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Spectral Unmixing: A Derivation of the Extended
Linear Mixing Model from the Hapke Model

Lucas Drumetz, Member, IEEE Jocelyn Chanussot, Fellow, IEEE and Christian Jutten, Fellow, IEEE,

Abstract—In hyperspectral imaging, spectral unmixing aims at
decomposing the image into a set of reference spectral signatures
corresponding to the materials present in the observed scene
and their relative proportions in every pixel. While a linear
mixing model was used for a long time, the complex nature
of the physico-chemical phenomena that affect the spectra of
the materials led to shift the community’s attention towards
algorithms accounting for the variability of the endmembers.
Such intra-class variations are mainly due to local changes in
the composition of the materials, and to illumination changes.
In the physical remote sensing community, a popular model
accounting for illumination variability is the radiative transfer
model proposed by Hapke. It is however too complex to be di-
rectly used in hyperspectral unmixing in a tractable way. Instead,
the Extended Linear Mixing Model (ELMM) allows to easily
unmix hyperspectral data accounting for changing illumination
conditions and to address nonlinear effects to some extent. In
this letter, we show that the ELMM can be obtained from the
Hapke model by successive simplifying physical assumptions,
whose validity we experimentally examine, thus demonstrating
its relevance to handle illumination induced variability in the
unmixing problem.

Index Terms—Hyperspectral image unmixing, spectral vari-
ability, Hapke model, extended linear mixing model.

I. INTRODUCTION

HYPERSPECTRAL imaging provides information in
(typically) hundreds of wavelengths in the visible and

near infrared domains of the electromagnetic spectrum. The
spectral resolution is then much finer than that of color or
multispectral images. However, the spatial resolution is con-
versely coarser. Several distinct materials can then be present
in the field of view of a single pixel. The observations captured
at the sensor level are then mixtures of the contribution of
each material. The inverse problem, called unmixing, aims at
identifying the spectra of the pure materials present in the
scene (called endmembers) and at estimating their relative
proportions in each pixel (called fractional abundances).

Usually, a linear mixing model (LMM) models the re-
lationship between the observed data, the endmembers and
their abundances [1] and writes X = SA + E. The image
is represented as a matrix X ∈ RL×N , where L is the
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number of spectral bands, and N is the number of pixels.
The endmembers sp, p = 1, ..., P are gathered in the columns
of a matrix S ∈ RL×P , where P is the number of materials.
The abundance coefficients for each pixel and each material
are stored in a matrix A ∈ RP×N , and E is an additive
noise. The abundances are proportions, usually constrained to
be positive, and to sum to one in each pixel. Geometrically,
the LMM constrains the data to lie in a simplex spanned by
the endmembers. In many cases, the LMM is a reasonable
approximation of the physics of the mixtures.

Nevertheless, a key limitation is related to possible nonlinear
mixing phenomena, e.g. in urban scenarios or tree canopies,
when light bounces on several materials before reaching the
sensor. Another situation is intimate mixing phenomena in
particulate media [2].

The other important limitation, if not predominant, comes
from the underlying assumption in the LMM that each end-
member is explained by a unique spectral signature. This is
a convenient approximation, but an endmember is actually
more accurately described by a collection of signatures, which
account for the intra-class variability of that material [3], [4].
Spectral variability approaches of the literature essentially boil
down to being able to estimate variants of the materials’
spectra in each pixel. Many physical phenomena can induce
variations on the spectra of pure materials, be it a change
in their physico-chemical composition, or the topography of
the scene, which locally changes the incidence angle of the
light and the viewing angle of the sensor. This phenomenon
is referred to as endmember variability [5]–[7]. A physics-
inspired model to explain illumination induced variability is
the Extended Linear Mixing Model (ELMM) [8]:

xn =

P∑
p=1

apnψpns0p + en (1)

