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Abstract—Turbo codes are a well-known code class used for
example in the LTE mobile communications standard. They
provide built-in rate flexibility and a low-complexity and fast
encoding. However, the serial nature of their decoding algorithm
makes high-throughput hardware implementations difficult.

In this paper, we present recent findings on the implementation
of ultra-high throughput Turbo decoders. We illustrate how
functional parallelization at the iteration level can achieve a
throughput of several hundred Gb/s in 28 nm technology. Our
results show that, by spatially parallelizing the half-iteration
stages of fully pipelined iteration unrolled decoders into X-
windows of size 32, an area reduction of 40% can be achieved.
We further evaluate the area savings through further reduction
of the X-window size.

Lastly, we show how the area complexity and the throughput
of the fully pipelined iteration unrolled architecture scale to
larger frame sizes. We consider the same target bit error
rate performance for all frame sizes and highlight the direct
correlation to area consumption.

I. INTRODUCTION

Wireless communication systems are a driving force of con-
necting our world. Their evolution enables technologies like
the Tactile Internet [1] and the Internet of Things (IoT) [2] but
comes with ever increasing demands for higher throughputs,
higher spectral efficiencies, lower latencies, a lower power
consumption and a larger scalability. First and second gener-
ation wireless communication systems required a throughput
of less than 1 Mb/s, UMTS already supported a throughput
of 2 Mbit/s and LTE-A up to Gb/s [3]. For the 5G standard,
data rates greater than 10 Gb/s will be targeted and future
use cases, Beyond 5G (5G+), are expected to have even larger
throughput requirements. The Horizon 2020 project ”Enabling
Practical Wireless Tb/s Communications with Next Generation
Channel Coding” (EPIC) aims at throughputs well beyond
100 Gb/s, towards Tb/s for Forward Error Correction (FEC)
utilizing soft informations [4]. In particular, EPIC considers
three widely used code families: Low-Density Parity-Check
(LDPC) codes, Polar codes and Turbo codes.

The above-mentioned throughput demands directly trans-
late into constraints at the level of the FEC, a mandatory
building block for reliable wireless transmissions. In the past,
advancements in silicon technologies and in decoder hardware
architectures made it possible these increased requirements.
For example, in 2016, state-of-the-art Turbo decoder imple-
mentations allowed a throughput of approximately 15 Gb/s
at 100 MHz in 65 nm silicon technology [5]. However,

when scaling to advanced technology nodes, the frequency
for hardware implementations of baseband signal processing
is constrained due to power and other design issues and,
overall, only a maximum frequency of 1 GHz can be achieved.
With limited frequency scaling, the throughput has to be
scaled by employing extreme levels of parallelism and using
low complexity algorithms. However, an extreme level of
parallelism in the decoding of FEC codes is often linked to
a decrease in the achieved level of Bit Error Rate (BER)
performance:

• Decoding for a fixed number of iterations with a fully
parallel flooding schedule for Belief Propagation (BP)
decoding of LDPC codes has a lower BER performance
than a partially parallel layered decoding schedule [6],

• Adopting the low complexity Successive Cancellation
(SC) decoding for Polar codes leads to a significantly
reduced BER performance when compared to approaches
employing list decoding [7],

• Splitting the trellis of the component codes of Turbo
codes into smaller sub-trellises to process them in parallel
leads to a BER performance drop that must be mitigated
through additional calculations limiting the achievable
degree of parallelism [8].

In addition, these three widely used code families face
different challenges for the implementation of high-throughput
decoders. Indeed, LDPC codes are classically decoded us-
ing the inherently parallel BP algorithm where complexity
is dominated by iterative message exchange. This results
in a high degree of routing congestion leading to an area
overhead for hardware implementation [9]. Polar decoding
is performed via exploration of the code tree structure using
the SC algorithm. The latter can support multi-bit processing
where complexity is balanced between required computations
and message exchanges [10], [11]. However in order to
achieve competitive BER performance, list decoding needs to
be applied, introducing additional memory management and
control overhead which significantly increases implementation
complexity. Finally, Maximum a Posteriori (MAP) decoding
used for Turbo codes is inherently serial and the corresponding
complexity is dominated by computations and suffers from
data dependencies in the state metric recursion, impacting the
achievable level of parallelism. In addition, iterative processing
required for decoding LDPC and Turbo codes negatively



impacts achievable throughput. Bridging the gap between
the performance metrics of current state-of-the-art decoders
and the requirements identified by the EPIC project can be
achieved by fully unrolling the (iterative) decoding onto a
single pipeline [9], [11]–[13].

