates 164 
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(Annexure I - Table 1). The ICC for intra-observer reproducibility for all the observers ranged 165 

from 0.79 to 0.96 for all the coordinates (Annexure I - Table 3 and Table 5). The SEM ranged 166 

from 0.05mm to 0.39mm for all intra- and inter-observer measurements (Annexure I – Table 2, 167 

Table 4, Table 6).   168 

 169 

 170 

 Prediction error 171 

The fitting algorithm was able to successfully deform each of the SSMs to the six external 172 

scapular shapes (Figure 2). Prediction error for all the distance measures (goodness of fit) was 173 

significantly lower for SSMnon-augmented than the three augmented SSMs (Figure 3) except for 174 

Hausdorff distance. Dice coefficient was significantly higher (0.78) for aSSMproposed compared to 175 

all other SSM types (Figure 3). Prediction error for anatomical angles was lowest using the 176 

aSSMproposed for critical shoulder angle (3.4°), glenoid inclination (2.6°), and lateral acromion 177 

angle (3.2°) (Table 1, Table 2, and Table 3). Whereas, for the glenopolar angle, the absolute 178 

mean difference was lowest 179 using SSMnon-augmented 

(1.5°) (Table 4).     180 

 181 

 182 

DISCUSSION 183 

This preliminary study highlighted the importance of using the scapula SSM augmented with 184 

categorically selected anatomical landmarks for the glenoid region, in pre-surgery planning tools. 185 

INSERT Figure 2 about here 

INSERT Figure 3 about here 
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The results of this study reported that SSMnon-augmented performed better in the goodness of fit 186 

measures whereas aSSMproposed performed better in determining anatomical angle measures that 187 

are clinically relevant. In doing so, this study also illustrated improvements in anatomical angle 188 

predictions when mapping of the glenoid region by anatomical landmarks was increased 189 

stepwise from landmark set 2 (no glenoid landmarks) to set 1 (three glenoid landmarks) and to 190 

proposed set (six glenoid landmarks).    191 

Results of ICCs for landmark selection achieved similar levels for all the three landmark sets, 192 

which provided another indirect reliability measure. Also, both the reliability measures were 193 

lower for landmarks that were not anatomically defined (landmarks 8, 10, and 15 in set1 or 194 

landmarks 3, 5, 7, 9, and 10 in set2). Thus, we do not recommend selecting these landmarks 195 

when creating an augmented SSM.  196 

The significantly higher levels of goodness of fit measures using SSMnon-augmented can be 197 

attributed to the model fitting process. The non-rigid deformation step (step 3) was aimed at 198 

finding the closest shape variation of the SSM to the target external shape. During this step, the 199 

landmarks used for the rigid alignment in step 2 of the process were used to compute a 200 

conditional distribution of the shape and subsequently build a posterior shape model that 201 

represents the original SSM [38]. While using non augmented SSM, we can choose any or all 202 

mesh points of the mean mesh of the SSMnon-augmented to create this conditional distribution. For 203 

the purpose of this study, we used all the mesh points to build the posterior model. Thus, the 204 

overall goodness of fit (mean error, RMS error, Hausdorff distance, and Dice score) was better 205 

using non-augmented SSM. However, as hypothesized, this goodness of fit did not necessarily 206 

reflect higher accuracy in predicting the anatomical angle measures. 207 
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Anatomical angles quantified in this study have been previously reported to have clinical 208 

relevance during surgery (or surgery-planning). Higher CSA and Glenoid inclination angle are 209 

associated with osteoarthritis (OA) and rotator cuff tears and surgical aim is to reduce these 210 

angles [17, 18]. Low lateral acromion angle is associated with full thickness supraspinatus tears 211 

and surgical procedures avoid keeping this angle low post-surgery [19]. Glenohumeral 212 

angulation deformities and shortening of the scapular neck are associated with scapular neck 213 

fractures and assessed with glenopolar angle in AP radiographs [21, 37]. For the treatment of 214 

extra-articular scapular neck fractures, most common recommendation is to keep glenopolar 215 

angle less than 20° [20, 39, 40]. Results of prediction error in determining anatomical angle 216 

measures highlighted higher performance of the aSSMproposed while revealing a pattern of fitting. 217 