where apn is the abundance coefficient for material p and
pixel n, and en is an additive noise. ψpn is a positive scaling
factor whose effect is to rescale locally each endmember, and
s0p is a reference endmember for material p. This model can
be empirically validated by many experimental measurements
of spectra of the same materials, whose shapes remains the
same but whose amplitudes vary according to a scaling (see
e.g. Fig. 1 of [8]). The ELMM enjoys a simple geometric
interpretation: the data lie in a convex cone spanned by the
reference endmembers, which define lines on which the local
endmembers can lie. Each pixel belongs to a simplex spanned
by the local endmembers (Fig. 1). This model has been used
in several works since it was introduced, e.g. in [9]–[12].
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Fig. 1. Geometric interpretation of the ELMM in the case of three endmem-
bers [8]. In blue are two data points, in red are the reference endmembers and
in green are the scaled versions for the two considered pixels. The simplex
used in the LMM is shown in dashed lines.
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Fig. 2. Left: Albedo endmembers of three materials. Right: scatterplot of
the first three components of a PCA of a dataset simulated with the LMM
(blue), using the endmember variants generated by the Hapke model (red).
The endmembers estimated by the ELMM are in green [8].

Variations in the spectra of one given material due to changing
illumination conditions experimentally appear to be reasonably
well explained by a scaling variation. Another complex phys-
ical semi-empirical model was introduced by Hapke to model
both intimate mixing phenomena and reflectance variations
induced by the changing geometry of the scene [13].

The ELMM was experimentally shown to better fit Hapke
simulated data than other approaches tackling endmember
variability in unmixing. These results are presented in detail
in [8]. We reproduce in Fig. 2 a figure showing a linearly
mixed dataset with Hapke generated endmembers (red), their
approximations by the ELMM (green). The materials of inter-
est are commonly found on small bodies of the solar system.
Basalt has a relatively low and flat spectrum, and thus is less
affected by the nonlinearities of the Hapke model than tephra
and palagonite. In any case, the ELMM provides a very good
approximation of the red manifolds generated by the Hapke
model. For experiments on the capability of the ELMM to
explain variability with real data acquired in various contexts,
we refer e.g. to [8], [14], [15].

Interestingly, the ELMM is not strictly speaking a linear
mixing model, because of the pixel and endmember dependent
scaling factors. Besides, those scaling factors were actually
proven to be able to capture nonlinear mixing effects in a
satisfactory way in a previous study [16].

In this letter, for the first time, we prove how the ELMM
can be derived from the Hapke model by several successive
approximations. In addition, the derivation and experiments

give insight on the ELMM, by showing when it approximates
the Hapke model accurately for small albedos, and certain
favorable geometrical configurations, confirming past experi-
mental results [8].

The remainder of this letter is organized as follows: sec-
tion II briefly introduces the Hapke model and its parameters,
section III derives the ELMM from the Hapke model, section
IV provides further experimental insight on the approxima-
tions, and finally, section V gathers a few concluding remarks.

II. THE HAPKE MODEL

Here, we briefly describe the Hapke model and how it mod-
els reflectance as a function of various physical parameters.
The complete analytical expressions of all the terms involved,
and let alone a detailed derivation of the Hapke model are
far beyond the scope of this letter. We refer to [13] for the
original derivation, and e.g. to [2] for a gentle introduction to
the model. From an unmixing point of view, this model is too
complex as is (for example, it is not injective) and its physical
parameters are not available in practice.

Reflectance, the physical quantity usually used to work
with hyperspectral remote sensing images (after atmospheric
correction of radiance units), is dependent on the geometry
of the acquisition. Depending on the incidence and viewing
angles, the measured reflectance can significantly differ. The
reflectance of a material is also influenced by its photometry,
i.e. the way light interacts with the material. Photometry
can be modeled through some optical parameters (surface
roughness, scattering behavior...) of the materials. We will
briefly describe the photometric parameters involved in the
model, but for a more thorough description of their physical
and geological interpretations we refer to [17]. The albedo of
a material, contrary to its reflectance, is truly characteristical
of the material and depends neither on the geometry of the
scene nor on the photometry of the considered material.

The Hapke model is essentially an equation providing the
bidirectional reflectance in a given wavelength of a material as
a function of its albedo for that wavelength, and of parameters
defining the geometry of the acquisition and characterizing the
photometry of the observed material. We assume the mixture
of the materials occurs at the macroscopic level, and hence we
do not consider intimate mixing, which can also be explained
by Hapke’s model. Therefore, the LMM assumption remains
approximately valid in each pixel. The equations below are to
be understood to be applied separately to each endmember,
each pixel and each wavelength of a hyperspectral image,
using its pure albedo spectrum, the photometry and the local
geometry. This defines local reflectance endmember variants
in each pixel, which are then linearly mixed.