This paper highlights recent results obtained under the
umbrella of the EPIC project with a focus on Turbo decoder
implementation. The remainder of this paper is structured as
follows: First, Section II recapitulates the concept of iteration
unrolling in the context of Turbo decoding. Then, Section
III describes new results on fully pipelined iteration unrolled
decoding before Section IV concludes the paper.

II. THE STEP TO 100 GB/S VIA ITERATION UNROLLING

A Turbo decoder consists of two component decoders con-
nected through an interleaver and a de-interleaver. It applies
an iterative loop, exchanging extrinsic information Λe between
its two components, cooperatively improving the decoding
result [14]. State-of-the-art hardware architectures for turbo
decoders decoding generally devise one hardware instance
alternatingly acting as component decoder 1 and component
decoder 2. Moreover, they split the code blocks into smaller
sub-blocks and employ spatial and functional parallelization
to increase the throughput. Hardware architecture archetypes
can be categorized as follows according to the dominant type
of parallelization at the decoder level:
Parallel MAP (PMAP): PMAP decoders spatially parallelize
the decoding of different parts of the code trellis on multiple
sub-decoder cores [15], [16]. However, for smaller sub-blocks
and at high code rates, mitigation measures for avoiding BER
performance loss are necessary and limit the maximum degree
of parallelization [8].
Pipelined MAP (XMAP): The XMAP decoder, named
for its X-shaped pipeline structure, uses a functional par-
allelization approach where the state metric recursions of
the MAP algorithm are pipelined [17]–[20]. It suffers from
the same limitations as the PMAP architecture with respect
to parallelization. Thus, state-of-the-art implementations of
PMAP decoders achieve a throughput of 1-2 Gb/s [21]–[23],
and similarly 1-2 Gb/s have been demonstrated for XMAP
decoders [20], [24] in current technologies.
Fully Parallel MAP (FPMAP): This decoder architecture
is the extreme case of the PMAP with a sub-block size
reduced to 1 trellis stage in combination with a shuffled
decoding schedule [6], [25]. It has been shown to achieve
a throughput of 15 Gb/s, an order of magnitude more than
previously published PMAP implementations [5], but suffers
from a reduced BER performance for high code rates [13].

In order to enable a throughput beyond 100 Gb/s for Turbo
decoder architectures, spatial or functional parallelization at
the decoder level alone will not be enough. However, Turbo
codes allow the utilization of functional level parallelism at
the iteration level. Pipelining the half-iterations and connect-
ing them to a single pipeline leads to a fourth architecture
archetype:
Fully Pipelined Iteration Unrolled (UXMAP): In this

Figure 1: Dominant types of parallelism for different turbo
decoder archetypes.

decoder architecture, complete frames are processed in parallel
while traversing through the decoder pipeline [13], [26]. This
allows for a very high throughput which is determined by
the frame size and the achievable clock frequency, since one
complete decoded frame is output per clock cycle, once the
pipeline is completely filled.

Figure 1 illustrates the different decoder archetypes with
respect to their position in the design space w.r.t. the domi-
nant type of parallelization. The PMAP and XMAP decoder
architectures lie on the spatial and functional parallism axes,
while the FPMAP architecture lies on a straight line parallel
to the spatial parallelism axis, due to the shuffled decoding
schedule which can be seen as an iteration parallelism of 2.
The UXMAP, as presented in [13], lies in a plane spanned
by the functional and iteration parallelism axes. This leads to
a large area consumption for hardware implementations. In a
previous work [13], the first turbo decoder achieving 100 Gb/s
occupied almost 24 mm2 for a frame size of K = 128.

Therefore, in a recent work, we propose to move away from
the ”UXMAP-plane” that is shown in Figure 1 and use an ap-
proach that combines all three methods of parallelization [27].
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Figure 2: Architecture schematic of the spatially parallelized
UXMAP.