For SSMnon-augmented, prediction errors were on both the negative and positive side of the original 218 

angle value for all the angles. But for augmented SSMs, the glenoid inclination was almost 219 

always overpredicted and the glenopolar angle was almost always underpredicted. This could be 220 

attributed to the position of landmarks in the augmented SSMs constraining the fitting in these 221 

regions and making it over or under predict.  222 

State-of-the-art glenoid pre-surgery planning tools incorporate automatic 3D reconstruction of 223 

medical images using scapula SSMs. The fitting algorithm uses intensity information or 224 

landmark information derived from images. In these cases, anatomical landmarks play a crucial 225 

role either by providing an initial alignment or generating a posterior model for a recursive 226 

fitting algorithm. The objectives and results of this preliminary study do not intend to prove that 227 

aSSMproposed has sufficient accuracy for its use in a pre-surgical planning tool. However, it 228 

provides a clear distinction and a necessary rationale and validation for not relying only on the 229 
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goodness of fit or SSM robustness (generality, specificity, compactness) measures when using 230 

the SSM for pre-surgical planning.     231 

 232 

This study posed certain limitations: 1) the sample sufficiency in building the scapula SSM with 233 

27 dry bones was not evaluated, which could reflect in errors while fitting the SSM to new data. 234 

2) prediction error and related clinical relevance was illustrated in only six external instances 235 

which may not cover all the variations of the glenoid region.  Thus, further evaluations in the 236 

statistical stability of the SSM and completeness in terms of sample sufficiency are warranted.  237 

PERSPECTIVES AND CONCLUSIONS 238 

Evaluating the efficacy of the fitting algorithm was not in the scope of this study. Since similar 239 

fitting algorithm and related parameters were used across the four SSM types in terms of 240 

initiation, level of fitting, and the number of vertices, the fitting errors were deemed equal and 241 

not affecting the analysis. Future efforts will be focused on enhancing the accuracy of fitting 242 

algorithms. Furthermore, checking the accuracy of partial or missing data was not in the scope of 243 

this paper, however, the augmented SSM would be used in this context in future studies. In 244 

conclusion, the utility of SSM for its use in clinical applications is an under-evaluated problem. 245 

The goodness of fit and prediction errors in anatomical measures reported in this study presents 246 

the rationale of using augmented SSMs in the clinical setting and has a direct correlation with 247 

clinical accuracy. This study also lays a foundation for the development of an accurate and 248 

reliable methodology for the automatic segmentation of bone structures from medical images. 249 
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 367 

 368 

Table 1: Prediction error in the critical shoulder angle in terms of individual angle differences 369 

between angle obtained from the original shape and the angle predicted by each SSM type. 370 

 371 

Anatomical  

Measure 
Critical Shoulder Angle (°) 

Scapula Name 
Original  

Scapula 

SSMnon-

augmented 

Prediction 

error 

aSSM 

proposed 

Prediction 

error 
aSSMset1 

Prediction 

error 
aSSMset2 

Prediction 

error 

Scap1 27.6 24.5 -3.1 26.0 -1.6 29.2 1.6 26.6 -1.0 

Scap2 47.2 34.9 -12.3 35.9 -11.3 32.7 -14.5 33.1 -14.1 

Scap3 27.7 32.7 5.0 28.4 0.7 29.0 1.3 28.3 0.6 

Scap4 34.0 31.7 -2.3 32.7 -1.3 33.4 -0.6 31.9 -2.1 

Scap5 36.6 33.5 -3.1 34.2 -2.4 33.1 -3.5 31.4 -5.2 

Scap6 27.0 31.4 4.4 30.3 3.3 31.0 4.0 30.7 3.7 

Mean Measure 33.35 31.45  31.25  31.40  30.33  

SD 7.17 3.32  3.39  1.80  2.22  

Absolute Mean  

Difference  
5.03  3.43  4.25  4.45  

Min difference 
 

2.30  0.70  0.60  0.60  

Max difference 
 

12.30  11.30  14.50  14.10  

 372 

 373 

 374 
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 380 

 381 

 382 

Table 2: Prediction error in the glenoid inclination angle in terms of individual angle differences 383 

between angle obtained from the original shape and the angle predicted by each SSM type.  384 

 385 

Anatomical  

Measure 
Glenoid inclination (°) 

Scapula Name 
Original 

Scapula 

SSMnon-

augmented 

Prediction 

error 

aSSM 

proposed 

Prediction 

error 
aSSMset1 

Prediction 

error 
aSSMset2 

Prediction 

error 

Scap1 68.0 73.7 5.7 71.0 3.0 69.0 1.0 71.3 3.3 

Scap2 80.5 83.8 3.3 79.5 -1.0 83.6 3.1 83.3 2.8 

Scap3 72.5 71.7 -0.8 73.0 0.5 74.4 1.9 78.9 6.4 

Scap4 70.6 67.6 -3.0 74.6 4.0 79.8 9.2 80.3 9.7 

Scap5 69.1 70.3 1.2 74.7 5.6 73.6 4.5 76.5 7.4 

Scap6 73.6 71.8 -1.8 74.8 1.2 76.6 3.0 84.0 10.4 

Mean Measure 72.38 73.15  74.60  76.17  79.05  

SD 4.09 5.11  2.57  4.65  4.30  

Absolute Mean  

Difference 
 2.63  2.55  3.78  6.67  

Min difference  0.80  0.50  1.00  2.80  

Max difference  5.70  5.60  9.20  10.40  

 386 
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 396 

Table 3: Prediction error in the lateral acromion angle in terms of individual angle differences 397 

between angle obtained from the original shape and the angle predicted by each SSM type. 398 