The local pixelwise geometry of the scene can be described
by several parameters (Fig. 3) [13], [18]. The zenith is locally
defined as the direction of the normal vector to the tangent
plane to the surface observed. Depending on the topography,
this plane is different for each pixel. The angle between the
zenith and the sun is called the sun zenith angle, or incidence
angle, θ0. The angle between the zenith and the sensor is called
the emergence angle, θ. The angle between the sun and sensor
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Fig. 3. Acquisition angles for a given spatial location (red dot). The tangent
plane at this point of the surface is in brown. The incidence angle is θ0, the
emergence angle is θ, and the angle between the projections of the sun and
the sensor is the azimuthal angle, denoted as φ. g is the phase angle. θ0 and
θ are defined with respect to the normal to the surface at this point.

directions (with the origin on the field of view of the current
pixel) is called the phase angle g. Finally, the angle between
the projections of the sun and the sensor on the tangent plane
is called the azimuthal angle φ. These four angles completely
characterize the geometry of a pixel’s acquisition. Hapke’s
model can be expressed as [2], [13]:

ρ(ω, µ, µ0, φ, g) =
ω

4(µe + µ0e)
S(µ, µ0, φ)×

((1 +B(g))P (g) +H(ω, µe)H(ω, µ0e)− 1), (2)

ρ is the reflectance for a given wavelength range, µ = cos(θ),
µ0 = cos(θ0), ω is the single scattering albedo of the material
for the same wavelength range, P is the phase function,
modeling the angular scattering distribution of the material:

P (g) =
c(1− b)2

(1− 2b cos(g) + b2)3/2
+

(1− c)(1− b)2

(1 + 2b cos(g) + b2)3/2
.

(3)
B is a function related to the opposition effect (brightening of
the observed surface when the illumination comes from behind
the sensor, i.e. for small g values):

B(g) =
B0

1 + (1/h) tan(g/2)
, (4)

and H is the isotropic multiple scattering function:

H(ω, µ) ≈ 1 + 2µ

1 + 2µ(
√
1− ω)

, (5)

µ0e and µe are the cosines of the modified incidence and
emergence angles, accounting for the macroscopic roughness
of the materials. S(µ, µ0, φ) is a shadowing function, reducing
the total reflectance when surface roughness hides parts of the
observed surface from the sensor, or shadows a fraction of it.
In the remainder of the paper, we will assume that the surface
of the materials is smooth, so that there is no shadowing effect,
and the emergence and incidence angles are not modified,
leading to S(µ0, µ, φ) = 1 and µ0e = µ0, and µe = µ.
B and P are parametrized by photometric parameters of

the considered material. For the phase function P , the pho-
tometric parameters used are i) the asymmetry parameter of
the scattering lobes b (0 ≤ b ≤ 1), higher values meaning

narrower lobes and higher scattering intensity, ii) the backward
scattering fraction c (0 ≤ c ≤ 1); c < 0.5 means that the
material mainly backscatters the incoming light towards the
incidence direction, and c > 0.5 means that the material has
a predominantly forward scattering behavior. As examples of
particular behaviors of the phase function, we can cite specular
reflection, characterized by b = 1 and c = 1, or Lambertian
(isotropic) scattering, characterized by b = 0 and c = 0.5. For
B, the parameters h and B0, account for the angular width
and the strength of the opposition effect, respectively.

III. DERIVATION OF THE ELMM

A. Simplifying the Hapke model

Here, using simplifying assumptions, we go from the gen-
eral Hapke model (2) to a special case of the ELMM presented
in [8], [19].

As explained in [2], assuming a Lambertian scattering, the
phase function reduces to P (g) = 1. Besides, for Lambertian
surfaces, there is no opposition surge (B0 = 0) since the
scattering is isotropic. In any case, even for non Lambertian
photometries, for large enough g, the opposition effect is
negligible and B(g) ≈ 0 anyway.

Incorporating all these assumptions, and plugging the ex-
pression of the scattering function (5) in (2), the (bidirectional)
reflectance becomes [2]:

ρ(ω, µ, µ0) =
(1 + 2µ)(1 + 2µ0)ω

4(µ+ µ0)(1 + 2µ
√
1− ω)(1 + 2µ0

√
1− ω)

.