III. ADVANCED ITERATION UNROLLED TURBO
DECODING

Combining the UXMAP architecture with spatial parelliza-
tion by splitting the half-iteration pipelines into smaller X-
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Figure 3: Area consumption after synthesis depending on the
frame size K and the X-window size.

Windows of size 32 leads to a reduction of the area con-
sumption by up to 40% for the same frame size K = 128.
Moreover, it enables frame size flexibility to support K =
128, 64, 32 [27].

Figure 2 illustrates the proposed spatially parallelized
UXMAP architecture. It is composed of fully pipelined Half-
Iteration Stages (HI-Stages) consisting of several X-windows.
Note, that in the following, X window size refers to the size
of the sub-trellis which is fed to each X-window. Therefore,
the amount of computational units per X-window is divided
by log2(4) = 2 for radix-4. These are then composed of
2·X window size/2 radix-4 recursion units (for the forward
and backward state metric recursions), 2·X window size/2−2
radix-4 branch metric units (due to recomputation of the
branch metrics) and X window size/2 radix-4 LLR-units (for
soft output computation). In contrast to the architecture from
[13], the FIFO containing the channel values is included
directly into the X-windows, allowing for a more localized
routing.

By reducing the X-window size, all pipelines for the channel
values, for the forward and backward state metrics as well as
for the extrinsic values are shortened. This reduces the pipeline
latency but also makes it possible to realize decoders with
larger frame sizes.

A. Spatially Parallelizing the half-iterations of the UXMAP

Figure 3 shows new synthesis results for one half-iteration
stage of UXMAP decoders with different frame and X-window
sizes in 28 nm FDSOI technology, targeting a frequency of
800 MHz. The channel value quantization is set to 6 bits.
For larger X-window sizes, the pipeline stages contribute the
most to the overall area consumption. Indeed when reducing
X window size from 128 to 64, a sharp drop in area consump-
tion is observed. While a noticeable drop is still observed when
moving to an X window size of 32, the area savings for sizes
16 and 8 are significantly less pronounced. In fact, similar to
PMAP or XMAP decoders, the splitting of the code trellis
requires mitigation measures in order to avoid a decrease in
BER performance. Besides, to avoid an increase in pipeline
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Figure 4: BER performance for different frame sizes K with
an X-window size of 32.

latency, Next Iteration Initialization (NII) [28] is used instead
of performing Acquisition (ACQ) computations [20], since
these would have to be integrated into the overall pipeline.
This however requires additional pipelines for forwarding the
NII values for the state metrics to the next iteration for each
X-window, which counteracts the area savings through overall
shorter pipelines. In addition, reducing X window size below
32 comes at a non-negligible penalty in BER performance,
especially for higher code rates.

Note that the results from Figure 3 do not include placement
& routing overhead and a full UXMAP pipeline must be
composed of several half-iteration stages. Still, the area saving
of 40 % motivates investigation of larger frame sizes.

B. Increasing the Frame Size

Figure 4 shows BER simulation results for frame sizes of
K = 128, 256, and 512 bits for a X-window size of 32. The
respective Almost Regular Permutation (ARP) interleaver pa-
rameters were obtained through the methods described in [29],
[30] and are listed in Tables I and II. To make the given results

K P Q S
128 49 4 [ 3, 113, 111, 93 ]
256 79 16 [ 8, 16, 39, 170, 74, 87, 122, 26, 168, 165, 24,

88, 245, 216, 232, 192]
512 61 16 [ 8, 50, 107, 192, 258, 289, 454, 360, 376, 7, 316,

494, 173, 434, 292, 398 ]

Table I: ARP interleaver parameters.

Punct. Pattern Sys. [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Punct. Pattern P1 [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Punct. Pattern P2 [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Table II: Puncturing patterns for rate 8/9.

comparable to previous work, the decoder with frame size
K = 128 and 4 full iterations (128,4) applying a X-window
size of 32 serves as a reference.