 399 

 400 

Anatomical  

Measure 
Lateral acromion angle (°) 

Scapula Name 
Original 

Scapula 

SSMnon-

augmented 

Prediction 

error 

aSSM 

proposed 

Prediction 

error 

aSSM 

set1 

Prediction 

error 

aSSM 

set2 

Prediction 

error 

Scap1 93.8 99.9 6.1 87.0 -6.8 88.2 -5.6 100.0 6.2 

Scap2 82.2 86.7 4.5 84.6 2.4 87.1 4.9 88.8 6.6 

Scap3 76.6 81.3 4.7 80.2 3.6 86.5 9.9 86.9 10.3 

Scap4 76.1 81.8 5.7 78.6 2.5 81.5 5.4 85.1 9.0 

Scap5 85.5 82.2 -3.3 87.1 1.6 88.3 2.8 83.6 -1.9 

Scap6 89.1 83.7 -5.4 86.4 -2.7 83.3 -5.8 87.9 -1.2 

Mean Measure 83.88 85.93  83.98  85.82  88.72  

SD 6.39 6.50  3.37  2.55  5.33  

Absolute Mean 

Difference  
4.95  3.27  5.73  5.87  

Min difference 
 

3.30  1.60  2.80  1.20  

Max difference 
 

6.10  6.80  9.90  10.30  

 401 

 402 
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 409 

Table 4: Prediction error in the glenopolar angle in terms of individual angle differences 410 

between angle obtained from the original shape and the angle predicted by each SSM type. 411 

 412 

 413 

Anatomical 

Measure 
Glenopolar angle (°) 

Scapula Name 
Original 

Scapula 

SSMnon-

augmented 

Prediction 

error 

aSSM 

proposed 

Prediction 

error 

aSSM 

set1 

Prediction 

error 

aSSM 

set2 

Prediction 

error 

Scap1 36.6 37.5 0.9 34.5 -2.1 38.2 1.6 34.9 -1.7 

Scap2 47.4 42.4 -5.0 42.2 -5.2 37.7 -9.7 37.8 -9.6 

Scap3 39.2 38.8 -0.4 36.9 -2.3 36.9 -2.3 32.8 -6.4 

Scap4 44.2 44.1 -0.1 38.0 -6.2 34.4 -9.8 32.6 -11.6 

Scap5 43.6 41.4 -2.2 36.1 -7.5 39.3 -4.3 35.7 -7.9 

Scap6 39.5 39 -0.5 36.2 -3.3 34.8 -4.7 29.4 -10.1 

Mean Measure 41.75 40.53  37.32  36.88  33.87  

SD 3.64 2.29  2.42  1.77  2.66  

Absolute Mean 

Difference  
1.52  4.43  5.40  7.88  

Min difference 
 

0.10  2.10  1.60  1.70  

Max difference 
 

5.00  7.50  9.80  11.60  

 414 

 415 

 416 

 417 
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FIGURE LEGENDS 419 

Figure 1: Three landmark sets used for augmenting the scapula SSM. Each landmark set 420 

contains 16 anatomically placed landmarks. First column shows proposed landmark set with six 421 

landmarks mapping the glenoid cavity and four mapping the acromion. Second column shows 422 

Set1 landmarks with three landmarks mapping the glenoid cavity and rest of them mapping the 423 

scapular edges. Third column shows Set2 landmarks with no landmarks in the glenoid cavity 424 

region.  425 

 426 

Figure 2: Sample goodness of fit in the glenoid region for three augmented SSMs. Red color 427 

indicates original shape while the transparent green color indicates predicted shape after 428 

performing one-time non-rigid deformation for each augmented SSM. Two views for each fit are 429 

shown for each fitting where: A) Fitting result for aSSMproposed, B) Fitting results for aSSMset1, 430 

and C) Fitting results for aSSMset2. 431 

 432 

Figure 3: Comparing the four SSMs (non-augmented SSM, augmented SSM proposed, 433 

augmented SSM set1, and augmented SSM set2) for their fitting quality to predict the 434 

glenoid region. The graph shows the performance of each SSM type quantified using the mean 435 

measures of distance and similarity from six external scapulae. Error bars on each column 436 

indicate +/-1 SD from the mean value. Significance was established when p ≤ 0.05 and indicated 437 

using * above the bar graph. RMS: Root Mean Square distance, Hausdorff: Hausdorff distance 438 

metric used to report maximum distance between original and predicted shapes [33]. 439 