(6)
Finally, we obtain the relative bidirectional reflectance by
dividing by a reference value where ω = 1, in which case
ρ(ω = 1, µ, µ0) =

(1+2µ)(1+2µ0)
4(µ+µ0)

. The reflectance ρ0 is then:

ρ0(ω, µ, µ0) =
ω

(1 + 2µ
√
1− ω)(1 + 2µ0

√
1− ω)

. (7)

All the photometric effects are eliminated because of the
Lambertian photometry assumption. The model is still ma-
terial dependent, because the albedo spectrum depends on the
material. The only other parameters left are geometry related
parameters. However, the albedo spectrum is not available in
practice. A workaround for this is to numerically invert the
model (the full model for a more precise estimate) if all the
parameters but the albedo are known in a pixel. In such a case,
the reflectance-albedo relation is bijective. However, there is
no simple way to assess the results of this method in practice,
especially in real scenarios, and the uncertainty on the results
could be very important. The principles of this strategy are
applied to controlled lab measurements in [20]. Even then,
the model is still complex, highly nonlinear, especially for
high albedos, and it is not identifiable when no parameters are
known, due to the symmetry of (7) w.r.t. µ and µ0.

For small single scattering albedo values (say up to 0.5), (7)
is close to linear, while important nonlinearities appear for
large albedo values. The validity of the linear approximation
actually also depends on the values of the incidence and
emergence angles. In Fig. 4, the function defined by (7) is
plotted (blue curves) for three values of the acquisition angles:
when both the sensor and the sun are at nadir (Fig. 4 (a)), when



4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

albedo

re
fl
e
c
ta
n
c
e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

albedo

re
fl
e
c
ta
n
c
e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

albedo

re
fl
e
c
ta
n
c
e

(a) θ0 = θ = 0◦
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(b) θ0 = θ = 45◦
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(c) θ0 = 90◦, θ = 45◦

Fig. 4. Reflectance plotted as a function of the albedo according to (7) (blue),
and the Taylor expansion (8) in ω = 0 (red), for three geometries.

the sensor and the sun both make an angle of 45 degrees with
respect to the normal to the surface (Fig. 4 (b)), and with
raking incident light (θ0 = 90◦), and the sensor making an
angle of 45 degrees with the nadir direction (Fig. 4 (c)). If both
angles are equal to 90 degrees (with respect to the normal),
the resulting reflectance equals the albedo. Here, because of
these considerations, we propose to further approximate the
relationship between albedo and reflectance by performing a
first order Taylor expansion around ω = 0, with the angles
fixed (in practice approximately valid for “small” albedos):

ρ0(ω, µ, µ0) = ρ0(0) +
∂ρ0
∂ω

(0)ω + o(ω)

=
ω

4µµ0 + 2µ+ 2µ0 + 1
+ o(ω). (8)

The coefficient of the expansion only depends on the geometry
of the acquisition: it affects an albedo spectrum in the same
way for any wavelength. Now let us assume that for a given
material p, we have at our disposal a reference endmember
s0p (usually extracted from the data), with a geometry defined
by the angles θ and θ0. This endmember is a collection
of reflectances for various wavelengths. Then with the first
order model (8), the ratio between the reflectances in each
wavelength is constant, and for the representative spn of
endmember p in pixel n and small albedos:

spn ≈
4µnµn0 + 2µn + 2µn0 + 1

4µµ0 + 2µ+ 2µ0 + 1
s0p = ψns0p. (9)

From this equation, we see that now the link between the local
representative of an endmember in a pixel and a reference
signature for this material is a positive scaling factor incorpo-
rating the information about the geometry in the considered
pixel. With this approximation, we make the connection be-
tween the semi-empirical model of Hapke and the well known
fact in the remote sensing community that illumination effects
can be well approximated by scaling variations of the spectra.