For rate 1/3, the BER performance of the reference decoder
is met by the decoder with K = 256 bits at 3 decoding



0 1 2 3 4 5 6 7 8

Eb/N0(dB)

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

10
-6

10
-7

10
-8

B
E

R

K128-4it

K256-3it

K512-3it

K512-2.5it

R=1/3 R=8/9

Figure 5: BER performance for different frame sizes K with an
X-window size of 32 with added ACQ before the first iteration.

iterations, while for K = 512 bits, 2.5 iterations give the
same performance. Decoding with the (512, 3) configuration
improves performance by 0.5 dB at a BER of 10−6.

Similarly, for rate 8/9, decoding K = 256 bits with
3 iterations gives identical performance as decoding with
(128, 3). For frame size K = 512 bits, 3 decoding iterations
improve on the reference result by about 0.3 dB at a BER
10−6, while decoding only with 2.5 iterations comes at a
penalty of approximately 0.4 dB for the same BER of 10−6.

C. Adding a Short Acquisition

As noted above, the splitting of the trellis into X-Windows
impacts the BER performance. This effect is more pronounced
for larger frame sizes since more positions in the trellis are
weakened through the estimations of the initialization values
at the X-window borders. Decoding with more iterations or
adding an ACQ calculation in addition to the NII for each
window mitigates the BER performance penalty. However,
the former significantly increases the pipeline latency and the
latter is especially costly for UXMAP decoders with larger
frame sizes.

A compromise is to only add a very short ACQ calculation
before the first iteration stage to supply it with initialization
values for the state metrics. Figure 5 shows the BER perfor-
mance for K = 128, 256 and 512 bits and an X-window size
of 32 with an ACQ of 2 trellis sections.

For rate 1/3, the coding gain when comparing (128, 4)
and (512, 3) increases to more than 0.6 dB at a BER 10−6,
confirming the larger impact of the splitting of the trellis on
larger frame sizes. The (256, 3) and (512, 2.5) configurations
are now about 0.4 dB better than (128, 4). This trend translates
to the higher code rate of 8/9, where the (512, 3) configuration
leads to a coding gain of approximately 0.5 dB whereas
the performance of (512, 2.5) is now almost matching the
performance of (128, 4).

Moreover, an ACQ of only two trellis sections can be
implemented at negligible hardware overhead.

D. Estimates for Complete Decoders

Correlating the results from Figures 3, 4 and 5, allows to
give good qualitative estimates for complete decoders which
are listed in Table III. The reference configuration of (128, 4)

Configuration Area Est. [mm2] Throughput
@ 800 MHz

Area Eff.
[Gb/s/mm2]

(128, 4) 12 102.4 8.5
(256, 3) 18 204.8 11.37
(512, 3) 36 409.6 11.37

(512, 2.5) 30 409.6 13,65

Table III: Comparison of different decoder configurations.

which uses 8 half-iteration stages requires 12 mm2, whereas
the (256, 3) configuration is estimated to occupy an area of
≈ 18 mm2. Note that the throughput for this configuration
would be doubled resulting in a throughput of over 200 Gb/s
at a clock frequency of 800 Mhz. Moreover, moving from the
(128, 4) to the (256, 3) or the (512, 3) configuration results in
an improved BER performance. The (512, 2.5) configuration
allows a throughput of 409 Gb/s at 30 mm2, making it almost
twice as area efficient as the (128, 4) configuration.

IV. CONCLUSION

In this work, we explore different implementations of fully
pipelined iteration unrolled Turbo decoders, targeting ultra-
high throughput applications.

Extending our previous work from [27], we show the
impact of spatially parallelizing the X-windows of UXMAP
decoders on the area of one half-iteration stage. Going from
an X-window size of 128 down to 32 is associated with an
area reduction of 40%. Further reduction through limiting
the X-window size is minimal and comes at a cost in the
BER performance. Motivated by the area saving through the
reduction of the X-window size, we demonstrate the feasibility
of reaching a throughput of up to 409 Gb/s for a frame
size K = 512 bits, by correlating area complexity and BER
performance of UXMAP decoders.

Moreover, we show that the required number of decoding
iterations, i.e. hardware instances of half-iteration stages, can
be further reduced by adding a very short ACQ ahead of the
first iteration.

Our promising results show that UXMAP decoder hard-
ware implementations are the prime candidates for ultra-high
throughput, constituting a major milestone on the road towards
Tb/s Turbo decoding.
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