B. ELMM description
The considerations of the previous sections lead to plug this

variability model to the usual LMM, so that it becomes:

xn = ψn

P∑
p=1

apns0p + en = S0ψnan + en. (10)

The LMM is simply scaled in each pixel by a different
nonnegative scaling factor. In practice, it can be useful to allow
the scaling factor to vary for each material:

xn =

P∑
p=1

apnψpns0p + en = S0ψnan + en, (11)
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Fig. 5. Reflectances computed from the albedos, the photometric and
geometric parameters using the full Hapke Model (2), the Lambertian approx-
imation (7) and the linear approximation (8). The columns correspond to the
materials; from left to right: basalt (blue), palagonite (green) and tephra (red).
The rows correspond to two different angular configurations (top: θ0 = 0◦

and θ = 0◦, φ = 0◦, bottom: θ0 = 90◦ and θ = 45◦, φ = 0◦).

where the ψpn are now pixel and material dependent scaling
factors, ψn ∈ RP×P is a diagonal matrix, containing the
scaling factors for each material on its diagonal. We thus
recover the model of (1). The scaling factors can also be
rearranged into a matrix Ψ ∈ RP×N (the n

th
column contains

the diagonal of ψn). This allows model (11) to be rewritten
globally for the whole image as X = S0(Ψ � A) + E,
with � the Hadamard product. The main reason behind the
introduction of a scaling factor for each pixel and material
is that it will make the model more flexible, allowing to
model material dependent variabilities, e.g. related to material
dependent photometric phenomena or more pragmatically to
the intrinsic variability of each material. Another important
reason is that this version of the ELMM was also proven
theorically and experimentally in [16] to locally approximate
nonlinear mixtures by absorbing potential nonlinearities in the
scaling factors, making it a very versatile model to choose
in hyperspectral image unmixing when nonlinearities and
endmember variability are significant.

We refer the interested reader to [8] for detailed descriptions
of algorithms which are able to estimate the parameters of both
versions of the ELMM (abundances and scaling factors).

IV. EXPERIMENTAL VALIDATION

In this section, we provide a qualitative and quantitative
analysis of the quality of the approximations of the full Hapke
model necessary to reach the model of (9). The goal is not
to evaluate the relevance and performance of the ELMM in
unmixing applications, which has already been extensively
carried out in [8], [16], [19]. For the three endmembers of
Fig. 2, for which we obtained estimates of the albedo spectra
and the photometric parameters [18], [20], we compare the
reflectance endmembers generated in several configurations.

In Fig. 5, we show how reflectance is calculated from
the full Hapke Model (2), the Lambertian approximation (7)
and the linear approximation (8), for basalt, palagonite and
tephra, whose photometric parameters are known [18]. We
consider two geometries corresponding to those of Fig. 4 (a)
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between the reflectance spectra generated by the Lambertian model (7) and
the linear approximation (8) plotted against the incidence angle θ0 and the
emergence angle θ (in degrees), for each material (from left to right: basalt,
palagonite and tephra).

(θ0 = θ = 0◦) and (c) (θ0 = 90 and θ = 45◦). In the first
configuration, we see that the Lambertian approximation and
the linear approximation are quite coarse, but acceptable for
small reflectance values, while important discrepancies appear
for larger reflectance values. The second geometrical configu-
ration leads to a better approximation and a better agreement
between the Lambertian model and the linear approximation
since the relationship between albedo and reflectance becomes
more and more linear as the angles get closer to 90◦.

For a more thorough analysis of the accuracy of the linear
approximation depending on the geometry, we show in Fig. 6
plots of the spectral angle and the root mean squared errors
(RMSE) between the reflectance spectra generated by the
Lambertian model and the linear approximation for the three
materials of interest for various angular configurations. There
is a perfect agreement between both models when θ0 = 90◦

and θ = 90◦, and the quality of the approximation decreases
as the angles become smaller. Interestingly, the curvature of
the spectral angle surface seems to be directly related to the
average albedo: the approximation is always satisfactory for
basalt, while it is coarser for palagonite and even coarser for
tephra. RMSE is overall less affected by the geometry, but the
RMSE level is again directly related to the average albedo.

V. CONCLUSION

In the hyperspectral image processing community, it has
long been known empirically that scaling factors can ef-
ficiently and conveniently model brightness variations due
to changing illumination conditions. In this letter, we have
theoretically connected the Extended Linear Mixing Model, a
tractable model taking explicitly this phenomenon into account
for spectral unmixing and the the semi-empirical Hapke model
by making simplifying assumptions. We prove and experimen-
tally verify that these assumptions are the most reasonable
when the albedo is not too large, or for favorable geometric
configurations. Combined with the capability of the ELMM to
locally approximate nonlinear mixtures [16], this result further
motivates the use of the ELMM to unmix images in which
nonlinearities and/or variability effects are non negligible.
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